
INFOGR – Computer Graphics
Jacco Bikker & Debabrata Panja - April-July 2017

Lecture 12: “Visibility”

Welcome!

Smallest Ray Tracers:

#import<cmath>
#import<cstdio>
#define R return
#define O operator
#define P putchar
#define I int
#define f float
I l=2e9;struct v{f x,y,z;v(){}v(f a,f b,f c){x=a;y=b;z=c;}v O+(v o){R{x+o.x,y+o.y,z+o.z};}
v O-(){R*this*-1;}v O*(f s){R{x*s,y*s,z*s};}f O%(v o){R x*o.x+y*o.y+z*o.z;}v O!(){v t=*this;
R t*(1/sqrt(t%t));}};struct b{v p,c;f r;};f T(v o,v d,b*W,v*C,I M){if(M>9)R l;f Z=l,t,h;
v c,p,q;for(I i=3;i--;)c=W[i].p+-o,t=c%d,c=c+d*-t,(h=W[i].r-c%c)>0&(t-=sqrt(h))>.01&Z>t?
(*C=W[i].c,Z=t,c=d*Z+o,p=!(c+-W[i].p),p=d+p*-2*(p%d),T(c,p,W,&c,M+1),*C=v(C->x*c.x,C->y*c.y,
C->z*c.z),1):1;if(d.y<0){q={0,1,0};t=-o%q/(d%q);if(t>.01&Z>t)Z=t,c=d*Z+o,*C=T(c,p=!v(5-c.x,
5-c.y,-c.z),W,C,M+1)<l?v(0,0,0):v(t=I(c.x)+I(c.z)&1,t,t)*(q%p);}Z==l&d.y>0?*C={.5,1,1}:q;
R Z;}main(){printf("P6 512 512 255 ");v c;b W[]={{{2,3,6},{1,0,0},3},{{5,1,4},{0,1,0},1},{{
9,3,7},{0,0,1},4}};for(f y=512;y--;)for(f x=512;x--;)T({5,2,0},!v(1-x/256,y/256-1,1),W,&c,0)
,c=c*255,P(c.x),P(c.y),P(c.z);}

968

869

Fastest Ray Tracer:

Today’s Agenda:

 Depth Sorting

 Clipping

 Visibility

INFOGR – Lecture 12 – “Visibility” 6

Perspective

Scenegraph

world

car

wheel

wheel

wheel

wheel

turret

plane planecar

wheel

wheel

wheel

wheel

turret

buggy

wheel

wheel

wheel

wheel

dude

dudedude

camera

𝑇𝑐𝑎𝑚𝑒𝑟𝑎

𝑇𝑐𝑎𝑟1 𝑇𝑝𝑙𝑎𝑛𝑒1 𝑇𝑐𝑎𝑟2 𝑇𝑝𝑙𝑎𝑛𝑒2

𝑇𝑏𝑢𝑔𝑔𝑦

INFOGR – Lecture 12 – “Visibility” 7

Perspective

y

x
z

FOV

E

𝑉

𝑑

𝑛

𝑓

𝑟

𝑙

The world according to the camera:

Camera space

INFOGR – Lecture 12 – “Visibility” 8

Transformation Pipeline

World space  camera space  orthographic view  canonical view

I × Mcamera × Mortho × Mcanonical

These can be collapsed into a single 4 × 4 matrix.

Perspective

Today’s Agenda:

 Depth Sorting

 Clipping

 Visibility

Rendering – Functional overview

1. Transform:
translating / rotating meshes

2. Project:
calculating 2D screen positions

3. Rasterize:
determining affected pixels

4. Shade:
calculate color per affected pixel

Transform

Project

Rasterize

Shade

meshes

vertices

vertices

fragment positions

pixels

Animation, culling,
tessellation, ...

Postprocessing

Depth Sorting

INFOGR – Lecture 12 – “Visibility” 10

3. Rasterize:
determining affected pixels

Questions:

 What is the screen space position of the fragment?
 Is that position actually on-screen?
 Is the fragment the nearest fragment for the

affected pixel?

How do we efficiently determine visibility of a pixel?

Transform

Project

Rasterize

Shade

meshes

vertices

vertices

fragment positions

pixels

Animation, culling,
tessellation, ...

Postprocessing

Depth Sorting

INFOGR – Lecture 12 – “Visibility” 11

Too far away to drawPart of the tree is off-screen

Torso closer than ground

City obscured by tree

Tree requires little detail

Tree between ground & sun

Old-skool depth sorting: Painter’s Algorithm

 Sort polygons by depth
 Based on polygon center
 Render depth-first

Advantage:

 Doesn’t require z-buffer

Problems:

 Cost of sorting
 Doesn’t handle all cases
 Overdraw

Depth Sorting

INFOGR – Lecture 12 – “Visibility” 13

Depth Sorting

Overdraw:

Inefficiency caused by drawing
multiple times to the same pixel.

