tica (depth < NAX

: = inside / : it = nt / nc, dr os2t = 1.0f 0, N); 3)

st a = nt + nc, b + ntst Tr = 1 + (R0 + (1 - 1))Tr) R = (0 + nt - 1)

= diffuse = true;

-: :fl + refr)) && (depth is NADI-

D, N); refl * E * diffuse; = true;

AXDEPTH)

survive = SurvivalProbability difference estimation - doing it properly if; radiance = SampleLight(%rand I .x + radiance.y + radiance.r) > 0

v = true; at brdfPdf = EvaluateDiffuse(L, N) * Purple st3 factor = diffuse * INVPI; at weight = Mis2(directPdf, brdfPdf); at cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf) * Purple

andom walk - done properly, closely following a /ive)

; pt3 brdf = SampleDiffuse(diffuse, N, r1, r2, R, R, r pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

INFOGR – Computer Graphics

Jacco Bikker & Debabrata Panja - April-July 2017

Lecture 1: "Introduction"

Welcome!

tica ⊾ (depth < 100

: = inside / l it = nt / nc, dd os2t = 1.0f - nn), N);))

at a = nt - nc, b - nt - at Tr = 1 - (R0 + -1 Fr) R = (D * nnt - N

= diffuse = true;

efl + refr)) && (depth k NACOIIII

D, N); refl * E * diffuse; = true;

AXDEPTH)

v = true; t brdfPdf = EvaluateDiffuse(L, N.) * Pair st3 factor = diffuse * INVPI; st weight = Mis2(directPdf, brdfPdf); st cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf)

indom walk - done properly, closely following :
/ive)

; pt3 brdf = SampleDiffuse(diffuse, N, F1, F2, UR, prvive; pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

Today's Agenda:

- Graphics
- Course Introduction
- Field Study
- Rasters

Colors

Introduction

ics & (depth < NA = inside / nt = nt / nc, ss2t = 1.0f >, N); 3) st a = nt - n st Tr = 1 - (Fr) R = (D *

Γ) K = (U = diffuse = true;

fl + refr))

, N); efl * E * d = true;

AXDEPTH)

survive = Surv estimation if; adiance = Sam e.x + radiance

w = true; at brdfPdf = E at3 factor = d at weight = Mi at cosThetaOut E * ((weight

andom walk /ive)

t3 brdf = Samp**USt Cause 3** pdf; pdf; b = E * brdf * (dot(N, R) / pdf); sion = true:

Introduction

AXDEPTH)

adiance = Sam e.x + radiance

v = true; at brdfPdf = E at weight = Mi at cosThetaOut E = ((weight

andom walk - d

ot3 brdf = Samp ALCOHSuse, N. cl. cl. pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

HATO 5: GUARDIANS MULTIPLAYER BETA

st3 brdf = SampGTA Viffuse, N, r1, r2
urvive;
pdf;
n = E * brdf * (dot(N, R) / pdf);
sion = true;

pdf; pdf; n = E * brdf * (dot(N, R) / pdf); sion = true;

iic: ⊾(depth < N

= = inside / 1 nt = nt / nc, ddd os2t = 1.0f = nnt 0, N); 3)

at a = nt - nc, b - n1 at Tr = 1 - (R0 + (1 - 1 Tr) R = (0 * nnt - N

= diffuse = true;

efl + refr)) && (depth k MANDI)

D, N); refl * E * diff: = true;

WXDEPTH)

survive = SurvivalProbability(difference estimation - doing it properly if; radiance = SampleLight(&rand, I, &... e.x + radiance.y + radiance.z) > 0) ##

v = true; at brdfPdf = EvaluateDiffuse(L, N,) * Pau st3 factor = diffuse * INVPI; at weight = Mis2(directPdf, brdfPdf); at cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf)

andom walk - done properly, closely follow: /ive)

; pt3 brdf = SampleDiffuse(diffuse, N, r1, r2, pdf; n = E * brdf * (dot(N, R) / pdf); sion = true;

Introduction

tic: ⊾ (depth < N

: = inside / : it = nt / nc, d ss2t = 1.0f - -), N); 3)

at a = nt - nc, b - nt at Tr = 1 - (R0 + (1 Tr) R = (D * nnt - N

= diffuse; = true;

: :fl + refr)) && (depth k HARDIII)

D, N); refl * E * diffuse; = true;

AXDEPTH)

survive = SurvivalProbability different estimation - doing it property if; radiance = SampleLight(&rand I .x + radiance.y + radiance.r) > 0) &

v = true;

st brdfPdf = EvaluateDiffuse(L, N) Pri st3 factor = diffuse * INVPI; st weight = Mis2(directPdf, brdfPdf); st cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf)

andom walk - done properly, closely fello /ive)

; pt3 brdf = SampleDiffuse(diffuse, N, r1, r2, urvive; pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

tic: ⊾ (depth < 10

= inside / 1 ht = nt / nc, d os2t = 1.0f - n o, N); 3)

at a = nt - nc, b - nt at Tr = 1 - (80 + (1 Tr) R = (D * nnt - N

= diffuse = true:

efl + refr)) && (depth k HANDIIII

D, N); ref1 * E * diffu = true;

AXDEPTH)

survive = SurvivalProbability(difference estimation - doing it properly if; radiance = SampleLight(%rand, I, Market e.x + radiance.y + radiance.z) > 0) %

v = true; at brdfPdf = EvaluateDiffuse(L, N.) * Pour st3 factor = diffuse * INVPI; at weight = Mis2(directPdf, brdfPdf); at cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf) *

andom walk - done properly, closely followin /ive)

; pt3 brdf = SampleDiffuse(diffuse, N, r1, r2, NR, pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

Lord of the Rings

tic: k (depth < 100

= inside / 1 it = nt / nc, dde ss2t = 1.0f = nnt), N); 3)

at a = nt - nc, b + n1 - at Tr = 1 - (R0 + (1 - 80 Tr) R = (D * nnt - 8 *

= diffuse; = true;

-:fl + refr)) && (depth is HANDIII

D, N); ~efl * E * diffu = true;

AXDEPTH)

survive = SurvivalProbability(difference estimation - doing it property if; radiance = SampleLight(&rand, I, I, I, e.x + radiance.y + radiance.z) = 0

v = true; at brdfPdf = EvaluateDiffuse(L, N) * Ps st3 factor = diffuse * INVPI; at weight = Mis2(directPdf, brdfPdf); at cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf)

andom walk - done properly, closely fol /ive)

; st3 brdf = SampleDiffuse(diffuse, N, r1, urvive; pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

Furious 7 (Paul Walker)

tics € (depth < 100

- inside it = nt / nc, dif ss2t = 1.8f 3, N); 3)

at $a = nt - nc_{0} b - nt - nt_{0}$ at Tr = 1 - (80 + 1) $Tr) R = (0 * nnt - 1)^{-1}$

= diffuse; = true:

D, N); -efl * E * diffuse; = true;

AXDEPTH)

survive = SurvivalProbability(dif estimation - doing it properly if; radiance = SampleLight(&rand, 1, 0 e.x + radiance.y + radiance.z) > 0)

v = true;

st brdfPdf = EvaluateDiffuse(L, N)
st3 factor = diffuse * INVPI;
st weight = Mis2(directPdf, brdfPdf
st cosThetaOut = dot(N, L);
E * ((weight * cosThetaOut) / direct

andom walk - done properly, closely /ive)

