TUTORIAL 2 - EXERCISES

VECTOR ALGEBRA (CONTINUED), PRIMITIVES AND PROJECTIONS IN 2D

PART 1: THEORY

EXERCISE 1

- (a) What does it mean if two vectors are 'orthogonal'? And 'orthonormal'?
- (b) What is a 'orthogonal basis' for a coordinate system?
- (c) For what angle between two vectors is the dot product of those vectors at its largest?
- (d) What is the relation between the magnitude of a vector and the dot product of the vector with itself?
- (e) What do you need to know about a line in order to write its parametric form?
- (f) Given the direction \hat{v} of a line, can you write its parametric form? If yes, write it. If not, what else do you need?
- (g) Write down a general line in the slope-intercept form. What is the meaning of every term?
- (h) Given a segment of length l and direction \hat{v} , can you determine the length t of its projection on the x-axis? If yes, write it. If not, what else do you need?

PART 2: VECTOR ALGEBRA

EXERCISE 2

If $\vec{a} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$ and $\vec{a} \cdot \vec{b} = 25$. What is the length of \vec{b} in the following cases for the angle θ between \vec{a} and \vec{b} :

- (a) $\theta = 0^{\circ}$
- (a) $\theta = 0$ (b) $\theta = 85^{\circ}$
- (b) $\theta = 0.05$ (c) $\theta = -45^{\circ}$

What happens if $\theta = 90^{\circ}$? (Hint: make a drawing)

EXERCISE 3

Given: two unit vectors \hat{a} and \hat{b} . What do we know about the angle between these vectors in the following cases?

- (a) If $\hat{a} \cdot \hat{b} = 0$ (b) If $\hat{a} \cdot \hat{b} < 0$
- (b) If $\hat{a} \cdot \hat{b} = 1$ (c) If $\hat{a} \cdot \hat{b} = 1$

EXERCISE 4

Given the following vectors:
$$\vec{a} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \vec{b} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}, \vec{c} = \begin{pmatrix} 6 \\ 8 \end{pmatrix}, \vec{d} = \begin{pmatrix} 4 \\ 1 \end{pmatrix}, \vec{e} = \begin{pmatrix} 1 \\ 6 \\ 2 \end{pmatrix}, \vec{f} = \begin{pmatrix} 0 \\ 2 \\ 4 \end{pmatrix}, \vec{g} = \begin{pmatrix} 5 \\ 4 \\ 3 \\ 2 \\ 1 \end{pmatrix}, \vec{h} = \begin{pmatrix} 2 \\ 3 \\ 8 \\ 1 \\ 2 \end{pmatrix}, \vec{i} = \begin{pmatrix} 1 \\ 5 \\ 2 \\ 1 \\ 6 \end{pmatrix}.$$

Calculate the following vector problems:

(a) $\vec{d} \cdot \vec{a}$	(e) $(\vec{f} \cdot \vec{e}) \vec{g}$	(i) $(\vec{a} \cdot \vec{a}) (\vec{a} \cdot \vec{a})$
(b) $\vec{e} \cdot \vec{f}$	(f) $(\vec{a} \cdot \vec{c})(b+d)$	(j) $((\vec{h} - \vec{i}) + \vec{g} ^2 \vec{g}) \cdot \vec{h}$
(c) $\vec{g} \cdot \vec{h}$	(g) $(\vec{f} + \vec{e}) (\vec{i} \cdot \vec{a})$	
(d) $(\vec{a}+d)\cdot\vec{c}$	(h) $\vec{i} (\vec{b} \cdot \vec{c}) + \vec{h} - \vec{g}$	

PART 3: BASES AND ORTHOGONALITY

EXERCISE 5

Given: two vectors \vec{a} and \vec{b} .

- (a) The vectors form a 2D basis. What can you say about the dot product $\vec{a} \cdot \vec{b}$?
- (b) The vectors form an orthonormal basis. What can you say about the magnitude of \vec{b} ?
- (c) Vector $\vec{a} = \begin{pmatrix} \frac{1}{2}\sqrt{2} \\ \frac{1}{2}\sqrt{2} \end{pmatrix}$. Assuming orthonormality, write down all possibilities for vector \vec{b} .
- (d) Point $p = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$. What are the coordinates of *p* in the 2D coordinate system defined by \vec{a} and \vec{b} ? Specify which \vec{b} you used.

