
TUTORIAL 6 - SOLUTIONS

MATRIX RELOADED 1 - TRANSFORMATIONS

PART 1: THEORY

EXERCISE 1

We start with some theoretical questions.

(a) What is the difference between active and passive transformation? Sketch examples.
(b) Name 5 different kinds of matrix transformations that have taught in the lecture. Indicate whether these transformations are

active or passive (give at least one of each).
(c) Given: matrix M that transforms ~a into~b. Use the convention of the lecture; how do M ,~a and~b relate to each other?
(d) When calculating matrix transformations, people often add a fictitious dimension f̂ , so that 2D becomes (2+1)D, for example.

Explain in your own words why this is necessary. If you find this difficult, try to start with an example of point translation.

(e) Say we have a real vector in 2D: ~v =
[

vx
vy

]
and we add a third dimension f̂ =

0
0
1

 that we call the fictitious dimension. What do

we know about the dot product of these two? Explain in your own words why this is the case.
(f) How do you call a square matrix that does not have an inverse?

Solutions:

(a) In active transformation, the transformation is done on an object (e.g., a point). In passive transformation, the transformation
is done on the axes (or in graphical terms: the camera), leaving the objects fixed in their physical position.

(b) Transformations like translation, projection, reflection, scaling, shearing, rotation all can be active or passive. Active transfor-
mation means that it is applied on an object (like a point). Passive transformation means that it is applied on a coordinate
system.

(c) ~b = M ·~a
(d) The fictitious dimension is needed to include constant (scalar) terms in the transformation. For example, if you would like a

translation of a point by (ax , ay , az ), you need a transformation matrix of


1 0 0 ax
0 1 0 ay
0 0 1 az
0 0 0 1


(e) Then~v · f̂ = 0, always, because f̂ only has nonzero elements in its own (fictitious) dimension, while~v only has nonzero elements

in real dimensions. This means they are effectively orthogonal to each other, hence inner product 0.
(f) A singular matrix

PART 2: NOTATIONS AND GENERAL FORMULAE

In general, when one would like to apply a particular transformation on a point P , one could draw a vector ~v from the origin to P , and
apply the specified transformation matrix M on it. This results in a following formula:

~w ′ = M~v ′ (1)

with ~w the resulting transformed vector, and ~w ′ and ~v ′ denote the vectors ~w and ~v with an added fictitious dimension (see 1d). If the
transformation considers a translation, M and ~w get a subscript t (i.e., Mt , ~wt ). The same holds for projections (p), reflections (r ),
etcetera. We will use this notation convention in the tutorial.

Often, ~w can also be calculated explicitly using knowledge from earlier lectures. These transformation matrices are just often
an extra tool to consider when doing linear operations. Sometimes the answer is much easier to write down using your intuition than
using transformation matrices (for example when considering translation or 2D projections on the x-axis).

EXERCISE 2 - GENERAL FORMULAE

Consider linear operations in 3D (+1D fictitious). Do the following exercises for translation, projection, reflection, scaling, shearing
and rotation of a point P . Assume for projection and reflection that you are doing this over a line/plane through the origin.

(a) Sketch an example. Include ~w and ~v in your drawing.
(b) What is the general formula for the transformation matrix M? For shear and rotation, choose the form of M that is coherent

with your drawing.
(c) Give the general formula for ~w ; do this only for translation, project and reflection. (In the case of projection and reflection, use

the normal n̂ going through the line that is projected/reflected on and points towards P .)

Solutions for translation:



(a) Sketch not included here. ~v is the vector from the origin to point P. ~w is the vector from the origin to the transformed point, i.e.,
the transformed vector. (This answer does not change for other transformations below).