; st3 brdf = SampleDiffuse(diffuse, "Star Wars pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

= true;

efl + refr)) && (depth is Hold

D, N); refl * E * diffus = true;

AXDEPTH)

survive = SurvivalProbability difference estimation - doing it properly if; adiance = SampleLight(%rand, I. e.x + radiance.y + radiance.z) > 0)

v = true; at brdfPdf = EvaluateDiffuse(L, N.) * Pauro st3 factor = diffuse * INVPI; at weight = Mis2(directPdf, brdfPdf); at cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf) * real

andom walk - done properly, closely followin /ive)

st3 brdf * SampleDiffuse(diffuse, N, r1, r2, UR urvive; pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

Zootopia

Introduction

), 1 -ef. = 1

1AXI

es if;

andom walk - done properly, close /ive)

t3 brdf = SampleDiffuse(diffuse, N, r1, r2, 48, tpd urvive; pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

Introduction

tice **i (depth** is 1935

st = nt / nc. dd s2t = 1.0f), N); 3)

st a = nt - nc, b - n† st Tr = 1 - (R0 + 1 Tr) R = (D * nnt - N *

= diffuse; = true;

-•fl + refr)) && (depth < NAM

), N); ~efl * E * diffu = true;

AXDEPTH)

survive = SurvivalProbability(diff estimation - doing it properly = if; radiance = SampleLight(&rand, I, f e.x + radiance.y + radiance.z) = 0

v = true; at brdfPdf = EvaluateDiffuse(L, N st3 factor = diffuse * INVPI; at weight = Mis2(directPdf, brdfPc at cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / direct E * ((weight * cosThetaOut) / direct

andom walk - done properly, close /ive)

st3 brdf = SampleDiffuse(diffuse, Just Cause 3
prvive;
pdf;
n = E * brdf * (dot(N, R) / pdf);
sion = true;

tic: ≰ (depth < NA)

= inside / 1 nt = nt / nc., dds 552t = 1.0f - nn 5, N); 3)

at a = nt - nc, b - nt at Tr = 1 - (80 + (1 - 1 Tr) R = (D * nnt - N *

= diffuse = true;

-:fl + refr)) && (depth & NADIIII

), N); ~efl * E * diffu = true;

WXDEPTH)

survive = SurvivalProbability(difference estimation - doing it property if; radiance = SampleLight(&rand, I .x + radiance.y + radiance.z) = 0

v = true; at brdfPdf = EvaluateDiffuse(L, N) = Pour st3 factor = diffuse = INVPI; at weight = Mis2(directPdf, brdfPdf); at cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf)

andom walk - done properly, closely following a /ive)

; ot3 brdf = SampleDiffuse(diffuse, N, r1, r2, UR, loc prvive; pdf; n = E * brdf * (dot(N, R) / pdf); sion = true;

tic: ⊾ (depth k 19

: = inside / 1 it = nt / nc, dde os2t = 1.0f - not 0, N); 3)

st a = nt - nc, b - nt st Tr = 1 - (80 + (1) Tr) R = (D * nnt - N *

= diffuse = true;

-:fl + refr)) && (depth & NADIIII

), N); ~efl * E * diffu = true;

AXDEPTH)

survive = SurvivalProbability(difference estimation - doing it properly if; adiance = SampleLight(%rand, I, M) e.x + radiance.y + radiance.z) > 0) %

v = true; at brdfPdf = EvaluateDiffuse(L, N.) Promise at3 factor = diffuse * INVPI; at weight = Mis2(directPdf, brdfPdf); at cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf) *

andom walk - done properly, closely following a /ive)

; ot3 brdf = SampleDiffuse(diffuse, N, r1, r2, UR, loc prvive; pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

Introduction

tice 6 (depth is 1925

= inside / 1 it = nt / nc, dde ss2t = 1.0f - nnt 5, N); 3)

st $a = nt - hc_1 b - mt + st$ st Tr = 1 - (R0 + (1 - mt))Tr() R = (0 - mt) - R - mt)

= diffuse; = true;

: :fl + refr)) && (depth < HANDING

D, N); refl * E * diffu = true;

AXDEPTH)

survive = SurvivalProbability(difference estimation - doing it properly if; radiance = SampleLight(&rand, I, I) e.x + radiance.y + radiance.r) > 0)

v = true; at brdfPdf = EvaluateDiffuse(L, N) * Pour st3 factor = diffuse * INVPI; at weight = Mis2(directPdf, brdfPdf); at cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf)

andom walk - done properly, closely follow: /ive)

; st3 brdf = SampleDiffuse(diffuse, N, r1, r2, 0 pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

Introduction

tic: K (depth < 1923

= inside / 1 it = nt / nc, dde ss2t = 1.0f - nnt), N); 3)

st a = nt - nc, b - nt - st Tr = 1 - (R0 + (1 - 10 Tr) R = (D * nnt - N * 10

= diffuse; = true;

D, N); refl * E * diffuse; = true;

AXDEPTH)

survive = SurvivalProbability(difference estimation - doing it properly if; radiance = SampleLight(&rand I, difference) e.x + radiance.y + radiance.r) = 0.000

v = true; at brdfPdf = EvaluateDiffuse(L, N) = P: st3 factor = diffuse * INVPI; at weight = Mis2(directPdf, brdfPdf); at cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf)

andom walk - done properly, closely fol /ive)

; pt3 brdf = SampleDiffuse(diffuse, N, r1, r urvive; pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

Introduction

11c) 4 (depth < 114)

: = inside / L it = nt / nc, dde os2t = 1.0f - nnt 0, N); 3)

st a = nt - nc, b - nt - st Tr = 1 - (R0 + (1 - R0 fr) R = (D * nnt - R

E = diffuse; = true;

-:fl + refr)) 88 (depth k MAADIII

D, N); refl * E * diffuse; = true;

AXDEPTH)

survive = SurvivalProbability different estimation - doing it properly if; radiance = SampleLight(&rand, I, L, L, 2.x + radiance.y + radiance.r) = 0

v = true; at brdfPdf = EvaluateDiffuse(L, N) ° at3 factor = diffuse ° INVPI; at weight = Mis2(directPdf, brdfPdf)

st cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf)

andom walk - done properly, closely following /ive)

, t3 Brdf = SampleDiffuse(diffuse, N, r1, r2, NR, som prvive; pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

Computer Graphics 2017:

Looking for realism (in several wrong places):

1. Rasterization

- Geometry
- Textures, shaders
- Clipping, culling
- Post processing
- •••

2. Ray tracing

...

- Ray/triangle intersections
- Bounding volume hierarchy
- Snell, Fresnel, Beer
- Whitted, Cook, Kajiya

3. Mathematics

- Vectors
- Matrices
- Transformations

Introduction

tic: ⊾ (depth ⊂ NASS

: = inside / l it = nt / nc, ddo os2t = 1.0f - nnt ' o, N); 3)

at $a = nt - nc_{s} b + nt + s$ at Tr = 1 - (R0 + (1 - 1) Tr) R = (D * nnt - N *)

= diffuse; = true;

: :fl + refr)) && (depth & HARDING

D, N); refl * E * diffuse; = true;

AXDEPTH)

survive = SurvivalProbability difference estimation - doing it properly if; adiance = SampleLight(\$rand, I, I, I) e.x + radiance.y + radiance.z) > 0) ##

v = true; at brdfPdf = EvaluateDiffuse(L, N.) * Pranti st3 factor = diffuse * INVPI; at weight = Mis2(directPdf, brdfPdf); at cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf) *

andom walk - done properly, closely following : /ive)

; pt3 brdf = SampleDiffuse(diffuse, N, r1, r2, NR, brd pdf; n = E * brdf * (dot(N, R) / pdf); sion = true;

Language: English, because of reasons.

