TUTORIAL 1 - EXERCISES

VECTORS AND VECTOR ALGEBRA

PART 1: THEORY

EXERCISE 1

We start with some theoretical questions.

- (a) Explain in your own words the difference between a scalar, a point and a vector, using an example in daily life.
- (b) What is a unit vector?
- (c) What is a 'basis' for a coordinate system?
- (d) What is the 'norm' of a vector?
- (e) Write down Pythagoras' theorem and explain it in your own words.

PART 2: TWO-DIMENSIONAL VECTORS, INNER PRODUCTS AND NORMS

EXERCISE 2

Given two vectors $\vec{a} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $\vec{b} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$. Use the regular 2D Cartesian coordinate system (the *x*, *y*-system you know from highschool).

(e) $(||\vec{h}||^5 - ||\vec{i}||^3) (\vec{e} - \vec{f})$

- (a) Draw \vec{a} and \vec{b} .
- (b) Draw $\vec{a} + \vec{b}$.
- (c) Draw $\vec{a} \vec{b}$.
- (d) Draw $2(\vec{a} \vec{b})$.

EXERCISE 3

Given the following vectors: $\vec{a} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \vec{b} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}, \vec{c} = \begin{bmatrix} 6 \\ 8 \end{bmatrix}, \vec{d} = \begin{bmatrix} 4 \\ 1 \end{bmatrix}, \vec{e} = \begin{bmatrix} 1 \\ 6 \\ 2 \end{bmatrix}, \vec{f} = \begin{bmatrix} 0 \\ 2 \\ 4 \end{bmatrix}, \vec{g} = \begin{bmatrix} 5 \\ 4 \\ 3 \\ 2 \\ 1 \end{bmatrix}, \vec{h} = \begin{bmatrix} 2 \\ 3 \\ 8 \\ 1 \\ 2 \end{bmatrix}, \vec{i} = \begin{bmatrix} 1 \\ 5 \\ 2 \\ 1 \\ 6 \end{bmatrix}.$

Calculate the following vector problems:

(a) $\vec{a} + \vec{b}$ (b) $\vec{g} - \vec{h}$ (c) $\vec{a} + \vec{b} - \vec{c}$ (d) $||\vec{a} - \vec{b}||^2$

EXERCISE 4

Given: two vectors in \mathbb{R}^2 : $\vec{a} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, $\vec{b} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$ and $\vec{c} = \begin{bmatrix} 5 \\ 6 \end{bmatrix}$. Calculate the following:

(a) $\vec{a} + \vec{b}$ (b) $\vec{b} - \vec{c}$

- (c) $5\vec{b}$ (d) $||\vec{c}||^2$
- (e) $||\vec{a}||$

Now in general form, set $\vec{a} = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$, $\vec{b} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$ and $\vec{c} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$. Redo exercises (a)-(e).

EXERCISE 5

Given: two vectors in \mathbb{R}^2 : $\vec{a} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$, $\vec{b} = \begin{bmatrix} -1 \\ 3 \end{bmatrix}$ and $\vec{c} = \begin{bmatrix} -3 \\ -1 \end{bmatrix}$. Calculate the following, and explain your answer geometrically.

- (a) The length of \vec{a} , \vec{b} and \vec{c} . For each of these calculations, draw an xy-plane and draw the triangles you implicitly use with Pythagoras' theorem.
- (b) $\vec{a} + \vec{c}$
- (c) Normalize \vec{a}, \vec{b} and \vec{c} .

PART 3: NORMS, UNIT VECTORS AND ANGLES

EXERCISE 6

Draw the following vectors, then calculate the norm of each of them and write down the corresponding unit vectors:

(a)
$$\begin{bmatrix} 2\\3 \end{bmatrix}$$
 (d) $\begin{bmatrix} 1\\2\\3 \end{bmatrix}$
(b) $\begin{bmatrix} 7\\9 \end{bmatrix}$ (e) $\begin{bmatrix} \frac{1}{2}\sqrt{2}\\\frac{1}{2}\sqrt{2} \end{bmatrix}$ (e) $\begin{bmatrix} 3\\1\\7 \end{bmatrix}$

EXERCISE 7

Given: three vectors in \mathbb{R}^2 : $\vec{a} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$, $\vec{b} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, $\vec{c} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

- (a) Draw the vectors on a sheet of paper (using a regular 2D-Cartesian x,y-grid)
- (b) Compute the sum of \vec{a} and \vec{b} . Draw the result.
- (c) Scale vector \vec{a} by the factors 1, 2, -1 and $\sqrt{2}$. Draw the results.
- (d) Determine $\vec{b} \vec{c}$ graphically, using the rule from the lecture: first, join the starting points of *b* and *c*, then draw an arrow from the tip \vec{c} to the tip of \vec{b} , which gives you the result.

(f) $\begin{bmatrix} 0\\0\\0\end{bmatrix}$

- (e) Compute and draw $2(\vec{a} + \vec{c})$ and $2\vec{a} + 2\vec{c}$. Visualize how this gives the same result (this is called the distributive rule).
- (f) Build a linear combination \vec{v} of the vectors \vec{a} , \vec{b} and \vec{c} . That is, $\vec{v} = \lambda_1 \vec{a} + \lambda_2 \vec{b} + \lambda_3 \vec{c}$.