(b) Mt =


1 0 0 ax
0 1 0 ay
0 0 1 az
0 0 0 1


(c) ~wt =~v +~a

Solutions for projection:

(b) Given a normal n̂ to the line you are projecting on. Mp =


1−n2

x −nx ny −nx nz 0
−nx ny 1−n2

y −ny nz 0

−nx nz −ny nz 1−n2
z 0

0 0 0 1


(c) ~w =~v − (~v · n̂)n̂

Solutions for reflection:

(b) Mr =


1−2n2

x −2nx ny −2nx nz 0
−2nx ny 1−2n2

y −2ny nz 0

−2nx nz −2ny nz 1−2n2
z 0

0 0 0 1


(c) ~w =~v −2(~v · n̂)n̂

Solutions for scaling:

(b) Msc =


sx 0 0 0
0 sy 0 0
0 0 sz 0
0 0 0 1


(c) Situationally dependent.

Solutions for shearing:

(b) For a shear in the x direction that scales with z: Msh =


1 0 b 0
0 1 0 0
0 0 1 0
0 0 0 1


(c) Situationally dependent.

Solutions for rotation:

(b) For anti-clockwise rotation around the x axis by an angle of θ: Mr =


1 0 0 0
0 cosθ −sinθ 0
0 sinθ cosθ 0
0 0 0 1


(c) Situationally dependent.

PART 3: EXAMPLES

For the record: in the sequel, ~w is now including the fictitious dimension. In the above we have made a distinction between ~w ′ (3+1D)
and ~w (3D), which we will drop now for convenience, because it always has value 1 in the fictitious dimension.

EXERCISE 3 - TRANSLATION

Given point P (1,2,3).

(a) Say we would like to translate point P by 3 in the x-direction, 1 in the y-direction and 6 in the z-direction. Call this direction
vector ~a. Give Mt (~a) and calculate ~wt using the matrix.

(b) How can you check your answer in (a) without using a transformation matrix?
(c) Draw the translation calculated in (b).

Solutions:

(a) Mt (~a) =


1 0 0 3
0 1 0 1
0 0 1 6
0 0 0 1

. Call ~v =


1
2
3
1

 the 3+1D vector from the origin to P . Then ~wt = Mt ·~v =


4
3
9
1

. So the transformed point

would be (4,3,9).

(b) Yes, use ~wt =~v +~a =
4

3
9

, resulting in the transformed point (4,3,9).

(c) *
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EXERCISE 4 - PROJECTION OF A POINT

Given a point A (1,2).

(a) Calculate and draw the projection of point A on the x-axis, without doing any calculations.
(b) Now write down the projection matrix Mp . Calculate the projection of point A from this (this follows from ~wp ). Does this

indeed coincide with your answer in (a)?

Solutions:

(a) The coordinates of A’s projection on the x-axis is simply putting its other coordinates to zero: (1,0).

(b) Mp =
1 0 0

0 0 0
0 0 1

. Then calculate ~wp = Mp ·
1

2
1

=
1

0
1

. So the projected coordinate is (1,0). It indeed coincides!

Now consider B (4,1), C (1,1) and D (5,5)

(c) Write down the parametric equation of the line L through C and D .

(d) Determine the normal vector that is perpendicular to line L, and points towards point B .

(e) Calculate the projection of B on line L without using a transformation matrix. Make a drawing.

(f) Calculate the projection of B on line L while using a transformation matrix.

Solutions:

(c) L :

[
x
y

]
=

[
1
1

]
+ tp

2
·
[

1
1

]

(d) Note that L goes through the origin, so we can use the formulae from the lecture. Perpendicular to L means that n̂ ·
[

1
1

]
= 0. So

nx +ny = 0, or nx =−ny . There are two normalized vectors that hold this; we need the one that points right down (draw and

you’ll see that indeed B is right-down of its projection on L), so that nx > 0 and ny < 0. This means n̂ = 1p
2

[
1
−1

]
.

(e) Call ~v the vector from the origin to B . We use ~w =~v − (~v · n̂)n̂ =
[

4
1

]
−

([
4
1

]
· 1p

2

[
1
−1

])
1p
2

[
1
−1

]
=

[ 5
2
5
2

]
, giving the projected point

( 5
2 , 5

2 ). Check that this point lies indeed on line L as you defined it in (c).