Prerequisites: C#.

Literature: Fundamentals of Computer Graphics (3rd edition), by Peter Shirley and Steve Marschner (or 4th, or 2nd, or 1st).

15 lectures.

Supporting math tutorials on Tuesdays (starting week 2). Supporting working lectures on Thursdays (starting week 2). For rooms: see schedule.

Introduction

tice k (depth < 100⊂

= = inside / : it = nt / nc, ddo -552t = 1.0f - nc -3, N); 3)

at a = nt - nc, b - nt at Tr = 1 - (R0 + 1 fr) R = (D * nnt - N * 1

= diffuse; = true;

efl + refr)) && (depth k HANDI

D, N); -efl * E * diffuse; = true;

AXDEPTH)

survive = SurvivalProbability(difference estimation - doing it properly if; adiance = SampleLight(%rand, I,) e.x + radiance.y + radiance.z) > 0) %

v = true; at brdfPdf = EvaluateDiffuse(L, N.) Promote st3 factor = diffuse * INVPI; at weight = Mis2(directPdf, brdfPdf); at cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf)

andom walk - done properly, closely fol. /ive)

; ot3 brdf = SampleDiffuse(diffuse, N, r1, r2, UR, Upd) prvive; pdf; n = E * brdf * (dot(N, R) / pdf); sion = true;

Exams:

- Mid-term: May 23th.
- End of term: June 29th.
- Retake: July 13th.

Attendance:

You are not required to attend any of the lectures / tutorials / practicals (i.e., if you are here, it's because you want to*).

*Obviously, attendance is highly recommended.

Microsoft

Graphics

UNIVERSITEIT UTRECHT - INFORMATION AND COMPUTING SCIENCES

academic year 2016/17 - 4th period

News

Slack - infogr2017 \equiv

jbikker All Threads

general

CHANNELS (2)

infogr2017 ~

random

D

i

Ctrl+4

+

DIRECT MESSAGES

Ξα

- slackbot
- jbikker (you)

+ Invite people

https://infogr2017.slack.com/signup

use uu.nl e-mail address

\$ B

#general

#general

 Δ

You created this channel today. This is the very beginning of the **#general** channel. Purpose: This channel is for team-wide communication and announcements. All team members are in this channel. (edit)

+ Add an app or custom integration & Invite people to infogr2017

<u>mups.//mogrzorr.siack.com/signup</u>

☆ | & 1 | & 0 | Company-wide announcements and work-based matt...

+

Message #general

Today

5

0

Q Search

 \times

Introduction

-ic: ⊾ (depth < 155

: = inside / 1 it = nt / nc, dda os2t = 1.0f = nnt − 5, N); 8)

at a = nt - nc, b - nt - n at Tr = 1 - (80 + 1 Tr) R = (0 * nnt - N

= diffuse; = true;

: :fl + refr)) && (depth < HANDIII

D, N); refl * E * diffuse; = true;

AXDEPTH)

survive = SurvivalProbability(difference estimation - doing it properly if; radiance = SampleLight(&rand, I, II, e.x + radiance.y + radiance.z) > 0)

v = true;

at brdfPdf = EvaluateDiffuse(L, N) Prove st3 factor = diffuse = INVPI; at weight = Mis2(directPdf, brdfPdf); at cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf)

andom walk - done properly, closely following : /ive)

; st3 brdf = SampleDiffuse(diffuse, N, r1, r2, UR, soft urvive; pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

Course characteristics:

This is a very intensive course. Be sure to keep up, i.e. don't miss lectures.

Be aware that this course will be attended by a diverse student population:

- Math-savvy students;
- Programming gurus;
- Game people;
- Informatics guys.

Regardless of your skill level and interests, make use of this course to improve.

Lecturers:

Team

tic: ⊾ (depth ∈ NACC

= inside / 1 it = nt / nc, dde -552t = 1.0f - nnt -5, N); 3)

at a = nt - nc, b = ntat Tr = 1 - (80 + 1)Tr) R = (0 + nnt - 1)

= diffuse; = true;

-: :fl + refr)) && (depth & HADDIII

D, N); ~efl * E * diffuse; = true;

AXDEPTH)

survive = SurvivalProbability(difference estimation - doing it property if; radiance = SampleLight(&rand, I .x + radiance.y + radiance.z) = 0

v = true; at brdfPdf = EvaluateDiffuse(L, N.) * Pauro st3 factor = diffuse * INVPI; at weight = Mis2(directPdf, brdfPdf); at cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf) * Paulo

andom walk - done properly, closely following a /ive)

; t3 brdf = SampleDiffuse(diffuse, N, F1, F2, NR, Npf) urvive; pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

Jacco Bikker bikker.j@gmail.com / j.bikker@uu.nl Office: BBL 424 Debabrata Panja d.panja@uu.nl Office: BBL 511

Team

fic: ⊾(depth < NAS⊂

= = inside / 1 it = nt / nc, dde ss2t = 1.0f - not 1 5, N); 3)

at a = nt - nc, b - nt at Tr = 1 - (R0 + (1 Tr) R = (D * nnt - n

= diffuse; = true;

-: :fl + refr)) && (depth is NADIIII

D, N); refl * E * diffuse; = true;

AXDEPTH)

survive = SurvivalProbability(different estimation - doing it properly if; radiance = SampleLight(&rand, 1, 8, 8, 8) e.x + radiance.y + radiance.z) > 0) 88

v = true; at brdfPdf = EvaluateDiffuse(L, N) * Ps at3 factor = diffuse * INVPI; at weight = Mis2(directPdf, brdfPdf); at cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf)

andom walk - done properly, closely following : /ive)

, t3 Brdf = SampleDiffuse(diffuse, N, r1, r2, 48, 5, 5 prvive; pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

Student Assistants:

1. Kevin van Mastrigt

- 2. Sander Vanheste
- 3. Zino Onomiwo
- 4. Hugo Hogenbirk
- 5. Niek Mulleners

Practical Details

tice ⊾(depth < 1000

= #inside / 1 ht = nt / nc, dde -552t = 1.0f - nnt -5, N); 3)

st a = nt - nc, b = nt - ncst Tr = 1 - (80 + (1) Tr) R = (0 * nnt - N

= diffuse; = true;

: :**fl + refr))** && (depth < MAN)

D, N); refl * E * diffuse; = true;

AXDEPTH)

survive = SurvivalProbability difference estimation - doing it proper if; adiance = SampleLight(%rand, I =.x + radiance.y + radiance.z) = 0 %

v = true; at brdfPdf = EvaluateDiffuse(L, N.) * Point st3 factor = diffuse * INVPI; at weight = Mis2(directPdf, brdfPdf); at cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf)

andom walk - done properly, closely following /ive)

; t33 brdf = SampleDiffuse(diffuse, N, r1, r2, 48, hpt urvive; pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

Assignment Overview:

i. P1: "Tutorial";
ii. P2: Ray Tracing;
iii. P3: Rasterization.
Final practicum grade is 0.2 * P1 + 0.4 * P2 + 0.4 * P3.

