TUTORIAL 3 - EXERCISES

CIRCLES, ELLIPSES, LINES IN 3D, (HYPER)PLANES AND CROSS PRODUCT

Note: if you are running out of time, skip a few questions and give exercise 8 priority.

PART 1: THEORY

EXERCISE 1

We start with some theoretical questions.

- (a) Explain in your own words the geometric interpretation of a cross product of two vectors (in 3D).
- (b) Given a normal \hat{n} of a plane, what is the general equation for the plane?
- (c) Is the dot product a vector or a scalar? And what about the cross product?
- (c) Is the dot product a vector of a scalar. This matches a set in the inner product of vectors $\vec{u} = \begin{bmatrix} u_x \\ u_y \\ u_z \end{bmatrix}$ and $\vec{v} = \begin{bmatrix} v_x \\ v_y \\ v_z \end{bmatrix}$ in terms of their

elements and the angle θ between them.

(e) Given vectors $\vec{a} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ and $\vec{b} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$, without any calculation, which direction do you think $\vec{c} = \vec{a} \times \vec{b}$ heads? Visualize this using

the right-hand-rule (for example, say that the x direction is to your right, the y in front of you, and z upward). Now check which direction $\vec{d} = \vec{b} \times \vec{a}$ points to.

(f) Write the formula of a circle and of an ellipse. Show that the ellipse is a more general form of a circle.

PART 2: CIRCLES AND ELLIPSES

EXERCISE 2

Given a circle in \mathbb{R}^2 with radius r = 4 and center c = (5, 1):

- (a) What is the implicit representation of the circle?
- (b) What is the parametric representation of the circle? (i.e. with the circular co-ordinate system)
- (c) Shooting a ray from the origin in the direction $\vec{v} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, where does it intersect the circle?
- (d) Represent your answer of (c) in the parametric co-ordinate for the circle.

EXERCISE 3

Given a circle C_1 in \mathbb{R}^2 with radius $r_1 = 5$ and center $c_2 = (4, 6)$:

- (a) What is the implicit representation of the circle?
- (b) What is the parametric representation of the cycle?
- (c) A ray is shot from (0,7) along the vector $\bar{v} = \begin{pmatrix} 1 \\ 1/3 \end{pmatrix}$. Determine the points P_1 and P_2 where the ray passes through the circle.
- (d) What is the length of the segment P that connects P_1 and P_2 ?
- (e) What is the length of the parallel projection of P on the *x*-axis?

EXERCISE 4

Given a circle C_2 in \mathbb{R}^2 with radius r = 2 and center c = (3, 2):

- (a) What is the implicit representation of the circle?
- (b) What is the parametric representation of the circle? (i.e. with the circular co-ordinate system)
- (c) Find the points of intersection P_1 and P_2 between this circle and C_1 , the circle of Exercise 5. This was not shown in class, but think about it!
- (d) What is the length of the segment P that connects P_1 and P_2 ?
- (e) What is the length of the projection of P on the *y*-axis?

EXERCISE 5

Given the equation

$$x^2 + y^2 - 4y - 5 = 0$$

- (a) Is it a circle or an ellipse? Why?
- (b) Write the corresponding implicit form.
- (c) Where is the center? If it's a circle, what is the radius? If it's an ellipse, what are the lengths of its semi-axes?

EXERCISE 6

Given a circle C_3 with center c = (1,3) and radius 2.

- (a) Write down the implicit and parametric representations of the circle.
- (b) What's the maximum radius that a circle C_4 centered on the origin can have without intersecating C_3 ?
- (c) If C_4 (still centered on the origin) passes through the center of C_3 , what is its radius? Write down its implicit representation.
- (d) Compute the coordinates of the points of intersection between C_3 and C_4 .

PART 3: DOT AND CROSS PRODUCTS IN 3D

EXERCISE 7

Given coordinates *A* = (1,2,3) and *B* = (4,5,6).

- (a) Calculate the equation for the line *l* going through *A* and *B*.
- (b) Obtain a unit normal vector \hat{n} to this line. Check your answer by explicitly calculating the distance of line l to point B.
- (c) Calculate the distance of line *l* to point C = (7, 8, 9).

EXERCISE 8

Given are the following vectors:
$$\vec{a} = \begin{bmatrix} 1\\2\\3 \end{bmatrix}$$
, $\vec{b} = \begin{bmatrix} 3\\4\\5 \end{bmatrix}$, $\vec{c} = \begin{bmatrix} 1\\3\\1 \end{bmatrix}$, $\vec{d} = \begin{bmatrix} 0\\2\\2 \end{bmatrix}$, $\vec{e} = \begin{bmatrix} 5\\3\\1 \end{bmatrix}$, $\vec{f} = \begin{bmatrix} 4\\2\\1 \end{bmatrix}$, $\vec{g} = \begin{bmatrix} 6\\2\\4 \end{bmatrix}$.

Calculate and draw the following vectors in a 3D Cartesian coordinate system:

(a)
$$\vec{a} + \vec{b}$$

(b) $\vec{c} + \vec{d}$
(c) $\vec{f} - \vec{g}$
(e) $\vec{d} - \vec{e} + \vec{a} \times \vec{f}$
(f) $(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d})$
(g) $((\vec{g} \times \vec{a}) \cdot (\vec{d} \times \vec{e}))\vec{c}$
(h) $(\vec{a} \times \vec{a} + \vec{a} \times \vec{a}) \cdot ||\vec{a}||^2$

EXERCISE 9

Given vectors $\vec{u} = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}$ and $\vec{v} = \begin{bmatrix} 1 \\ 1 \\ 3 \end{bmatrix}$.

(a) Draw these vectors.

(b) Calculate and draw the dot product of these vectors. What is the angle between vectors \vec{u} and \vec{v} ?

(c) Calculate and draw the cross product of these vectors. What is the angle between the newly attained vector and \vec{u} ?

PART 4: PLANES AND NORMALS IN 3D

EXERCISE 10

Given coordinates *A* = (0,2,0), *B* = (1,3,4) and *C* = (-2, -2, 3).

- (a) Determine the normalized vector going from A in the direction of B. Call this \hat{u} .
- (b) Determine the normalized vector going from A in the direction of C. Call this \hat{v} .
- (c) Determine a normal vector to the plane derived through A, B and C.
- (d) Determine the equation of this plane in the implicit form.
- (e) Determine the equation of this plane in the parametric form.