
2018/2019, 4th quarter

INFOGR: Graphics

Practical 3: Rasterization

Author: Jacco Bikker

The assignment:

In the spirit of the 2D ray tracer from P2, the purpose of the P3 assignment is to create a small
2.5D engine, starting with the provided template. The renderer should be able to visualize a
scene graph, with (potentially) a unique texture and shader per scene graph node. The shaders
should at least support the full Phong illumination model for multiple lights.

The following rules for submission apply:

• Your code must compile and run ‘out-of-the-box’ (exception: we will restore
packages if necessary). You can reduce the risk that your code fails during
assessment by testing it on someone else’s machine. To be very safe, ask a TA
to test it.

• Make sure you clean your solution before submitting (i.e. remove all the
compiled files and intermediate output). This can easily be achieved by
running clean.bat (included with the template). This will also kill the OpenTK
package. Contrary to popular belief, this is OK as it significantly reduces the
zipped size.

• New for P3: include a readme. The readme should provide the names and
student numbers of the authors, a statement on the work division, an
overview of the implemented features, any instructions we may need to
operate the program and finally, an accurate and complete overview of
sources used in the creation of your program.

• You can work alone (without penalty) or with a single partner on this project.

Grading:

If you do the above properly, you get a 6. Implement additional features to obtain additional
points (up to a 10). From the base grade of 6, we deduct points for a missing readme, a
solution that was not cleaned, a solution that does not compile, or a solution that crashes
(1 point for each problem).

Deliverables:

A ZIP-file containing the contents of your (cleaned) solution directory, and the read-me (in
the .txt file format). The contents of the solution directory should contain your solution files
(.sln, .vcxproj), all your source code and all your asset files (including shaders, models and
textures).

Upload your zip file via the SUBMIT system at www.cs.uu.nl/docs/submit .

Deadline:

Tuesday, June 25, 2019, 23:59h

If you miss this deadline, there will be a second entry in the submit system to upload your
solutions. It is open 12h longer, i.e. till Wednesday, June 26, 2019, 12:00 (noon). Uploading to
this entry will result in a deduction of 0.5 in your grading (attention: the deduction still applies
if you upload to this entry earlier).

If you miss the second deadline as well, there will be a third entry in the submit system to
upload your solutions. It is open 24h longer, i.e. till Wednesday, June 26, 2019, 23:59. Uploading
to this entry will result in a deduction of 1.0 in your grading (attention: the deduction still
applies if you upload to this entry earlier).

Figure 1: That's not 2.5D. That is 3D.

http://www.cs.uu.nl/docs/submit

High-level Outline

For this assignment you will implement a basic 2.5D engine. The engine is a tool
to visualize a scene graph: a hierarchy of meshes, each of which can have a unique
local transform. Each mesh will have a texture and a shader. The input for the
shader includes a set of light sources. The shading model implemented in the
fragment shader determines the response of the materials to these lights.

The main concepts you will apply in this assignment are matrix transforms and shading models.

Matrix transforms: objects are defined in local space (also known as model space). An object
can have an orientation and position relative to its parent in the scene graph. This way, the
wheel of a car can spin, while it moves with the car. In the real world, many moving objects
move relative to other objects, which may also move relative to some other object. In a 3D
engine, we have an extra complication: after we transform our vertices to world space, we need
to transform them to camera space, and then to screen space for final display. A correct
implementation and full understanding of this pipeline is an important aspect of both theory
and practice in the second half of the course.

Shading: using interpolated normals and a set of point lights we can get fairly realistic materials
by applying the Phong shading model. This model combines ambient lighting, diffuse reflection
and glossy reflection. Optionally, this can be combined with normal mapping for detailed
surfaces. We will be applying concepts from ray tracing here.

2.5D: the unmodified template renders a 3D scene. The specific viewpoint (and the 2D action)
is sometimes referred to as ‘2.5D’. For this assignment, everything stays like that. This is
important: although matrices are not harder in 3D then in 2D or ‘2.5D’, their correctness is
easier to visually verify.

Figure 2: Example of a 2.5D game: 3D models with shadows, but mostly 2D action.

The remainder of this document describes the P3 template, the requirements for the
assignment and bonus challenges.

Template

For this assignment, a fresh template has been prepared for you.

When you start the template, you will notice that quite some work has been done for you:

▪ Two 3D models are loaded. The models are stored in the text-based OBJ file format,
which stores vertex positions, vertex normals and texture coordinates.

▪ A mesh class is provided that stores this data for individual meshes.
▪ A texture and shader class are also provided, encapsulating most of the functionality

you built in the tutorial assignment, but with a twist: vertex data (position, normal,
texture coordinates) is now interleaved, and polygons use vertex indices.

▪ Dummy shaders are provided that use all data: the texture, vertex normals, and vertex
coordinates. In short, the whole data pipeline is in place, and you can focus on the
functionality for this assignment.