Exam overview:

i. T1: Mid-term exam;
ii. T2: Final exam.
Final exam grade is 0.3 * T1 + 0.7 * T2.

Final grade: (T + P) / 2

Passing criteria:

Final Grade \geq 6 (after rounding); both T and P \geq 5.0 (before rounding).

Practical Details

tic: ⊾ (depth < 10.5

= inside / 1 it = nt / nc, ddo os2t = 1.0f - nnt 0, N(); 3)

st a = nt - nc, b - nt + -st Tr = 1 - (R0 + (1 - 11 Fr) R = (0 * nnt - N * 144

E = diffuse; = true;

efl + refr)) && (depth k HANDESS

D, N); ~efl * E * diffuse; = true;

AXDEPTH)

v = true; at brdfPdf = EvaluateDiffuse(L, N) * Purple st3 factor = diffuse * INVPI; at weight = Mis2(directPdf, brdfPdf); at cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf) * Ind

andom walk - done properly, closely following a /ive)

; pt3 brdf = SampleDiffuse(diffuse, N, r1, r2, NR, so pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

How to hand in assignments:

http://www.cs.uu.nl/docs/submit

First assignment ("Tutorial") is online now: See website.

Practical Details

tic: ⊾ (depth < NAS

= = inside / 1 it = nt / nc, dde -552t = 1.0f - nnt -5, N); 8)

st a = nt - nc, b = nt - ncst Tr = 1 - (R0 + (1 - 0) Tr) R = (D * nnt - N *

= diffuse; = true;

efl + refr)) && (depth k HAADIIII

D, N); refl * E * diffuse; = true;

AXDEPTH)

survive = SurvivalProbability(difference estimation - doing it properly if; adiance = SampleLight(%rand, I, %) s.x + radiance.y + radiance.z) > 0) %

v = true; at brdfPdf = EvaluateDiffuse(L, N) * Pourst3 factor = diffuse * INVPI; bt weight = Mis2(directPdf, brdfPdf); bt cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf)

andom walk - done properly, closely following -/ive)

; st3 brdf = SampleDiffuse(diffuse, N, r1, r2, NR, Doff urvive; pdf; n = E * brdf * (dot(N, R) / pdf); sion = true;

Retake: only if you failed the course, and scored at least a 4.0 (before rounding).

Retake / Theory:

Retake covers all theory and replaces min(T1, T2).

Retake / Practical:

 Retake replaces min(P1, P2, P3). Topic will be assigned individually.

WHEN YOUR BEST JUST ISN'T GOOD ENOUGH.

Assignments

tic: ⊾ (depth ⊂ 100

= inside / 1 it = nt / nc, dde os2t = 1.0f - nnt -D, N); B)

E * diffuse = true;

-: efl + refr)) 88 (depth < HANDIII

D, N); ~efl * E * diffuse; = true;

AXDEPTH)

survive = SurvivalProbability(difference estimation - doing it properly if; radiance = SampleLight(%rand I = 1) e.x + radiance.y + radiance.r) = 0 %

v = true; at brdfPdf = EvaluateDiffuse(L, N) * Proceed st3 factor = diffuse * INVPI; at weight = Mis2(directPdf, brdfPdf); at cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf) * Context E * ((weight * cosThetaOut) / directPdf) * Context E * ((weight * cosThetaOut) / directPdf) * Context E * ((weight * cosThetaOut) / directPdf) * Context E * ((weight * cosThetaOut) / directPdf) * Context E * ((weight * cosThetaOut) / directPdf) * Context E * ((weight * cosThetaOut) / directPdf) * Context E * ((weight * cosThetaOut) / directPdf) * Context E * ((weight * cosThetaOut) / directPdf) * Context E * ((weight * cosThetaOut) / directPdf) * Context E * ((weight * cosThetaOut) * Context E * (weight * cosThetaOut) * (weight * cosThetaOut) * (weight * cosThet

andom walk - done properly, closely following : /ive)

; pt3 brdf = SampleDiffuse(diffuse, N, F1, F2, UR, prvive; pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

PART 1: Mathematics

Tutorial 1 will be available on Thursday, April 28th.

PART 2: Programming assignment

P1 (OpenTK Tutorial) is now available from the website. Assistance is available on Tuesday, May 3rd in rooms BBG-079, -083, -109 and -112.

tic: ⊾ (depth < NJ)

: = inside / l it = nt / nc, dd os2t = 1.0f - nn), N);))

at a = nt - nc, b - nt - at Tr = 1 - (R0 + -1 Fr) R = (D * nnt - N

= diffuse = true;

efl + refr)) && (depth k NACOIIII

D, N); refl * E * diffuse; = true;

AXDEPTH)

v = true; t brdfPdf = EvaluateDiffuse(L, N.) * Pair st3 factor = diffuse * INVPI; st weight = Mis2(directPdf, brdfPdf); st cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf)

indom walk - done properly, closely following :
/ive)

; pt3 brdf = SampleDiffuse(diffuse, N, F1, F2, UR, prvive; pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

Today's Agenda:

- Graphics
- Course Introduction
- Field Study
- Rasters

Colors

Field Study

A. S. Douglas. Noughts and Crosses. EDSAC, 1952.

v = true; at brdfPdf = EvaluateDiffuse st3 factor = diffuse * INVPI at weight = Mis2(directPdf, brdfP at cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPd

), N);

= true;

AXDEPTH)

if;

andom walk - done properly, closely fell vive)

at3 brdf = SampleDiffuse(diffuse, N, r1, r2, NR, N rvive; pdf; i = E * brdf * (dot(N, R) / pdf); sion = true:

Field Study

tic: ⊾ (depth < 10

= inside / 1 nt = nt / nc. dda 552t = 1.8f - nn 5, N); 3)

at a = nt - nc, b - nt at Tr = 1 - (80 + 11 Tr) R = (0 * nnt - 8 * 11

= diffuse
= true;

-:fl + refr)) && (depth is MANDIIII

), N); ~efl * E * diffus = true;

WXDEPTH)

survive = SurvivalProbability different estimation - doing it property if; adiance = SampleLight(&rand, I 2.x + radiance.y + radiance.z) 0 %

v = true; t brdfPdf = EvaluateDiffuse(L, N) = Purch st3 factor = diffuse = INVPI; st weight = Mis2(directPdf, brdfPdf); st cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf) = 0000

andom walk - done properly, closely following . /ive)

; pt3 brdf = SampleDiffuse(diffuse, N, r1, r2, UR, Upd prvive; pdf; n = E * brdf * (dot(N, R) / pdf); sion = true;

Field Study

), N); efl * E * diffuse;

AXDEPTH)

survive = SurvivalProbability adiance = SampleLight(&rand, I. e.x + radiance.y + radiance.z) >

v = true; at brdfPdf = EvaluateDiffuse(L, N st3 factor = diffuse * INVPI; at weight = Mis2(directPdf, brdfPd at cosThetaOut = dot(N, L);

E * ((weight * cosThetaOut) / directRdf

vive)

at3 brdf = SampleDiffuse(diffuse, N, r1, r2, UR, so urvive; pdf; n = E * brdf * (dot(N, R) / pdf);

sion = true:

