
INFOGR – Computer Graphics
Jacco Bikker & Debabrata Panja - April-July 2017

Lecture 7: “Accelerate”

Welcome!

Recap

INFOGR – Lecture 7 – “Accelerate” 2

D.P. : 𝐷

?

 𝑁

𝑦

𝑥

𝐴𝑥 + 𝐵𝑦 + 𝐶𝑧 + 𝐷 = 0

=
𝐴
𝐵
𝐶

𝑃 =(6,3,3)

𝐴6 + 𝐵3 + 𝐶3 + 𝐷 = 0

0∗ 6 + 1 ∗ 3 + 0 ∗ 3 + 𝐷 = 0

=
0
1
0

3 + 𝐷 = 0  𝐷 = −3  𝑫 = −(𝑷 ∙ 𝑵)

Recap

INFOGR – Lecture 7 – “Accelerate” 3

D.P. : 𝐷

?

 𝑁

𝐴𝑥 + 𝐵𝑦 + 𝐶𝑧 + 𝑑 = 𝑁 ∙ 𝑝 + 𝑑 = 0 and 𝑝 𝑡 = 𝑂 + 𝑡 𝐷

 𝑁 ∙ (𝑂 + 𝑡 𝐷) + 𝑑 = 0  𝑁 ∙ 𝑂 + 𝑁 ∙ 𝑡 𝐷 + 𝑑 = 0

 𝑁 ∙ 𝑡 𝐷 = − 𝑁 ∙ 𝑂 + 𝑑  𝑡 = − 𝑁 ∙ 𝑂 + 𝑑 /(𝑁 ∙ 𝐷)

Recap

INFOGR – Lecture 7 – “Accelerate” 4

D.P. : 𝐷

 𝑁
?

 𝐷 𝑅

 𝐷
∙
 𝑁

 𝑢 = 𝑁(𝐷 ∙ 𝑁)

 𝑣 = 𝐷 − 𝑢

 𝑣

− 𝑢

𝑅 = 𝑣 − 𝑢

𝑅 = (𝐷 − 𝑢) − 𝑢

𝑅 = (𝐷 − 𝑁(𝐷 ∙ 𝑁)) − 𝑁(𝐷 ∙ 𝑁)

𝑅 = 𝐷 − 2 𝑁(𝐷 ∙ 𝑁)

𝑛1

𝑛2
𝑠𝑖𝑛𝜃1 = 𝑠𝑖𝑛𝜃2 ⟺ 𝑠𝑖𝑛𝜃1 ≤

𝑛2

𝑛1

Schlick:

𝐶

Camera looks straight ahead along z:

 𝑉 =
0
0
1

or 𝑉 =
0
0
−1

𝐶 = 𝐸 + 𝑑 𝑉

𝑝0 = 𝐶 +
−1
−1
0

, 𝑝1 = 𝐶 +
1
−1
0

, 𝑝2 = 𝐶 +
−1
1
0

Arbitrary 𝑉:

let 𝑢𝑝 =
0
1
0

. Then:

 𝑟 =
 𝑢𝑝 × 𝑉

 𝑢𝑝 × 𝑉

 𝑢 =
 𝑟 × 𝑉

 𝑟 × 𝑉

 𝑟 =
 𝑉 × 𝑢𝑝

 𝑉 × 𝑢𝑝

 𝑢 = 𝑟 × 𝑉𝑝0 = 𝐶 − 𝑟 + 𝑢

𝑝1 = 𝐶 + 𝑟 + 𝑢

𝑝2 = 𝐶 − 𝑟 − 𝑢

−1
0
0

0
−1
0

Today’s Agenda:

 Efficiency

 Boxes, AABBs & Groupings

 To Rasterization

 3D Engine Overview

 Textures

Efficiency

Measuring Performance

Stopwatch class:

Using System.Diagnostics.Stopwatch;

Useful property:

 long ElapsedMilliseconds { get; }

Methods:

 Reset
 Start
 Stop

INFOGR – Lecture 7 – “Accelerate” 7

Note:

Accuracy may vary. Measure lots of
work, not a single line of code. Aim for
tens of milliseconds, not nanoseconds.

Note:

Multithreading affects measurements.
Profile single-threaded code; tune
your multi-threading independently.

