Duration: 1h30m; Total points: 36

No documents allowed. Use of electronic devices, such as calculators, smartphones, smartwatches is forbidden

Multiple choice questions: half of the total points will be deducted for each correct answer not selected, or for each wrong answer selected

Question 1. [2+5=7 points] Consider two points P = (1,2,3) and Q = (5,10,11) in \mathbb{R}^3 . They lie on line L.

(a) The general form of the implicit equation of a plane perpendicular to the line L is given by

Your answer: x + 2y + 2z + D = 0, with D a constant.

Solution: The unit vector from point P to Q is given by $\hat{u} = \frac{1}{3} \begin{bmatrix} 1\\2\\2 \end{bmatrix}$.

This means that the general form of the implicit equation of a plane perpendicular to L is given by x + 2y + 2z + D = 0, with D a constant. This question is meant as a hint for part (b).

(b) You draw a line from point R=(3,8,5) that is perpendicular to line L, intersecting it at point S. The length of the line segment RS is

Your answer: $2\sqrt{2}$.

Solution: The line from point R = (3, 8, 5) that is perpendicular to line L must line on a plane A that is perpendicular to L. The value of D for plane A is then fixed by making sure that the equation x+2y+2z+D=0 holds for point R as well; i.e., D=-29.

In order to proceed further, we need to calculate the intersection point of line L and plane A. So we shoot a ray along \hat{u} from P, whose (parametric)

equation is given by
$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + \frac{t}{3} \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}.$$

Using x+2y+2z-29=0 for plane A in the above equation then yields t=6, so S=(3,6,7). The length of the line RS is then $\sqrt{(8-6)^2+(5-7)^2}=2\sqrt{2}$.

Question 2. [3+3=6 points] Consider three points A = (1,1), B = (-3,4) and C = (1,7) in \mathbb{R}^2 .

It is handy to schematically draw these points on a 2D co-ordinate system to see what's going on.

(a) On point C we put a spotlight. What is the length of the shadow of the segment AB on the x-axis?

Your answer: 28/3.

Solution: The unit vector spanning C to A is given by $\hat{u}_1 = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$, so the loaction of the shadow of A on the x-axis is given by $A_1 = (1,0)$. Similarly, unit vector spanning C to B is given by $\hat{u}_2 = -\frac{1}{5}\begin{bmatrix} 4 \\ 3 \end{bmatrix}$. The implicit equation of the ray shot from C along \hat{u}_2 is $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 \\ 7 \end{bmatrix} - \frac{t}{5}\begin{bmatrix} 4 \\ 3 \end{bmatrix}$. For the location of the shadow of B on the x-axis (y = 0!), given by B_1 , we then have t = 35/3; i.e., $B_1 = (-25/3,0)$. So the length of the shadow is = (1 + 25/3) = 28/3.

(b) We put a camera on point B, viewing the segment AC, rendering it on the y-axis as the one-dimensional "screen" as A'C'. What is the length of the line segment A'C'?

Your answer: 9/2.

Solution: This part follows the same line as part (a), where we use the equation of the ray shot from C along \hat{u}_2 to obtain the location of C' as (0,25/4). We then shoot a ray from B along the unit vector towards A, whose parametric form is given by $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -3 \\ 4 \end{bmatrix} + \frac{l}{5} \begin{bmatrix} 4 \\ -3 \end{bmatrix}$. For the point where this ray intersects the y-axis we have l=15/4, and the location of A' is then given by (0,7/4). So the length of the line segment A'C' is =(25/4-7/4)=9/2.

Question 3. [1+5+3=9 points] Given a sphere in \mathbb{R}^3 with centre C = (3, 3, 3) and a point on the surface of the sphere P = (2, 5, 1).

(a) The implicit form equation for the sphere is given by

Your answer: $(x-3)^2 + (y-3)^2 + (z-3)^2 = 9$.

Solution: The radius of the sphere is $\sqrt{(3-2)^2+(3-5)^2+(3-1)^2}=3$, so the implicit form equation for the sphere is: $(x-3)^2+(y-3)^2+(z-3)^2=9$.

(b) The location of the point on the surface of the sphere closest to Q=(6,9,1) is given by:

Your answer: (30/7, 39/7, 15/7).

Solution: First note that point Q lies outside the sphere.

In order to find the answer we shoot a ray from Q towards the centre of the sphere, and let it intersect the sphere's surface. The parametric equation for this ray, with the unit vector from Q to the centre of the sphere being

$$\frac{1}{7} \begin{bmatrix} -3 \\ -6 \\ 2 \end{bmatrix}, \text{ is } \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 6 \\ 9 \\ 1 \end{bmatrix} + \frac{t}{7} \begin{bmatrix} -3 \\ -6 \\ 2 \end{bmatrix}. \text{ Substituting this equation}$$

in the implicit form equation for the sphere yields the following quadratic equation for t: $t^2 - 14t + 40 = 0$, leading to the solutions t = 4 and t = 10, so the point we're looking for corresponds to t = 4. Use that to obtain the location of the point on the surface of the sphere closest to Q as (30/7, 39/7, 15/7).