Field Study

ic: € (depth ⊂ PAsc-

= inside / 1 it = nt / nc, dde -552t = 1.0f - nnt -5, N); 3)

st a = nt - nc, b - nt - st Tr = 1 - (R0 + 1 Tr) R = (D * nnt - N

= diffuse; = true:

>, N); refl * E * diffuse;

AXDEPTH)

survive = SurvivalProbability(diff estimation - doing it properly if; radiance = SampleLight(&rand, I, # e.x + radiance.y + radiance.z) > 0

v = true; at brdfPdf = EvaluateDiffuse(L, N) st3 factor = diffuse * INVPI; at weight = Mis2(directPdf, brdfPdf); at cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf) * (rad)

andom walk - done properly, closely following a /ive)

; pt3 brdf = SampleDiffuse(diffuse, N, F1, F2, UR, body pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

Field Study

tic: k (depth < 100

: = inside / l ht = nt / nc, dda os2t = 1.0f - nn 0; N); 3)

at a = nt - nc, b - nt at Tr = 1 - (R0 - (Tr) R = (D * nnt - N

= diffuse; = true;

-:fl + refr)) && (depth k HAADI

D, N); refl * E * diffuse; = true;

AXDEPTH)

survive = SurvivalProbability(differ estimation - doing it properly ff; radiance = SampleLight(&rand, I, 4) e.x + radiance.y + radiance.r) > 0)

w = true; ot brdfPdf = EvaluateDiffuse(L, N) * Po st3 factor = diffuse * INVPI; ot weight = Mis2(directPdf, brdfPdf); ot cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf)

andom walk - done properly, closely fol /ive)

; st3 brdf = SampleDiffuse(diffuse, N, r1, r2 urvive; pdf; n = E * brdf * (dot(N, R) / pdf); sion = true;

Early graphics:

2D, with limitations

0

UU)

- Tiles
- Few colors
- Sprites

Field Study

st3 factor = diffuse * INVPI; at weight = Mis2(directPdf, brdfPdf); at cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf)

ndom walk - done properly, closely following :

, t33 brdf = SampleDiffuse(diffuse, N, r1, r2, R, bp; urvive; pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

Field Study

tic: ⊾ (depth < NA

= inside / 1 it = nt / nc, dde ss2t = 1.0f - nnt 5, N); 3)

st a = nt - nc, b + nt + + st Tr = 1 - (R0 + (1 - 1) Tr) R = (D * nnt - N * + +

= diffuse; = true;

-:fl + refr)) && (depth & MAXDIIII

D, N); ~efl * E * diffuse; = true;

WXDEPTH)

survive = SurvivalProbability difference estimation - doing it property if; adiance = SampleLight(%rand, I, Market e.x + radiance.y + radiance.z) > 0) %

v = true; st brdfPdf = EvaluateDiffuse(L, N.) Pour st3 factor = diffuse * INVPI; st weight = Mis2(directPdf, brdfPdf); st cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf)

andom walk - done properly, closely following a /ive)

; pt3 brdf = SampleDiffuse(diffuse, N, r1, r2, UR, local pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

History of Graphics

tic: **i (dept**h ⊂ N

: = inside / L it = nt / nc, dde os2t = 1.0f - nnt 0, N); 3)

st a = nt - nc, b - nt st Tr = 1 - (80 + (1) Tr) R = (D * nnt - N *

= diffuse = true;

efl + refr)) && (depth k HADDIII

D, N); ~efl * E * diffuse; = true;

AXDEPTH)

survive = SurvivalProbability(difference estimation - doing it property if; radiance = SampleLight(&rand, I, I) e.x + radiance.y + radiance.z) = 0

v = true; ot brdfPdf = EvaluateDiffuse(L, N) * Pours st3 factor = diffuse * INVPI; ot weight = Mis2(directPdf, brdfPdf); ot cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf)

andom walk - done properly, closely following a /ive)

; st3 brdf = SampleDiffuse(diffuse, N, F1, F2, GR, G prvive; pdf; n = E * brdf * (dot(N, R) / pdf); sion = true;

History of Graphics

tic: € (depth < PA

= inside / 1 it = nt / nc, dde ss2t = 1.0f - nnt 5, N); 8)

at a = nt - nc, b + nt + + at Tr = 1 - (R0 + (1 - 10 Tr) R = (D * nnt - N *

E ⁼ diffuse = true;

-:fl + refr)) && (depth is HANDIII)

D, N); refl * E * diffuse; = true;

AXDEPTH)

survive = SurvivalProbability(different estimation - doing it property, ff; adiance = SampleLight(&rand, I. &., e.x + radiance.y + radiance.z) > 0) M&

v = true;

at brdfPdf = EvaluateDiffuse(L, N) Pauro st3 factor = diffuse = INVPI; at weight = Mis2(directPdf, brdfPdf); at cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf)

andom walk - done properly, closely following -/ive)

; pt3 brdf = SampleDiffuse(diffuse, N, r1, r2, NR, kr; pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

	ISTN	MAI		AVE	TR
G40x480 - (81, 45	5), (721, 525)		ILAI IS DIRT	TEIR DEIR	TNCS
Imagen Acerca i cceso /Parar F12 F8	Formato Video : MPEG-1 (VBR) Full Size, 30.00fps, 80q Audio : MPEG-1 L2				
Cursor efecto a los clicks Ifiguración	48.00Hz, stereo, 192kb Opdones Prese	ps ets			
Jefield 2/3 Recordin	ng Sample Video (1080p) tes / 14.668				

Field Study

Game production:

Code Art

t3 brdf = SampleDiffuse(diffuse, N, r3, rvive; pdf; = E * brdf * (dot(N, R) / pdf); ion = tore;

Crysis:

> 1M lines of code; 85k shaders

Unreal 3 engine: 2M lines of code

Frostbite: "10x Unreal 3"

Minecraft: < 200k lines of code.

Field Study

tic: k (depth < 100

= inside / 1 ht = nt / nc, dde os2t = 1.0f - nnt -0, N); 3)

st a = nt - nc, b - nt - st Tr = 1 - (R0 + (1 Tr) R = (D * nnt - N

= diffuse; = true;

: **:fl + refr)) && (depth** k HANDE

), N); refl * E * diffuse; = true;

AXDEPTH)

survive = SurvivalProbability(different estimation - doing it property ff; radiance = SampleLight(&rand, I. ... e.x + radiance.y + radiance.z) = 0.55

v = true; at brdfPdf = EvaluateDiffuse(L, N) * at3 factor = diffuse * INVPI;

st weight = Mis2(directPdf, brdfPdf); st cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf) * ();

andom walk - done properly, closely following : /ive)

; st3 brdf = SampleDiffuse(diffuse, N, r1, r2, UR, soft urvive; pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

History of graphics in games, digest

Initially fast progression:

- from 2D to 3D,
- from monochrome to true-color,
- from wireframe to shaded,
- from sparse to highly detailed.