Note:

Use a profiler for more accuracy and
detail. Try e.g. SlimTune, or Prof-It:
http://prof-it.sourceforge.net

Efficiency

Optimization Primer

Some things to keep in mind:

 Float or double
 Don’t do work you don’t need to do

 Early out
 Reduce precision
 Lights with finite radius
 Things that can’t occlude light

INFOGR – Lecture 7 – “Accelerate” 8

𝑎𝑡𝑡𝑒𝑛𝑢𝑎𝑡𝑖𝑜𝑛 =

𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑒 1 −
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
𝑟𝑎𝑑𝑖𝑢𝑠

4 2

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒2 + 1

From:
Real Shading in Unreal Engine 4, Karis, 2013
(also used in Frostbite).

Loop hoisting:
Take expressions that do not rely on the loop
counter outside the loop.

for(int i = 0; i < lights; i++) {
vec3 N = intersection->GetNormal();
vec3 L = light[i]->pos –

intersection->pos;
L.Normalize();
if (dot(L, N) > 0) {

…
}

}



vec3 N = intersection->GetNormal();
for(int i = 0; i < lights; i++) {

vec3 L = light[i]->pos –
intersection->pos;

if (dot(L, N) > 0) {
L.Normalize();
…

}
}

Efficiency

Optimization Primer

Some things to keep in mind:

 Float or double
 Don’t do work you don’t need to do
 Precalculate

 Loop hoisting
 Vertex shaders

INFOGR – Lecture 7 – “Accelerate” 9

Efficiency

Optimization Primer

Some things to keep in mind:

 Float or double
 Don’t do work you don’t need to do
 Precalculate
 Expensive operations

 sin, cos
 sqrt
 /
 *
 +, -

INFOGR – Lecture 7 – “Accelerate” 10

Look-up tables:

If you need sin/cos, it’s often much faster to
use a look-up table.

float sintab[3600], costab[3600];
for(int i = 0; i < 3600; i++)
{

sintab[i] = Math.Sin(i / 10);
costab[i] = Math.Cos(i / 10);

}

…

float s = sintab[(int)(a * 10)];
float c = costab[(int)(a * 10)];

Efficiency

Optimization Primer

Some things to keep in mind:

 Float or double
 Don’t do work you don’t need to do
 Precalculate
 Expensive operations
 Programming Language

 C#/C++
 C++/Asm

INFOGR – Lecture 7 – “Accelerate” 11

Efficiency

Perceived Performance

Incremental Rendering

1. Real-time preview:

 Depth map
 Depth map plus materials
 Render without recursive reflections
 Render with very limited recursion

Still not real-time?

 Render half-res
 Adaptive resolution
 Optimize the application a bit

INFOGR – Lecture 7 – “Accelerate” 12

Efficiency

Perceived Performance

Incremental Rendering

2. Stationary camera:

 Render with normal recursion

Keep the application responsive:

Render lines of pixels until a certain number of
milliseconds has passed; continue in the next frame.

INFOGR – Lecture 7 – “Accelerate” 13

Efficiency

Perceived Performance

Incremental Rendering

3. ‘Photograph mode’ :

 Invoked with a key
 Render with extreme recursion
 Use anti-aliasing
 Add screenshot feature

Keep the application responsive!

INFOGR – Lecture 7 – “Accelerate” 14

Today’s Agenda:

 Efficiency

 Boxes, AABBs & Groupings

 To Rasterization

 3D Engine Overview

 Textures

Boxes

Hierarchical Grouping

Using AABBs, we can recursively group
objects.

 A ray that misses a green box will not
check the triangles inside it;

 A ray that misses a blue box will skip
the two green boxes inside it;

 A ray that misses the red box doesn’t
hit anything at all.

INFOGR – Lecture 7 – “Accelerate” 16

Hierarchical Grouping

In a rasterization-based world:

 If a green box is outside the view
frustum, we don’t have to render the
triangles inside it;

 If a blue box is outside the view
frustum, we don’t have to test the green
boxes inside it;

 If the red box is outside the view
frustum, we don’t see anything.

INFOGR – Lecture 7 – “Accelerate” 17

Boxes

Why Do We Care

We can use an AABB to quickly discard objects.

INFOGR – Lecture 7 – “Accelerate” 18

Boxes

Intersecting a Box

Basic ray/box intersection:

1. Intersect the ray with each of the 6 planes;
2. Keep the intersections that are on the same side of

the remaining planes;
3. Determine the closest intersection point.

INFOGR – Lecture 7 – “Accelerate” 19

𝑂

𝐷

Boxes

Boxes

Special Case: AABB

AABB: Axis Aligned Bounding Box.