(f) The transformation matrix Mp equals: Mp =
 1−n2

x −nx ny 0
−nx ny 1−n2

y 0
0 0 1

 =
1− 1

2
1
2 0

1
2 1− 1

2 0
0 0 1

 =
 1

2
1
2 0

1
2

1
2 0

0 0 1

 Now, calculate

~wp = Mp

4
1
1

=
 5

2
5
2
1

. So the projected point is ( 5
2 , 5

2 ). Indeed, this is the same as in (e).

EXERCISE 5- REFLECTION OF A POINT

Given a point A (2,3), B (-1,2) and C (-2,4))

(a) Write down the parametric equation of the line L through B and C .
(b) Determine the normal vector that is perpendicular to line L, and points towards point A.
(c) Calculate the reflection of A over line L without using a transformation matrix. Make a drawing.
(d) Calculate the reflection of A over line L while using a transformation matrix.

Solutions:

(a)

[
x
y

]
=

[−2
4

]
+ tp

5

[
1
−2

]
(b) Note that L goes through the origin, so we can use the formulae from the lecture. A normal would be such that n̂ ·

[
1
−2

]
= 0, so

nx = 2ny . A normal on L towards A means nx ,ny > 0 (draw and you will see). So there is one possibility of such a normalized

normal vector: 1p
5

[
2
1

]
.

(c) We use ~w =~v −2 · (~v · n̂)n̂ =
[

2
3

]
−2

([
2
3

]
· 1p

5

[
2
1

])
1p
5

[
2
1

]
=

[
2
3

]
−

[
28/5
14/5

]
=

[−18/5
1/5

]
. So the reflected point is (−18

5 , 1
5 ). Note that

this sounds reasonable if you sketch it.

(d) The transformation matrix is Mr =
 1−2n2

x −2nx ny 0
−2nx ny 1−2n2

y 0
0 0 1

=
−3/5 −4/5 0
−4/5 3/5 0

0 0 1

. Then ~wr = Mr ·
2

3
1

=
−18/5

1/5
1

. So the

reflected point is again (−18
5 , 1

5 ).
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EXERCISE 6- REFLECTION OF A VECTOR

Given a vector in 2D ~v =
[

3
2

]
starting at point A = (3,4). Furthermore, given are B = (0,1) and C = (3,2).

(a) Write down the slope-intersect form of the line L through B and C .
(b) Calculate the reflection of ~v over line L.

Solutions:

(a) Start with y = ax+b. The unit vector from B to C is ~d =
[

3
1

]
, so the slope a is 1

3 , so we have y = 1
3 x+b . Then we find b by filling

in the point B that was given, which results in b = 1, so y = 1
3 x +1. Note that this line does not pass through the origin.

(b) The normalized line normal to L in the direction of A is n̂ = 1p
10

[−1
3

]
. Reflecting a vector only needs the normal the the

line to calculate the perpendicular component of the vector (which we then substract twice to get the transformed vector):

~w =~v −2(~v · n̂)n̂ =
[

3
2

]
− 2

10 (3)

[−1
3

]
=

[
36/10
2/10

]
. You can check whether the magnitude of the transformed vector ~w is the same

as that of ~v =p
13. Note: it would be instructive to work out this exercise for a different starting point A.

EXERCISE 7 - SCALING

Given point P (2,1,3) and point Q (1,2,3) in R3, O being the origin.

(a) Scale the vector
−−→
OP with a uniform scaling of 3. Use the transformation matrix Msc .

(b) Scale the vector
−−→
OQ with a scaling of (sx , sy , sz ) = (2,1,1).

Solutions:

(a) The transformation matrix is Msc =


3 0 0 0
0 3 0 0
0 0 3 0
0 0 0 1

. Then the scaled point P is calculated by wsc = Msc


2
1
3
1

=


6
3
9
1

. So the

corresponding point is (6,3,9).