But also:

from reasonably efficient to produce to extremely labor-intensive.

tica ⊾ (depth < 100

: = inside / l it = nt / nc, dd os2t = 1.0f - nn), N);))

at a = nt - nc, b - nt - at Tr = 1 - (R0 + -1 Fr) R = (D * nnt - N

= diffuse = true;

efl + refr)) && (depth k NACOIIII

D, N); refl * E * diffuse; = true;

AXDEPTH)

v = true; t brdfPdf = EvaluateDiffuse(L, N.) * Pair st3 factor = diffuse * INVPI; st weight = Mis2(directPdf, brdfPdf); st cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf)

indom walk - done properly, closely following :
/ive)

; pt3 brdf = SampleDiffuse(diffuse, N, F1, F2, UR, prvive; pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

Today's Agenda:

- Graphics
- Course Introduction
- Field Study
- Rasters

Colors

Discretization

tic: € (depth < 10.

= inside / L it = nt / nc, ddo os2t = 1.0f - oot 0, N); 3)

= diffuse = true:

: :fl + refr)) && (depth & MANDIIII

D, N); refl * E * diffuse; = true;

AXDEPTH)

survive = SurvivalProbability(difference estimation - doing it property if; adiance = SampleLight(&rand, I. .x + radiance.y + radiance.z) ______

v = true;

it brdfPdf = EvaluateDiffuse(L, N.) Pours it3 factor = diffuse * INVPI; ot weight = Mis2(directPdf, brdfPdf); it cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf)

andom walk - done properly, closely following a /ive)

; t3 brdf = SampleDiffuse(diffuse, N, r1, r2, UR, U, pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

Discretization

tic: ≰ (depth < 100

= inside / 1 it = nt / nc, ddo os2t = 1.0f - oot 0, N); 3)

= diffuse; = true:

D, N); refl * E * diffuse; = true;

AXDEPTH)

survive = SurvivalProbability(difference estimation - doing it properly if; radiance = SampleLight(%rand, I &) e.x + radiance.y + radiance.z) = 0)

v = true;

st brdfPdf = EvaluateDiffuse(L, N) * Passed st3 factor = diffuse * INVPI; st weight = Mis2(directPdf, brdfPdf); st cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf) * Passed

andom walk - done properly, closely following -/ive)

; pt3 brdf = SampleDiffuse(diffuse, N, r1, r2, NR, Soci pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

Rasterization:

"Converting a vector image into a raster image for output on a video display or printer or storage in a bitmap file format."

(Wikipedia)

Rasterization

tic: ⊾ (depth (100

= inside / 1 it = nt / nc, ddo os2t = 1.0f - oot 0, N); 3)

st a = nt - nc, b = ntst Tr = 1 - (R0 + 1)Tr) R = (D = nnt - N)

= diffuse; = true:

D, N); refl * E * diffuse; = true;

AXDEPTH)

survive = SurvivalProbability(difference estimation - doing it properly if; adiance = SampleLight(&rand, I, I, .x + radiance.y + radiance.z) = 0) ##

v = true;

st brdfPdf = EvaluateDiffuse(L, N) * Pause st3 factor = diffuse * INVPI; st weight = Mis2(directPdf, brdfPdf); st cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf)

andom walk - done properly, closely following -/ive)

; pt3 brdf = SampleDiffuse(diffuse, N, r1, r2, NR, D) pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

Improving rasterization:

1. Increase resolution;

Rasterization

"Le: ⊾ (depth < 100

: = inside / : it = nt / nc, ddo os2t = 1.0f - nnt 0; N); 3)

st a = nt - nc, b = nt - ncst Tr = 1 - (R0 + (1 - R))Tr) R = (0 - nnt - R)

= diffuse; = true;

-•fl + refr)) && (depth & HADDO

D, N); -efl * E * diffu = true;

AXDEPTH)

survive = SurvivalProbability(difference estimation - doing it properly if; adiance = SampleLight(&rand, I, I, I) e.x + radiance.y + radiance.z) > 0) %%

v = true;

at brdfPdf = EvaluateDiffuse(L, N) Paulous st3 factor = diffuse INVPI; at weight = Mis2(directPdf, brdfPdf); at cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf)

andom walk - done properly, closely following a /ive)

; pt3 brdf = SampleDiffuse(diffuse, N, r1, r2, NR, Sch pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

Improving rasterization:

- 1. Increase resolution;
- 2. Anti-aliasing;
- 3. Animation.

Discretization

tic: ⊾(depth < 19

= inside / l nt = nt / nc, dde os2t = 1.8f - nnt -2, N); 3)

st a = nt - nc, b - nt - ---st Tr = 1 - (80 + (1 - ----Tr) R = (D * nnt - N

= diffuse = true:

: efl + refr)) && (depth k MANDIIII

D, N); refl * E * diffuse; = true;

AXDEPTH)

survive = SurvivalProbability difference estimation - doing it property ff; radiance = SampleLight(%rand, I e.x + radiance.y + radiance.z) > 0)

v = true;

st brdfPdf = EvaluateDiffuse(L, N.) Process st3 factor = diffuse * INVPI; st weight = Mis2(directPdf, brdfPdf); st cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf)

andom walk - done properly, closely following a /ive)

; st3 brdf = SampleDiffuse(diffuse, N, rl, r2, N, soft urvive; pdf; n = E * brdf * (dot(N, R) / pdf); sion = true;

 $a^{1+}b^{1}=c^{1}$

CRT – Cathode Ray Tube

tic: € (depth < 14.5

= inside / : it = nt / nc, dde os2t = 1.0f - ... >, N); 3)

at a = nt - nc, b - nt - at Tr = 1 - (R0 + (1 - - - -Tr) R = (D * nnt - N -

= diffuse = true;

-:fl + refr)) && (depth is HANDII

D, N); refl * E * diffuse; = true;

AXDEPTH)

survive = SurvivalProbability(difference estimation - doing it properly if; radiance = SampleLight(%rand, I, M) e.x + radiance.y + radiance.r) > 0

v = true; at brdfPdf = EvaluateDiffuse(L, N.) = Pour st3 factor = diffuse = INVPI; bt weight = Mis2(directPdf, brdfPdf); at cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf) = 00

andom walk - done properly, closely following -/ive)

; pt3 brdf = SampleDiffuse(diffuse, N, r1, r2, NR, brd pdf; n = E * brdf * (dot(N, R) / pdf); sion = true: Physical implementation – origins

Electron beam zig-zagging over a fluorescent screen.

0,0

x=-1

y

Raster Displays

CRT – Cathode Ray Tube

y=1

0.0

y=-1

Х

→ x=1

tice € (depth < 1000)

= inside / : it = nt / nc, dde ss2t = 1.8f - nn: 5, N); 8)

st a = nt - nc, b = ntst Tr = 1 - (R0 + (1 - 1))Tr) R = (0 + nt - 1)

= diffuse; = true;

: :fl + refr)) && (depth k HADD

D, N); refl * E * diffuse; = true;

AXDEPTH)

survive = SurvivalProbability(difference estimation - doing it properly if; adiance = SampleLight(\$rand, I, I, a.x + radiance.y + radiance.z) > 0) Mathematical s.x + radiance.y + radiance.y + radiance.z) > 0) Mathematical s.x + radiance.y + ra

v = true; t brdfPdf = EvaluateDiffuse(L, N) Promote st3 factor = diffuse * INVPI; st weight = Mis2(directPdf, brdfPdf); st cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf)

andom walk - done properly, closely following -/ive)

; pt3 brdf = SampleDiffuse(diffuse, N, r1, r2, UR, Lord pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

Physical implementation – consequences

- Origin in the top-left corner of the screen
- Axis system directly related to pixel count

Not the coordinate system we expected...