Let’s have a closer look at the functionality.

class Texture: this class uses C# Bitmaps to load data from common file formats (.png, .jpg,
.bmp etc.) and converts them to an OpenGL texture. Like all resources in OpenGL, a texture
simply gets an integer identifier, which is stored in the public member variable ‘id’.

class Shader: this class encapsulates the shader loading and compilation functionality. It is
hardwired to the included shaders: e.g., it expects certain variables to exist in the shader. Since
these are exactly the variables you will need for this assignment, chances are you will never
have to change this class, even though it is hardly pretty or versatile. Expected variables are
vPosition, vNormal, vUV and the ‘uniform’ transform. You can find these in vs.glsl, which
forwards them to the fragment shader.

class Mesh: this class contains the functionality to render a mesh. This includes VBO creation
and all the function calls needed to feed this data to the GPU. The render method takes a
shader, a matrix and a texture, which is all you need to draw the mesh. Note that this means
that each mesh can use only a single texture: in 3D engine land it is common practice to split
geometry in batches that use the same texture.

class MeshLoader: this is a helper class that loads OBJ files for you. Note that it is slow; the
meshes that are included in the template are therefore small to reduce application startup time.
Feel free to replace it with something faster.

class Game: you will find some ready-made functionality here. A Stopwatch is used to make
animation speed consistent. To demonstrate how to use the other classes, a texture, a shader
and two meshes are loaded and displayed with dummy transforms. This definitely needs some
work (just like the dummy shaders).

A second version of the P3 template includes functionality for implementing post processing
effects. Note that this code may be less compatible than the version without post processing.

Your Task

As mentioned in the introduction, you have two main tasks for this assignment:

1. Implement a scene graph;
2. Implement a proper shader;
3. Demonstrate the functionality.

In more detail:

Scene graph: currently, the application renders two objects, using a camera that looks straight
down at the world. The movement of the objects (and their relation) is entirely hardcoded. Your
task is to add a new class SceneGraph, which stores a hierarchy of meshes. The mesh class needs
to be expanded a bit as well: each mesh should have a local transform. The SceneGraph class
should implement a Render method, which takes a camera matrix as input. This method then
renders all meshes in the hierarchy. To determine the final transform for each mesh, matrix
concatenation should be used to combine all matrices, starting with the camera matrix, all the
way down to each individual mesh.

Task list for the scene graph:

▪ Add a model view matrix to the Mesh class.
▪ Add the SceneGraph class.
▪ Add a data structure for storing a hierarchy of meshes in the scene graph.
▪ Add a Render method to the scene graph class that recursively processes the nodes in

the tree, while combining matrices, so that each mesh is drawn using the correct
combined matrix.

▪ Call the Render method of the SceneGraph from the Game class using a camera matrix
that is updated based on user input.

Shader: the dummy shaders combine the texture with the normal. As you may have noticed,
the normal is directly converted to an RGB color (which is possible; it’s a 3-component vector
after all, but of course this is nonsense). Your task is to replace this dummy shader with a full
implementation of the Phong shading model. This means that you need to combine an ambient
color with the summed contribution of one or multiple light sources.

Task list for the shader:

▪ Add a uniform variable to the fragment shader to pass the ambient light color.
▪ Add a Light class. Perhaps it would be nice if lights could also be in the scene graph.
▪ Either add a hardcoded static light source to the shader, or (for extra points) add uniform

variables to the fragment shader to pass light positions and colors. Don’t over-engineer
this; if your shader can handle 4 lights using four sets of uniform variables, you meet the
requirements and obtain bonus points.

▪ Implement the Phong shading model.

Demo: once the basic engine is complete it is time to demonstrate its capabilities. Build a small
demo that shows the scene graph functionality.

The Full Thing

To pass this assignment, we need to see:

Camera:

▪ The camera must be interactive. It must at least support translation and rotation. Note
that rotation must be limited to rotation around the y-axis: the camera must always look
straight down.

Scene graph:

▪ The scene graph must be able to hold any number of meshes and may not put any
restrictions on the maximum depth of the scene graph. Your demo must show a
hierarchy of objects. It must use a scene graph depth of at least three (e.g.: earth orbits
sun, moon orbits earth).

Shaders:

▪ You must provide at least one correct shader that implements the Phong shading model.
This includes ambient light, diffuse reflection and glossy reflection of the point lights in
the scene. To meet the minimum requirements, you may use a single hardcoded light.

Demo:

▪ All engine functionality you implement must be visible in the demo. A high quality demo
will increase your grade.

Screenshots:

▪ Provide one, two or three screenshots that really show off your work. Note that these
may be used in a hall of fame at the end of the course.

A Bit Extra

Meeting the minimum requirements earns you a 6 (assuming practical details are all in order).

An additional four points can be earned by implementing optional features. An incomplete list

of options, with an indication of the difficulty level:

▪ [EASY] Add multiple lights, which can be modified at run-time (0.5 pt)

▪ [EASY] Add spotlights (0.5 pt)

▪ [EASY] Add cube mapping (0.5 pt)

▪ [MEDIUM] Add frustum culling to the scene graph render method (1 pt)

▪ [MEDIUM] Add normal mapping (1 pt)

▪ [HARD] Add shadows (1.5 pt)

Additional challenges that go with the provided FBO code:

▪ [EASY] Add vignetting and chromatic aberration (0.5 pt)

▪ [MEDIUM] Add generic colorization using a color cube (1 pt)

▪ [MEDIUM] Add a separable box filter with variable kernel width (1 pt)

▪ [MEDIUM] Add HDR glow (requires box filter and HDR targets) (1pt)

Important: many of these features require that you investigate these yourself, i.e. they are

not necessarily covered in the colleges. You may of course discuss these on Slack to get

some help.

Obviously, there are many other things that could be implemented in a 3D engine. Make sure

you clearly describe functionality in your report, and if you want to be sure, consult the

lecturer for reward details.

For Honor

If you are an honours student then your additional challenge is this: add shadows for your 3D

meshes onto a single floor plane. Take multiple light sources into account. You may assume

(and exploit) a single floor plane with a y = 0 normal.

And Finally…

Don’t forget to have fun; make something beautiful!

May the Light be with you,

- Jacco.