(b) The transformation matrix is Msc =


2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

. Then the scaled point Q is calculated by wsc = Msc


1
2
3
1

=


2
2
3
1

. So the

corresponding point is (2,2,3).

EXERCISE 8 - SHEARING

Given point P (2,3) (in 2D). Consider the rectangle R that is made up by the x-axis, the y-axis and point P as right-upper corner.

(a) Apply the matrix Msh =
1 0 0

b 1 0
0 0 1

 to all corners of R. Draw the result for b = 1,2,3.

(b) Say our rectangle is fixed (attached) onto the x-axis, but can move through and away from the y-axis (like pudding). What does
the matrix Msh look like?

(c) Now say we would like to fix the corners of R to the y-axis, but move P towards (2,-2). Calculate Msh for this scenario.

Solutions:

(a) The corners are (2,3), (2,0), (0,3) and (0,0). Applying Msh implies the multiplication of this matrix to

2
3
1

 (and so on). Applying

to all these corners gives (respectively): (2,2b +3), (2,2b), (0,3) and (0,0). Filling in b = 1,2,3 gives the desired points.

(b) This means that we shear in the y direction, which implies the following form of Msh :

1 b 0
0 1 0
0 0 1


(c) This exercise performs a y shear, which means that all points (0, a) remain the same. This implies that the second column

of the Msh should be

0
1
0

. So the matrix is of the form:

1 0 0
b 1 0
0 0 1

. Searching for the right value of b gives that we state

 2
−2
1

= Msh

2
3
1

. This results in

 2
−2
1

=
 2

2b +3
1

. This results in b = −5
2 . So Msh =

 1 0 0
−5
2 1 0
0 0 1

.
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EXERCISE 9- ROTATION

Consider point P (1,2) in 2D. The rotations in this exercise are considered active rotations.

(a) Rotate P counterclockwise by 90◦.
(b) Rotate P clockwise by 31◦.

Solutions:
Note that the angle θ in general formulae for the transformation matrices is taken counterclockwise. So if a clockwise rotation with
angle a is asked, just use θ =−a.

(a) The transformation matrix is Mr o =
cosθ −sinθ 0

sinθ cosθ 0
0 0 1

. The result is then ~wr o = Mr o

1
2
1

=
−2

1
1

. So rotated coordinate is

(−2,1)

(b) The transformation matrix is for clockwise rotation is Mr o =
 cosθ sinθ 0
−sinθ cosθ 0

0 0 1

≈
0.86 −0.52 0

0.52 0.86 0
0 0 1

. The rotation is then

~wr o = Mr o

1
2
1

≈
−0.2

2.2
1

. So rotated coordinate is (−0.2,2.2).

Now consider 3D rotation. Consider point Q (1,2,3)

(c) Rotate Q counterclockwise by 90◦around the x axis.
(d) Rotate Q counterclockwise by 31◦around the y axis.

Solutions:

(c) The transformation matrix is Mr o =


1 0 0 0
0 cosθ −sinθ 0
0 sinθ cosθ 0
0 0 0 1

. The answer is (1,−3,2).

(d) The transformation matrix is Mr o =


cosθ 0 sinθ 0

0 1 0 0
−sinθ 0 cosθ 0

0 0 0 1

. The answer is ≈ (−2.4,2,2.1).

PART 4: LINEAR TRANSFORMATIONS AND COMBINING THEM

EXERCISE 10 - LINEAR TRANSFORMATIONS

In this exercise, do all linear transformations using transformation matrices M . Given points P (1,2), Q (4,1) and R (2,2). Call the
vectors from the origin to these points ~p,~q and~r , respectively. These are 2D vectors (without the +1D fictitious dimension; but
probably you will need to add that in your calculations).