Frame rate

tice ≰ (depth⊂e Pas

= inside / L it = nt / nc, dde ss2t = 1.0f - nnt 5, N); 3)

at a = nt - nc, b - nt - at Tr = 1 - (R0 + 11 - 10 Tr) R = (D * nnt - N

= diffus: = true;

: :fl + refr)) && (depth < HANDIIII

D, N); ~efl * E * diffuse; = true;

AXDEPTH)

v = true; at brdfPdf = EvaluateDiffuse(L, N) = Pour st3 factor = diffuse = INVPI; at weight = Mis2(directPdf, brdfPdf); at cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf) = 000

andom walk - done properly, closely following a /ive)

; pt3 brdf = SampleDiffuse(diffuse, N, r1, r2, NR, Dp3 pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

PAL: 25fps NTSC: 30fps (actually: 29.97) Typical laptop screen: 60Hz High-end monitors: 120-240Hz Cartoons: 12-15fps

Human eye: 'Frame-less' Not a raster.

How many fps / megapixels is 'enough'?

Frame rate

tice ≰ (depth < 10.≂=

= inside / 1 it = nt / nc, dde os2t = 1.0f - nnt -O, N); B)

at a = nt - nc, b - nt at Tr = 1 - (R0 + (1 Fr) R = (D * nnt - N

E * diffuse; = true;

: :fl + refr)) && (depth K //

D, N); refl * E * diffuse; = true;

AXDEPTH)

survive = SurvivalProbability(difference estimation - doing it property if; radiance = SampleLight(&rand, I do to e.x + radiance.y + radiance.z) > 0)

v = true; at brdfPdf = EvaluateDiffuse(L, N) * st3 factor = diffuse * INVPI; at weight = Mis2(directPdf, brdfPdf); at cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPd;

andom walk - done properly, closely following /ive)

; pt3 brdf = SampleDiffuse(diffuse, N, r1, r2, UR, loc prvive; pdf; n = E * brdf * (dot(N, R) / pdf); sion = true;

0 ms20 ms40 ms60 msFrame 1Frame 2Frame 3Sim 1Sim 2Sim 3Input 1Input 2Input 3

Even 100 frames per second may result in a noticeable delay of 30ms.

A very high frame rate minimizes the response time of the simulation.

Generating images

tics (depth < Nov

= inside / :
it = nt / nc, ddo ss2t = 1.0f - nd 3, N);
3)

at a = nt - nc, b - nt - at Tr = 1 - (R0 + -1 Tr) R = (D * nnt - N

E * diffuse; = true;

-:fl + refr)) && (depth is HANDIII

D, N); ~efl * E * diffuse; = true;

AXDEPTH)

survive = SurvivalProbability(difference estimation - doing it properly if; adiance = SampleLight(%rand, I, M) e.x + radiance.y + radiance.z) > 0) %

v = true; at brdfPdf = EvaluateDiffuse(L, N,) Process st3 factor = diffuse * INVPI; at weight = Mis2(directPdf, brdfPdf); at cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf)

andom walk - done properly, closely following -/ive)

; pt3 brdf = SampleDiffuse(diffuse, N, r1, r2, R, b) pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

Rendering: <u>on a raster</u> *"The process of generating an image from a 2D or 3D model by means of a computer program."* (Wikipedia)

Two main methods:

1. Ray tracing: for each pixel: what color do we assign to it?

2. Rasterization: for each triangle, which pixels does it affect?

tica ⊾ (depth < 100

: = inside / l it = nt / nc, dd os2t = 1.0f - nn), N);))

at a = nt - nc, b - nt - at Tr = 1 - (R0 + -1 Fr) R = (D * nnt - N

= diffuse = true;

efl + refr)) && (depth k NACOIIII

D, N); refl * E * diffuse; = true;

AXDEPTH)

v = true; t brdfPdf = EvaluateDiffuse(L, N.) * Pair st3 factor = diffuse * INVPI; st weight = Mis2(directPdf, brdfPdf); st cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf)

indom walk - done properly, closely following :
/ive)

; pt3 brdf = SampleDiffuse(diffuse, N, F1, F2, UR, prvive; pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

Today's Agenda:

- Graphics
- Course Introduction
- Field Study
- Rasters

Colors

Colors

tic: ⊾ (depth < 10.

= inside / : it = nt / nc, dd ss2t = 1.8f = nn; 3, N); 3)

st a = nt - nc, b = nt - ncst Tr = 1 - (R0 + (1 - 0) Tr) R = (0 * nnt - N

= diffuse; = true;

: :fl + refr)) && (depth < HADDITI

D, N); ~efl * E * diffuse; = true;

AXDEPTH)

survive = SurvivalProbability difference estimation - doing it proper if; radiance = SampleLight(&rand, I e.x + radiance.y + radiance.r) = 0

v = true; at brdfPdf = EvaluateDiffuse(L, N,) * Pu st3 factor = diffuse * INVPI; at weight = Mis2(directPdf, brdfPdf); at cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf)

andom walk - done properly, closely following /ive)

; pt3 brdf = SampleDiffuse(diffuse, N, r1, r2, NR, bp3 pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

Color representation

Computer screens emit light in three colors: red, green and blue.

By additively mixing these, we can produce most colors: from black (red, green and blue turned off) to white (red, green and blue at full brightness).

In computer graphics, colors are stored in discrete form. This has implications for:

- Color resolution (i.e., number of unique values per component);
- Maximum brightness (i.e., range of component values).

Colors

Color representation

The most common color representation is 32-bit ARGB, which stores red, green and blue as 8 bit values (0..255).

Alternatively, we can use 16 bit for one pixel (RGB 565),

or a color palette. In that case, one byte is used per pixel, but only 256 unique colors can be used for the image.

radiance = SampleLight(&rand, 1, 42, 61) e.x + radiance.y + radiance.z) > 0) ## [_____

v = true; at brdfPdf = EvaluateDiffuse(L, N) * Pur at3 factor = diffuse * INVPI; at weight = Mis2(directPdf, brdfPdf); at cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf) *

indom walk - done properly, closely following -/ive)

: t3 Brdf = SampleDiffuse(diffuse, N, r1, r2, RR, Rost urvive; pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

Colors

Color representation

tic: k (depth < 100

t = inside / 1
it = nt / nc, d
ss2t = 1.0f
, N);
})

st a = nt - nc, b - ntst Tr = 1 - (R0 + 1)Tr) R = (D * nnt - N)

= diffuse; = true;

-:fl + refr)) && (depth K HANDIII

), N); ~efl * E * diffuse = true;

AXDEPTH)

survive = SurvivalProbability difference estimation - doing it properly if; radiance = SampleLight(&rand, I. .x + radiance.y + radiance.r) = 0.000

v = true; at brdfPdf = EvaluateDiffuse(L, N.) * Promise st3 factor = diffuse * INVPI; st weight = Mis2(directPdf, brdfPdf); st cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf) * Ond

andom walk - done properly, closely following -/ive)

; t3 brdf = SampleDiffuse(diffuse, N, F1, F2, NR, Npf) urvive; pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

Color representation

tic: k (depth < 100

= inside / 1 it = nt / nc, d os2t = 1.0f o, N); o)

st a = nt - nc, b - nt st Tr = 1 - (R0 + 1 Fr) R = (D * nnt - N * 1

= diffuse; = true;

-:fl + refr)) && (depth K HANDIII

), N); ~efl * E * diffuse = true;