EXERCISE 6

Given: two vectors $\vec{a} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ and $\vec{b} = \begin{pmatrix} 4 \\ -2 \end{pmatrix}$. Call $\vec{c} = \vec{a} + \vec{b}$.

- (a) Calculate the length of \vec{a} , and of \vec{b} , and add them together.
- (b) Calculate \vec{c} and its length. Compare this to your answer in question (a). What do you notice?
- (c) Explain your findings in question (b) by making a drawing, and making use of Pythagoras theorem. Why can you use Pythagoras theorem here?

EXERCISE 7

Given: the 2D vectors $\vec{a} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$ and $\vec{b} = \begin{pmatrix} 4 \\ -1 \end{pmatrix}$.

- (a) Why are these vectors not orthogonal?
- (b) Rewrite $\vec{b} = \begin{pmatrix} 4\alpha \\ -1 \end{pmatrix}$. For what value of α are these vectors orthogonal?

EXERCISE 8

In 2D, an often used orthonormal basis in Cartesian coordinates is $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$. Given a point P = (2, 9) in this basis. Give an example of an

orthonormal basis in 2D of which one of the vectors is $\begin{pmatrix} \frac{1}{3} \\ \frac{2}{3}\sqrt{2} \end{pmatrix}$. What is *P* in this new coordinate system?

PART 4: LINES AND GEOMETRY IN 2D

EXERCISE 9

Given a line in \mathbb{R}^2 that goes through two points (-4,1) and (2,2):

- (a) What is the length of this line segment?
- (b) What is the parametric representation of this line?
- (c) Determine the unit vector normal to the line.
- (d) Write the slope-intercept form and implicit form for this line.

EXERCISE 10

A ray is shot along the vector $\binom{1/5}{3/5}$ from point (-1,3), yielding a line L:

- (a) Find the equation of the line L in all forms (parametric, slope-intecept and implicit).
- (b) What the unit vector normal to this line?
- (c) Find the equation of the line perpendicular to L at (2, 12).

EXERCISE 11

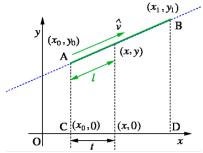
A line L goes through two points $P_1 = (1,5)$ and $P_2 = (3,7)$.

- (a) Find the equation of the line L in all forms (parametric, slope-intecept and implicit).
- (b) Find the equation of the line L', parallel to line L and passing through the origin, in all forms (parametric, slope-intecept and implicit).
- (c) What is the length of the line segment between the two points (1,5) and (3,7) on line L?
- (d) What is the length of the projection of the line segment on the x-axis? And on the y-axis?
- (e) At point Q=(2,9) we put a spotlight shining towards the *x*-axis: what is the length of the shadow of the line segment between (1,5) and (3,7) on the *x*-axis?

EXERCISE 12

Given a set of points *A*, *B*, *C* and *D* as shown in the figure below. A line *k* passes through *A* and *B*. The points *C* and *D* are projections of *A* and *B* on the x-axis.

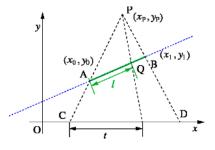
- (a) Given that A = (1, 2) and B = (4, 6), give the coordinates of *C* and *D*.
- (b) Find the equation of the line k in all forms (parametric, slope-intercept and implicit).
- (c) Determine the normalized vector \hat{v} .
- (d) Calculate a vector that is orthogonal to line k (hint: use your answer in (c))
- (e) Give *t* as a function of *l*.



EXERCISE 13

Given a set of points *A*, *B*, *C*, *D*, *Q* and *P* as shown in the figure below (at *P* there is a light source, and the shadows of *A* and *B* on the *x*-axis are *C* and *D* respectively). A line *k* passes through *A*, *Q* and *B*.

- (a) Given that A = (1, 2) and B = (4, 3), give the parametric equation of line *l*.
- (b) Moreover, if l = 1, calculate the coordinates of Q.
- (c) Calculate the coordinates of *C* and *D*, given that P = (3, 6).
- (d) Determine t as a function of l.
- (e) Now say that we do not know the length of *l* and the coordinates of *Q*. What should *t* be for *QB* to be equal to 1?



EXERCISE 14

A line L goes through two points $P_1 = (1, 8)$ and $P_2 = (4, 4)$.

- (a) Find the equation of the line L in all forms (parametric, slope-intercept and implicit).
- (b) A camera is placed on (0, -4) and a screen is placed on the x-axis. Write the coordinates of the projections of P_1 and P_2 as the camera projects them on the screen.