(a) Rotate P by 35◦counterclockwise.
(b) Rotate Q by 35◦counterclockwise.
(c) Rotate the vector ~p +~q by 35◦counterclockwise.
(d) Add your answers of (a) and (b) together and compare them to (c). What do you notice? Can you think of a general form of a

criterium that linear point transformations hold, related to this?
(e) Scale P by 3 uniformly, and rotate by 35◦counterclockwise.
(f) Rotate P by 35◦counterclockwise and multiply the result by 3. What do you notice when comparing this to your answer in (e)?

Can you think of a general form of a criterion that linear point transformations hold, related to this?

Solutions:
Note: for the general formulae of the transformation matrices used, please look at similar questions above.
Another note: in these exercises, where we do transformations on points, we actually ask for the resulting point. In these solutions,
although for simplicity we may sometimes only state the resulting ~w , but remember that a vector is not the same as a point. The
resulting point can be easily retrieved by taking the endpoint of ~w , having coordinates equal to its elements (without the fictitious

dimension, if that is used). For example, if ~w =


1
2
3
1

 (in 3+1D), the resulting point is (1,2,3), and if ~w =
4

5
6

 (in 3D, without fictitious

dimension), the resulting point is (4,5,6). Sometimes, it is explicitly asked to transform a vector (NOT a point), like in Exercise 6.

(a)

[−0.3
2.2

]
(b)

[
2.7
3.1

]
(c) ~p +~q =

[
5
3

]
. Rotating this gives the vector

[
2.4
5.3

]
.

(d) They are equal. This points towards the additive property of linear transformations: T (a)+T (b) = T (a +b). This property
applies on matrices!
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(e) 3~p =
[

3
6

]
. Rotating this gives the vector

[−0.99
6.64

]
.

(f) They are equal. This points towards the multiplicative property of linear transformations: T (λa) = λ ·T (a), with λ being a
scalar.This property applies on matrices!

In scalar multiplication (or addition), we have the so-called commutative property, which means that we can swap the order of the
scalars within one operation: a ∗b = b ∗a. Let’s check for some matrix transformation whether this holds there, too. This would mean
that for two transformations Ta and Tb and a vector ~v , the following equality holds: Ta (Tb (~v)) = Tb (Ta (~v)).

(g) Rotate P by 35◦counterclockwise and translate it by 6 in the x-direction. Now do it the other way around. Do these operations
commute?

(h) Reflect Q over the line with slope-intersect equation y = x, and then translate it by 3 in the y-direction. Now do it the other way
around. Do these operations commute?

(i) Scale R by 2 (uniformly), and rotate by 5◦counterclockwise. Now do it the other way around. Do these operations commute?

Solutions:

(g) The rotation of P is already calculated in (a):

[−0.3
2.2

]
. Translating this by 6 in the x-direction gives

[
5.7
2.2

]
. Now the other way

around: first we translate ~p to be

[
7
2

]
. Now we rotate. This gives

[
4.6
5.6

]
. Unequal to

[
5.7
2.2

]
, so they do not commute.

(h) Reflection we do using ~wr = ~q −2(~q · n̂)n̂. The normalized normal vector to that line (in the direction of Q) is 1p
2

[
1
−1

]
. So

reflection gives

[
1
4

]
(indeed, the coordinates swap as you reflect across the line y = x). Now translate, this gives a final result of[

1
7

]
. Now the other way around: translating Q gives

[
4
4

]
. Reflecting this gives

[
4
4

]
again, because this lays along the y = x line.

Moreover, this is not equal to

[
1
7

]
, so they do not commute.

(i) Scaling gives

[
4
4

]
. Rotating gives

[
3.64
4.33

]
. Then, we rotate~r first, which results in

[
1.818
2.167

]
. Scaling this also gives

[
3.64
4.33

]
, so they

commute! This is a consequence of the scaling transformation being uniform.