AXDEPTH)

survive = SurvivalProbability difference estimation - doing it properly if; radiance = SampleLight(&rand, I. .x + radiance.y + radiance.r) = 0.000

v = true; at brdfPdf = EvaluateDiffuse(L, N,) * Pauro st3 factor = diffuse * INVPI; at weight = Mis2(directPdf, brdfPdf); at cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf) * Paulo

andom walk - done properly, closely following : /ive)

; t3 brdf = SampleDiffuse(diffuse, N, r1, r2, dR, hpt urvive; pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

INFOGR – Lecture 2 – "Graphics Fundamentals"

Colors

Color representation

tic: k (depth < 100

: = inside / 1 it = nt / nc, d os2t = 1.0f), N); 3)

st a = nt - nc, b - nt st Tr = 1 - (R0 + 1 Fr) R = (D * nnt - N

= diffuse; = true;

-:fl + refr)) && (depth & HADDIN

), N); ~efl * E * diffuse = true;

AXDEPTH)

v = true; at brdfPdf = EvaluateDiffuse(L, N.) * Pauro st3 factor = diffuse * INVPI; at weight = Mis2(directPdf, brdfPdf); at cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf) * Factored

andom walk - done properly, closely following : /ive)

; t3 brdf = SampleDiffuse(diffuse, N, r1, r2, UR, Up; rrvive; pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

tic: k (depth < 100

= inside / : it = nt / nc, dd 552t = 1.0f = nn; 3, N); 3)

st a = nt - nc, b - nt st Tr = 1 - (R0 + fr) R = (D * nnt - N *

= diffuse; = true;

efl + refr)) && (depth k HANDII

D, N); ~efl * E * diffuse; = true;

AXDEPTH)

survive = SurvivalProbabil estimation - doing it pro if; radiance = SampleLight(&ra e.x + radiance.y + radiance

v = true; ot brdfPdf = EvaluateDiffuse st3 factor = diffuse * INVPi st weight = Mis2(directPdf, st cosThetaOut = dot(N, L) E * ((weight * cosThetaOut)

andom walk - done properl vive)

; at3 brdf = SampleDiffuse(d rvive; pdf; o = E * brdf * (dot(N, R)

sion = true:

Color representation

Textures can typically safely be stored as palletized images.

Using a smaller palette will result in smaller compressed files.

75

tice ≰ (depth (⊂1920)

: = inside / l mt = mt / mc, dda os2t = 1.8f = mmt D, N); B)

at a = nt - nc, b - nt - at Tr = 1 - (R0 + 1 Tr) R = (D * nnt - N

= diffuse; = true;

efl + refr)) && (depth < HAADI

), N); ~efl * E * diffuse; = true;

AXDEPTH)

survive = SurvivalProbability(different estimation - doing it properly, it of if; radiance = SampleLight(&rand, I, M, M) e.x + radiance.y + radiance.z) > 0) M

v = true; at brdfPdf = EvaluateDiffuse(L, N) * Punn st3 factor = diffuse * INVPI; at weight = Mis2(directPdf, brdfPdf); at cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf)

andom walk - done properly, closely following : /ive)

; t3 brdf = SampleDiffuse(diffuse, N, r1, r2, 48, 45; pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

Color representation

Using a fixed range (0:0:0 ... 255:255:255) places a cap on the maximum brightness that can be represented:

- A white sheet of paper: (255,255,255)
- A bright sky: (255,255,255)

The difference becomes apparent when we look at the sky and the sheet of paper through sunglasses.

(or, when the sky is reflected in murky water)

tic: ⊾(depth < 10.

= inside / 1 nt = nt / nc, dd 552t = 1.0f - nn 5, N); 3)

at a = nt - nc, b - nt - at Tr = 1 - (R0 + 11 - 11 Tr) R = (D * nnt - N *

= diffuse; = true;

efl + refr)) && (depth k MANDIII

D, N); ~efl * E * diffuse; = true;

AXDEPTH)

v = true; t brdfPdf = EvaluateDiffuse(L, N) * Pourse st3 factor = diffuse * INVPI; st weight = Mis2(directPdf, brdfPdf); st cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf) * 000

andom walk - done properly, closely following : /ive)

; pt3 brdf = SampleDiffuse(diffuse, N, r1, r2, N, soft pdf; n = E * brdf * (dot(N, R) / pdf); sion = true;

Color representation

For realistic rendering, it is important to use an internal color representation with a much greater range than 0..255 per color component.

HDR: High Dynamic Range;

We store one float value per color component.

Including alpha, this requires 128bit per pixel.

tic: ⊾ (depth < NJ)

: = inside / l it = nt / nc, dd os2t = 1.0f - nn), N);))

at a = nt - nc, b - nt - at Tr = 1 - (R0 + -1 Fr) R = (D * nnt - N

= diffuse = true;

efl + refr)) && (depth k NACOIIII

D, N); refl * E * diffuse; = true;

AXDEPTH)

v = true; t brdfPdf = EvaluateDiffuse(L, N.) * Pair st3 factor = diffuse * INVPI; st weight = Mis2(directPdf, brdfPdf); st cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf)

indom walk - done properly, closely following :
/ive)

; pt3 brdf = SampleDiffuse(diffuse, N, F1, F2, UR, prvive; pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

Today's Agenda:

- Graphics
- Course Introduction
- Field Study
- Rasters

Colors

tic: ⊾ (depth < PAx

= inside / l it = nt / nc, dd os2t = 1.0f), N); 3)

at a = nt - nc, b - nt - at Tr = 1 - (R0 + 1 fr) R = (D * nnt - N

= diffuse = true;

-:fl + refr)) && (depth k MANDIIII

D, N); refl * E * diffuse; = true;

AXDEPTH)

v = true;

at brdfPdf = EvaluateDiffuse(L, N) Promote st3 factor = diffuse = INVPI; at weight = Mis2(directPdf, brdfPdf); at cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf) = (Pdd)

andom walk - done properly, closely following -/ive)

; t33 brdf = SampleDiffuse(diffuse, N, r1, r2, SR, Soff urvive; pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

Next Time:

Ray Tracing

- Primitives
- Vectors
- <u>Coordinate systems</u>
- Projections

tice ⊾ (depth ⊂ 1933

: = inside / l it = nt / nc, dd os2t = 1.0f - nn 0, N); 8)

st a = nt - nc, b - nt st Tr = 1 - (80 + (1 Tr) R = (0 * nnt - n

= diffuse; = true;

-:fl + refr)) && (depth & NADE 1

D, N); -efl * E * diffuse; = true;

AXDEPTH)

survive = SurvivalProbat estimation - doing ff; radiance = SampleLight e.x + radiance.y + rad

v = true; at brdfPdf = EvaluateDiffuse(L, N.) Provident st3 factor = diffuse * INVPI; at weight = Mis2(directPdf, brdfPdf); at cosThetaOut = dot(N, L); E * ((weight * cosThetaOut) / directPdf)

andom walk - done properly, closely following : /ive)

; pt3 brdf = SampleDiffuse(diffuse, N, r1, r2, RR, Sport pdf; n = E * brdf * (dot(N, R) / pdf); sion = true:

INFOGR – Computer Graphics

Jacco Bikker & Debabrata Panja - April-July 2017

END OF lecture 1: "Introduction"

Next lecture: "Ray Tracing"