INFOGR – Lecture 12 – “Visibility” 14

Depth Sorting

Overdraw:

Inefficiency caused by drawing
multiple times to the same pixel.

INFOGR – Lecture 12 – “Visibility” 15

Depth Sorting

Overdraw:

Inefficiency caused by drawing
multiple times to the same pixel.

INFOGR – Lecture 12 – “Visibility” 16

Depth Sorting

Correct order: BSP

root

INFOGR – Lecture 12 – “Visibility” 17

Depth Sorting

Correct order: BSP

root

front back

INFOGR – Lecture 12 – “Visibility” 18

Depth Sorting

Correct order: BSP

root

INFOGR – Lecture 12 – “Visibility” 19

front back

Depth Sorting

Correct order: BSP

root

INFOGR – Lecture 12 – “Visibility” 20

front back

Depth Sorting

Correct order: BSP

root

INFOGR – Lecture 12 – “Visibility” 21

front back

Depth Sorting

Correct order: BSP

root

INFOGR – Lecture 12 – “Visibility” 22

front back

Depth Sorting

Correct order: BSP

root

Sorting by BSP traversal:
Recursively
1. Render far side of plane
2. Render near side of plane

INFOGR – Lecture 12 – “Visibility” 23

front back

Draw order using a BSP:

 Guaranteed to be correct (hard cases result in polygon splits)
 No sorting required, just a tree traversal

But:

 Requires construction of BSP: not suitable for dynamic objects
 Does not eliminate overdraw

Depth Sorting

INFOGR – Lecture 12 – “Visibility” 24

Z-buffer

A z-buffer stores, per screen pixel, a depth value.
The depth of each fragment is checked against this value:

 If the fragment is further away, it is discarded
 Otherwise, it is drawn, and the z-buffer is updated.

The z-buffer requires:

 An additional buffer
 Initialization of the buffer to 𝑧𝑚𝑎𝑥

 Interpolation of 𝑧 over the triangle
 A z-buffer read and compare, and

possibly a write.

Depth Sorting

INFOGR – Lecture 12 – “Visibility” 25

Z-buffer

What is the best representation for depth in a z-buffer?

1. Interpolated z (convenient, intuitive);

2. 1/z (or: 𝑛 + 𝑓 −
𝑓𝑛

𝑧
) (more accurate nearby);

3. (int)((2^31-1)/z);
4. (uint)((2^32-1)/-z);
5. (uint)((2^32-1)/(-z + 1)).

Even more details:
https://developer.nvidia.com/content/depth-precision-visualized
http://outerra.blogspot.nl/2012/11/maximizing-depth-buffer-range-and.html

Depth Sorting

INFOGR – Lecture 12 – “Visibility” 27

Note: we use zint =
232−1

−𝑧+1
:

this way, any z < 0 will be in the range
zadjusted = −𝑧𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 + 1 = 1. . ∞, therefore

1/𝑧𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 will be in the range 0..1, and thus

the integer value we will store uses the full
range of 0. . 232 − 1.
Here, 𝑧𝑖𝑛𝑡 = 0 represents 𝑧𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 = 0, and

𝑧𝑖𝑛𝑡 = 232 − 1 represents 𝑧𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 = −∞.

https://developer.nvidia.com/content/depth-precision-visualized
http://outerra.blogspot.nl/2012/11/maximizing-depth-buffer-range-and.html

Z-buffer optimization

In the ideal case, the nearest fragment for a pixel is drawn first:

 This causes all subsequent fragments for the pixel to be discarded;
 This minimizes the number of writes to the frame buffer and z-buffer.

The ideal case can be approached by using Painter’s to ‘pre-sort’.

Depth Sorting

INFOGR – Lecture 12 – “Visibility” 28

‘Z-fighting’:

Occurs when two polygons have almost identical
z-values.

Floating point inaccuracies during interpolation
will cause unpleasant patterns in the image.

Depth Sorting

INFOGR – Lecture 12 – “Visibility” 29

Stuff that is too far to drawPart of the tree is off-screen

√ Torso closer than ground

√ City obscured by tree

Tree requires little detail

Tree between ground & sun

Today’s Agenda:

 Depth Sorting

 Clipping

 Visibility

Clipping

Many triangles are partially off-screen. This is
handled by clipping them.

Sutherland-Hodgeman clipping:

Clip triangle against 1 plane at a time;
Emit n-gon (0, 3 or 4 vertices).