EXERCISE 11- COMBINING TRANSFORMATIONS

Given point P (1,2,1), R (0,1,3) and Q (-1,3,2). Furthermore, given vector ~a =
−1

1
2

. Rotations are counterclockwise and around the

z-axis. Call the vectors from the origin towards the points P , Q and R: ~p,~q and~r , respectively. Furthermore, given are the planes:

A1 : 2x + y + z = 0

A2 : −x −5y + z = 0

A3 : x +2y − z = 0

(a) Translate Q by ~a and then reflect over A1.
(b) Project P on A2, and then rotate by 10◦.
(c) Reflect R over A3 and rotate the result by 45◦.
(d) Scale R with 3 uniformly, and reflect over A3, and rotate the result by 45◦(Hint: use ideas from exercise 10)
(e) Reflect Q over A3, and rotate the result by 45◦.
(f) Reflect~r +~q over A3, and rotate the transformed endpoint (not the vector) by 45◦(Hint: use ideas from exercise 10)
(g) Rotate your answer in question (e) by -45◦.

Solutions:

(a) The translation gives ~v =
−2

4
4

. Now, we find the normal vector to A1: n̂ = 1p
6

2
1
1

. Then we use ~wr =~v −2(~v · n̂)n̂ =
−14/3

8/3
8/3

.

(b) We find that n̂ =
−1
−5
1

 1p
27

. Then we use ~wr = ~p − (~p · n̂)n̂ =
17/27

4/27
37/27

. Now we rotate by 10◦using the rotation matrix, to get

0.59
0.25
1.37

.

(c) We find that n̂ =
 1

2
−1

 1p
6

. Then we use ~wr =~r −2(~r · n̂)n̂ = 1
3

1
5
8

. Rotation gives then a resulting vector of 1
3
p

2

 −4
6

8
p

2

.

(d) Remember that T (λ~a) =λT (~a) where T is a linear transformation and λ a scalar. This means that we can multiply the answer

in (c) by 3: ~wr = 1p
2

 −4
6

8
p

2

.
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(e) We find that n̂ =
 1

2
−1

 1p
6

. Then we use ~wr =~q −2(~q · n̂)n̂ =
−2

1
3

. Rotation gives then a resulting vector of

−
1p
2
−p

2
1p
2
−p

2

3

.

(f) Remember that T (~a +~b) = T (~a)+T (~b), so we can simply add the answers of (c) and (e), which becomes 1
3
p

2

 −13
3

17
p

2

.

(g) Rotating by a negative number in this exercise means that we rotate clockwise, so reverting the rotation we did in question (e)
again gives Q = (−2,1,3). More formally, you can use the fact that rotatting by 45◦and then rotating by -45◦are each other’s
inverse: T−45(T45(~q) = T−1

45 (T45(~q)) =~q (with Tθ the rotation transformation by angle θ).

EXERCISE 12 - COORDINATE TRANSFORMATIONS

Given point P (3,1) in the regular Cartesian coordinate system in 2D. Rotations are counterclockwise in this exercise.

(a) Rotate P by 35◦. Call this point Q. Draw this. Are P and Q the same point on your paper?
(b) Rotate the x and y axes by 35◦. Call P in this coordinate system R. Give the coordinates of R and draw it. Are P and R the same

point on your paper?
(c) Which of the two transformations applied in (a) and (b) do we call ‘active’ and which do we call ‘passive’ transformations?

Solutions:

(a) Add a fictitious dimension, to get ~p =
3

1
1

. Rotation by 35◦makes use of a transformation matrix Mr =
cosθ −sinθ 0

sinθ cosθ 0
0 0 1

.

Using ~wr = Mr ~p =
1.89

2.53
1

. So the rotated point Q = (1.89,2.53). This is not the same physical point as P .

(b) Getting the coordinates of R effectively means rotating P by -35◦, although it should be stretched that if you draw this, R and P
are actually the same physical point. The coordinates of R turn out to be (3.03,−0.89) in the new coordinate system. Always
check these kind of calculating with a sketch: why do you expect R to be in the lower-right quadrant of the rotated system?

(c) The active transformation is the one done in question (a), the passive is question (b).
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