Slab test:

Intersect the ray against pairs of planes.
𝑡𝑚𝑖𝑛 = +∞, 𝑡𝑚𝑎𝑥 = −∞
𝑡𝑚𝑖𝑛 = min(𝑡1, 𝑡2)
𝑡𝑚𝑎𝑥 = max(𝑡1, 𝑡2)

intersection if: 𝑡𝑚𝑖𝑛 < 𝑡𝑚𝑎𝑥

Since the box is axis aligned, calculating t is cheap:

𝑡 = −(𝑂 ∙ 𝑁 + 𝑑)/(𝐷 ∙ 𝑁)

= −(𝑂𝑥 ∙ 𝑁𝑥 + 𝑑)/(𝐷𝑥 ∙ 𝑁𝑥)

= (𝑥𝑝𝑙𝑎𝑛𝑒 − 𝑂𝑥)/𝐷𝑥

INFOGR – Lecture 7 – “Accelerate” 20

max(𝑡𝑚𝑖𝑛,)
min(𝑡𝑚𝑎𝑥,)

𝑡1

𝑡2

𝑡𝑚𝑎𝑥

𝑡𝑚𝑖𝑛

𝑡1

𝑡2

𝑡𝑚𝑖𝑛

𝑑 = −(𝑁 ∙ 𝑃), where P is a point on the plane.

In this case, for 𝑁 = (1,0,0):
𝑑 = −𝑃𝑥 = −𝑥𝑝𝑙𝑎𝑛𝑒 , and thus:

𝑡 = −(𝑂𝑥 ∙ 𝑁𝑥 + 𝑑)/(𝐷𝑥 ∙ 𝑁𝑥)

= −(𝑂𝑥 − 𝑥𝑝𝑙𝑎𝑛𝑒)/𝐷𝑥

=(𝑥𝑝𝑙𝑎𝑛𝑒 − 𝑂𝑥)/𝐷𝑥

Boxes

Special Case: AABB

In pseudo-code:

bool intersection(box b, ray r)
{

float tx1 = (b.min.x - r.O.x) / r.D.x;
float tx2 = (b.max.x - r.O.x) / r.D.x;

float tmin = min(tx1, tx2);
float tmax = max(tx1, tx2);

float ty1 = (b.min.y - r.O.y) / r.D.y;
float ty2 = (b.max.y - r.O.y) / r.D.y;

tmin = max(tmin, min(ty1, ty2));
tmax = min(tmax, max(ty1, ty2));

return tmax >= tmin;
}

INFOGR – Lecture 7 – “Accelerate” 21

𝑡𝑚𝑎𝑥

𝑡𝑚𝑖𝑛

Intersecting a box in 3D:
- 6 multiplications (*)
- 6 subtractions
- 10 min/max
- 1 comparison.
(cheaper than a sphere)

Today’s Agenda:

 Efficiency

 Boxes, AABBs & Groupings

 To Rasterization

 3D Engine Overview

 Rasterization

Rasterization

Primary Rays

Ray tracing versus
Rasterization

INFOGR – Lecture 7 – “Accelerate” 23

Rasterization

Primary Rays

Ray tracing versus
Rasterization

INFOGR – Lecture 7 – “Accelerate” 24

Rasterization:

1. Transform primitive into camera space
2. Project vertices into 2D screen space
3. Determine which pixels are affected
4. Use z-buffer to sort (pixels of) primitives
5. Clip against screen boundaries

Rasterization

Shadow Rays

The rasterization pipeline renders triangles one at a time.

 Shading calculations remain the same
 But determining light visibility is non-trivial.

Rasterization does not have access to global data.

INFOGR – Lecture 7 – “Accelerate” 25

Rasterization

Spaces

Ray tracing typically happens in a single 3D coordinate system.

In rasterization, we use many coordinate systems:

 Camera space
 Clip space
 2D screen space
 Model space
 Tangent space

We need efficient tools to get from one space to another. We will make
extensive use of matrices to do this.

INFOGR – Lecture 7 – “Accelerate” 26

Rasterization

INFOGR – Lecture 7 – “Accelerate” 27

Common Concepts

Many things remain the same:

 Normal interpolation
 Shading
 Texture mapping
 The camera
 Boxes.