Clipping

INFOGR – Lecture 12 – “Visibility” 32

Sutherland-Hodgeman

Input: list of vertices

Algorithm:

Per edge with vertices v0 and v1:
 If v0 and v1 are ‘in’, emit v1

 If v0 is ‘in’, but v1 is ‘out’, emit C
 If v0 is ‘out’, but v1 is ‘in’, emit C and v1

where C is the intersection point of the edge and the plane.

Output: list of vertices,
defining a convex n-gon.

Clipping

0

1
2

in out

Vertex 0 Vertex 1

Vertex 1 Intersection 1

Vertex 2 Intersection 2

Vertex 0

INFOGR – Lecture 12 – “Visibility” 33

Sutherland-Hodgeman

Calculating the intersections with
plane 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 = 0:

𝑑𝑖𝑠𝑡𝑣 = 𝑣 ∙
𝑎
𝑏
𝑐

+ 𝑑

𝑓 =
|𝑑𝑖𝑠𝑡𝑣0|

|𝑑𝑖𝑠𝑡𝑣0| + |𝑑𝑖𝑠𝑡𝑣1|

𝐼 = 𝑣0 + 𝑓(𝑣1 − 𝑣0)

Clipping

v0

v1

I

After clipping, the input n-gon may have at most 1
extra vertex. We may have to triangulate it:

0,1,2,3,4  0, 1, 2 + 0, 2, 3 + 0, 3, 4.

INFOGR – Lecture 12 – “Visibility” 34

Guard bands

To reduce the number of polygons that
need clipping, some hardware uses
guard bands : an invisible band of
pixels outside the screen.

 Polygons outside the screen are
discarded, even if they touch the
guard band;

 Polygons partially inside, partially
in the guard band are drawn
without clipping;

 Polygons partially inside the screen,
partially outside the guard band are
clipped.

Clipping

INFOGR – Lecture 12 – “Visibility” 35

Sutherland-Hodgeman

Clipping can be done against arbitrary planes.

Clipping

INFOGR – Lecture 12 – “Visibility” 36

Today’s Agenda:

 Depth Sorting

 Clipping

 Visibility

Stuff that is too far to draw√ Part of the tree is off-screen

√ Torso closer than ground

√ City obscured by tree

Tree requires little detail

Tree between ground & sun

Visibility

Only rendering what’s visible:

“Performance should be determined by visible geometry, not overall world size.”

 Do not render geometry
outside the view frustum

 Better: do not process
geometry outside frustum

 Do not render occluded
geometry

 Do not render anything
more detailed than strictly
necessary

INFOGR – Lecture 12 – “Visibility” 41

Visibility

Culling

Observation:
50% of the faces of a cube are not visible.

On average, this is true for all meshes.

Culling ‘backfaces’:

Triangle: 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 = 0
Camera: 𝑥, 𝑦, 𝑧
Visible: fill in camera position in plane equation.

𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 > 0: visible.

Cost: 1 dot product per triangle.

INFOGR – Lecture 12 – “Visibility” 42

Visibility

Culling

Observation:
If the bounding sphere of a mesh is outside the
view frustum, the mesh is not visible.

But also:
If the bounding sphere of a mesh intersects the
view frustum, the mesh may be not visible.

View frustum culling is typically a conservative
test: we sacrifice accuracy for efficiency.

Cost: 1 dot product per mesh.

INFOGR – Lecture 12 – “Visibility” 43

Visibility

Culling

Observation:
If the bounding sphere over a group of bounding
spheres is outside the view frustum, a group of
meshes is invisible.

We can store a bounding volume hierarchy in the
scene graph:

 Leaf nodes store the bounds of the meshes
they represent;

 Interior nodes store the bounds over their
child nodes.

Cost: 1 dot product per scene graph subtree.

INFOGR – Lecture 12 – “Visibility” 44

Visibility

INFOGR – Lecture 12 – “Visibility” 45

Culling

Observation:
If a grid cell is outside the view frustum, the
contents of that grid cell are not visible.

Cost: 0 for out-of-range grid cells.

Visibility

Indoor visibility: Portals

Observation: if a window is invisible, the room it
links to is invisible.

INFOGR – Lecture 12 – “Visibility” 46

Welcome!

Welcome!

Welcome!

Welcome!

Welcome!

Welcome!

Welcome!

Welcome!

Welcome!

Welcome!

Welcome!

Visibility determination

Coarse:

 Grid-based (typically outdoor)
 Portals (typically indoor)

Finer:

 Frustum culling
 Occlusion culling

Finest:

 Backface culling
 Clipping
 Z-buffer

Visibility

INFOGR – Lecture 12 – “Visibility” 58

Today’s Agenda:

 Depth Sorting

 Clipping

 Visibility

INFOGR – Computer Graphics
Jacco Bikker & Debabrata Panja - April-July 2017

END OF lecture 12: “Visibility”

Next lecture: “Postprocessing”

