TUTORIAL 5 - EXERCISES

MATRICES AND INTRODUCTIONTO TRANSFORMATIONS

PART 1: THEORY

EXERCISE 1

We start with some theoretical questions.

- (a) What is a square matrix?
- (b) What is the difference between a diagonal and a identity matrix?
- (c) When can you sum two matrices? And when can you multiply them?
- (d) Which conditions does a matrix need to satisfy in order to be able to be inverted?
 (e) In class you have been shown that A⁻¹A = AA⁻¹ = I, the identity matrix. Prove it for a generic 2×2 matrix A.
- (f) Does any matrix have a determinant?
- (g) What is a singular matrix? Which operation is not possible on singular matrices?
- (h) What is the cofactor of an element of a matrix?

PART 2: OPERATIONS WITH MATRICES

EXERCISE 2

Given the following matrices:

$A = \begin{bmatrix} 2 & 3 & 1 \\ 3 & 3 & 2 \\ 1 & 1 & 2 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & 4 \\ 3 & 2 \end{bmatrix} \qquad C = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 2 \end{bmatrix} \qquad D = \begin{bmatrix} 1 & 5 & 2 \\ 3 & 2 & 1 \\ 5 & 3 & 0 \end{bmatrix}$	$E = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \end{bmatrix}$	0 1 0 1	0 0 0	0 1 1 2	F :	$=\begin{bmatrix}1\\3\\1\\0\end{bmatrix}$	4 0 1 0	4 0 0 2	4 0 0 1	
--	--	------------------	-------------	------------------	-----	---	------------------	------------------	------------------	--

- (a) Which matrices can be summed together?
- (b) Compute those sums.
- (c) Which matrices can be multiplied together? Does the order matter?
- (d) Compute those multiplications.
- (e) Compute the determinant for all matrices.
- (f) Is it possible to compute the inverse of every matrix? If not, why?
- (g) Compute the inverse matrices A^{-1} and B^{-1} .

EXERCISE 3

Given the following matrices:

			0						3		1]		[3	0	0	1]
G =	0	1	0	0	$H = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$	$\begin{bmatrix} 3\\1 \end{bmatrix}$	J =	1	2	2	2	L =	0	2	0	2
	0	0	1	0	11 - 4			3	0	0	1	<i>L</i> –	1	5	0	3
	0	0	0	1]				0	0	0	1]		1	8	2	3

For each of them compute:

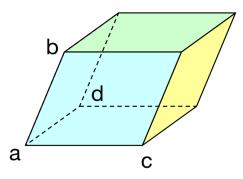
- (a) The determinant
- (b) The transpose matrix.
- (c) The cofactor matrix.
- (d) The adjoint matrix.
- (e) The inverse matrix.
- (f) For matrix G, you could have answered all the previous question without doing any calculations. Why?

PART 3: GEOMETRICAL INTERPRETATION

EXERCISE 4

Given the lists of vertices, compute the area of the following parallelograms:

$$\begin{aligned} A_1 &= \{(3,1),(2,-3),(5,-2),(0,0)\} \qquad A_2 &= \{(1,3),(3,1),(5,-1),(7,-3)\} \\ A_3 &= \{(-1,-3),(4,-2),(0,-6),(5,-5)\} \qquad A_4 &= \{(1,5),(-1,9),(2,9),(4,5)\} \end{aligned}$$



Given the list of vertices, compute the volume of the following parallelepipeds.

 $\begin{aligned} \pi_1 &= \{(3,1,0),(2,-3,0),(5,-2,0),(0,0,-4)\} \\ \pi_2 &= \{(1,7,2),(3,7,1),(5,7,0),(-1,-1,-1)\} \\ \pi_3 &= \{(2,1,5),(2,-1,9),(2,2,9),(-3,4,5)\} \\ \pi_4 &= \{(-1,2,-3),(4,2,-2),(0,2,-6),(5,-1,-5)\} \end{aligned}$

The points are ordered $\pi = \{a, b, c, d\}$ *and connected as in figure.*

EXERCISE 6

Two of the figures in the previous exercises have a zero oriented area or volume.

(a) What is the geometrical meaning of having a zero oriented area or volume?

(b) What restriction can you put on the vertices in order to avoid this case?