Today’s Agenda:

 Efficiency

 Boxes, AABBs & Groupings

 To Rasterization

 3D Engine Overview

 Textures

3D Engine

Topics covered so far:

Basics:
 Rasters
 Vectors
 Color representation

Ray tracing:
 Light transport
 Camera setup
 Textures

Shading:
 N dot L
 Distance attenuation
 Pure specular

INFOGR – Lecture 7 – “Accelerate” 29

Rendering – Functional overview

1. Transform:
translating / rotating / scaling meshes

2. Project:
calculating 2D screen positions

3. Rasterize:
determining affected pixels

4. Shade:
calculate color per affected pixel

Transform

Project

Rasterize

Shade

meshes

vertices

vertices

fragment positions

pixels

Animation, culling,
tessellation, ...

Postprocessing

3D Engine

INFOGR – Lecture 7 – “Accelerate” 30

Rendering

INFOGR – Lecture 7 – “Accelerate”

Rendering – Data overview

Rendering – Data Overview

world

car

wheel

wheel

wheel

wheel

turret

plane planecar

wheel

wheel

wheel

wheel

turret

buggy

wheel

wheel

wheel

wheel

dude

dudedude

camera

𝑇𝑐𝑎𝑚𝑒𝑟𝑎

𝑇𝑐𝑎𝑟1 𝑇𝑝𝑙𝑎𝑛𝑒1 𝑇𝑐𝑎𝑟2 𝑇𝑝𝑙𝑎𝑛𝑒2

𝑇𝑏𝑢𝑔𝑔𝑦

3D Engine

INFOGR – Lecture 7 – “Accelerate” 32

Rendering – Data Overview

Objects are organized in a hierarchy: the
scenegraph.

In this hierarchy, objects have translations and
orientations relative to their parent node.

Relative translations and orientations are
specified using matrices.

Mesh vertices are defined in a coordinate
system known as object space.

3D Engine

INFOGR – Lecture 7 – “Accelerate” 33

Transform

Project

Rasterize

Shade

vertices, transforms

pixels

Rendering – Data Overview

Transform takes our meshes from
object space (3D) to camera space
(3D).

Project takes the vertex data from
camera space (3D) to screen space
(2D).

textures, shaders, lights

camera transform

screen buffers

vertices

vertices

fragment positions

connectivity data

3D Engine

INFOGR – Lecture 7 – “Accelerate” 34

Rendering – Data Overview

The screen is represented by (at least) two buffers:

3D Engine

INFOGR – Lecture 7 – “Accelerate” 35

Rendering – Components

Scenegraph
Culling

Vertex transform pipeline
Matrices to convert from one space to another
Perspective

Rasterization
Interpolation
Clipping
Depth sorting: z-buffer

Shading
Light / material interaction
Complex materials

Lecture 10

Lecture 9
Lecture 11

Lecture 14
Lecture 14

P2
P3

3D Engine

INFOGR – Lecture 7 – “Accelerate” 36

Transformations

Rendering a scene graph is done using a recursive function:

Here, matrix concatenation is part of the recursive flow.

void SGNode::Render(mat4& M)
{

mat4 M’ = Mlocal * M;
mesh->Rasterize(M’);
for(int i = 0; i < childCount; i++)

child[i]->Render(M’);
};

37

INFOGR – Lecture 7 – “Accelerate” 37

3D Engine

Transformations

To transform meshes to world space, we call
SGNode::Render with an identity matrix.

To transform meshes to camera space, we call it
with the inverse transform of the camera.

Remember: the world revolves around the viewer;
instead of turning the viewer, we turn the world in
the opposite direction.

void SGNode::Render(mat4& M)
{

mat4 M’ = Mlocal * M;
mesh->Rasterize(M’);
for(int i = 0; i < childCount; i++)

child[i]->Render(M’);
};

38

INFOGR – Lecture 7 – “Accelerate” 38

3D Engine

After projection

The output of the projection stage is a
stream of vertices for which we know 2D
screen positions.

The vertex stream must be combined with
connectivity data to form triangles.

‘Triangles’ on a raster consist of a
collection of pixels, called fragments.

Transform

Project

Rasterize

Shade

meshes

vertices

vertices

fragment positions

pixels

connectivity data

39

INFOGR – Lecture 7 – “Accelerate” 39

3D Engine

Today’s Agenda:

 Efficiency

 Boxes, AABBs & Groupings

 To Rasterization

 3D Engine Overview

 Textures

INFOGR – Computer Graphics
Jacco Bikker & Debabrata Panja - April-July 2017

END OF lecture 7: “Accelerate”

Next lecture: “OpenGL”