(c) Given $\hat{u} = \frac{1}{\sqrt{2}} \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$ is a unit tangent vector of the sphere at point P.

The unit bitangent vector of the sphere at point P is

Your answer:
$$\begin{bmatrix} \frac{2\sqrt{2}}{3} \\ \frac{1}{3\sqrt{2}} \\ -\frac{1}{3\sqrt{2}} \end{bmatrix}.$$

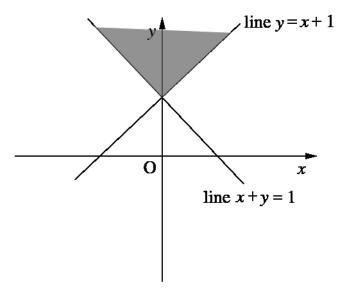
Solution: The unit vector normal to the surface of the sphere at point

P is
$$\hat{n} = \frac{1}{3} \begin{bmatrix} -1\\2\\-2 \end{bmatrix}$$
. So the unit bitangent vector is given by $\hat{n} \times \hat{u} = \begin{bmatrix} 2\sqrt{2} \end{bmatrix}$

$$\begin{bmatrix} \frac{2\sqrt{2}}{3} \\ \frac{1}{3\sqrt{2}} \\ -\frac{1}{2\sqrt{2}} \end{bmatrix}.$$

Question 4. [4 points] On a two-dimensional plane there is a co-ordinate

system defined (i.e., x- and y-axes and the origin). Shade the region for which **both** conditions x + y > 1 and x + 1 < y hold.



Question 5. [3 points] The implicit equation of the tangent plane to the sphere $(x-3)^2 + (y-4)^2 + z^2 = 9$ at point P = (5,5,2) is given by

Your answer: 2x + y + 2z - 19 = 0.

Solution: The unit vector normal to the surface of the sphere at point P is $\hat{n} = \frac{1}{3}\begin{bmatrix}2\\1\\2\end{bmatrix}$. So the implicit form equation of the tangent plane passing through P has the general form 2x+y+2z+D=0. The fact that this plane passes through P fixes D as 2*5+5+2*2+D=0; i.e., D=-19. So the implicit equation of the tangent plane at P is given by 2x+y+2z-19=0.

Question 6. [2+1+4=7 points] Consider Fig. 1 below, shown in two dimensions. Given:

- The equation of line P is x 2y + 1 = 0.
- The equation of line Q is y 2x 3 = 0.
- Points A and B lie on line Q. Location of point A is (0,3). The length of the line segment AB is l.
- The points A and B are projected on to line P at A' and B' respectively (i.e., AA' and BB' are both perpendicular to line P).
- (a) The length of the line segment AA' is

Your answer: $\sqrt{5}$.

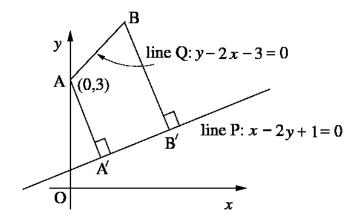


Figure 1: Figure for question 6.

Solution: The unit vector normal to the line P is $\pm \frac{1}{\sqrt{5}} \begin{bmatrix} 1 \\ -2 \end{bmatrix}$. Choose $\hat{u} = \frac{1}{\sqrt{5}} \begin{bmatrix} 1 \\ -2 \end{bmatrix}$ and shoot a ray along this unit vector from A. The equation for this ray is $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \end{bmatrix} + \frac{t}{\sqrt{5}} \begin{bmatrix} 1 \\ -2 \end{bmatrix}$.

This ray intersects line P at A', for which we have $t/\sqrt{5}-2(3-2t/\sqrt{5})+1=0$, i.e., $t=\sqrt{5}$. So the length of the line segment AA' is $\sqrt{5}$.

(b) The location of the point A' is

Your answer: (1,1).

Solution: From (a) use $t = \sqrt{5}$ to reach the point (1,1) on line P, which is the location of point A'.

(c) The length of the line segment A'B' is

Your answer: $\frac{4l}{5}$.

Solution: As the figure shows, the line A'B' is a projection of the line segment AB on line P. It is therefore obtained by the use of a dot product between the two unit vectors \hat{v} and \hat{w} along AB and A'B' respectively, since $|A'B'| = |AB|(\hat{v} \cdot \hat{w})$. With $\hat{w} \cdot \hat{u} = 0$, we have $\hat{w} = \frac{1}{\sqrt{5}} \begin{bmatrix} 2\\1 \end{bmatrix}$. In a similar manner, we also have $\hat{v} = \frac{1}{\sqrt{5}} \begin{bmatrix} 1\\2 \end{bmatrix}$. So $\hat{v} \cdot \hat{w} = 4/5$, which leads to the result that the length of the line segment A'B' is 4l/5.