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TL;DR 

Visibility is an important topic when rendering using the rasterization algorithm. Triangles can 
be off-screen, or behind other triangles; in fact, entire meshes can be invisible. Detecting this 
efficiently (ideally, with as little computation as possible) is crucial to rendering massive scenes, 
where the number of visible triangles is often a fraction of the total number of triangles.  

 

Visibility 

Visibility determination is a broad topic, with many aspects: 

 

 

 

At a fine level, we need to determine which (parts of) triangles are in front of others. We also 

need to determine which (parts of) triangles are off-screen. At a somewhat coarser level we 

want to skip trees that are behind us. Ideally not one triangle at a time, but the whole mesh at 

once. Then we have the objects that are far away: we either skip them (beyond a certain 

distance) or draw them with reduced detail. Visibility also affects our lighting: a shadow 

occurs when some point is invisible from a light source. 

 



The Closest Triangle 

After drawing all the triangles, the ones that we actually see are the ones that are closest. We 

can achieve this by simply sorting the polygons. If we draw them back-to-front, the nearby 

ones will be drawn over the further away ones. This is similar to how a painter builds an 

image on canvas, which is why the technique is named the Painter’s algorithm. 

 

 
 

The algorithm is not flawless. Sorting requires a single depth per triangle, which is typically 

the distance of the center of the triangle to the camera. It is however possible for a triangle to 

be closer than some other triangle, while still being in front of it. And in some cases, a correct 

order is impossible: only splitting the triangles would help in that case. 

 

          

A simple solution to the triangle sorting problem is the z-buffer. With a z-buffer, we don’t sort 

triangles, but pixels: for each pixel of a triangle, we test the depth against the value stored in 

the z-buffer. If the pixel is closer than any other pixel drawn to that location, we draw the 

pixel, and update the value in the z-buffer. Although this yields pixel-perfect ordering, it is 

substantially more work for a CPU. Instead of just writing a pixel, we now: 

1. read the z-buffer 

2. compare the depth 

3. write to the z-buffer and  

4. write the pixel. 

These days every GPU implements a z-buffer in hardware. It can still be beneficial to sort 

polygons (at least somewhat): if we draw the triangles front-to-back, we reduce the number 

of pixels that pass the comparison (step 2). 



Z-Buffer Details 

So what do we store in a z-buffer? The depth, obviously, but there are many ways to represent 

a depth, and the original floating point z value is not the best way. We can use 1/𝑧: if 𝐴 < 𝐵, 

then 1/𝐴 < 1/𝐵. The benefit is that we get more precision up close, which is where the detail 

is needed. We can take this further however.  

With a trick we can limit our values to the range 0. .1. In OpenGL, 1/(−𝑧 + 1) is 1 if 𝑧 = 0 and 

shrinks to 0 as 𝑧 approaches -infinity (recall that 𝑧 is negative in front of the camera). A 

number between 0 and 1 can then be converted to a 32-bit integer. The final depth becomes: 

(232 − 1)/(−𝑧 + 1). Storing the depth this way is significantly more precise than storing the 

generic float. 

 

Overdraw 

A z-buffer ensures that the final image is correct. It does however not prevent overdraw: the 

effect that a single pixel changes color multiple times per frame. For translucent objects this is 

inevitable, but if we have a complex car behind a simple building, drawing the car (and then 

the building over it) is just a waste of time. 

 

Overdraw in a maze. 

 

BSP 

Quake 1 (1996) used a number of novel techniques to render its 3D worlds efficiently. In the 

game, static geometry and dynamic entities are handled by different code paths. The static 

geometry is rendered using a BSP tree: a binary space partitioning tree. This structure 

subdivides the world in two half spaces, using the plane of a polygon in the scene. This is done 

recursively: each of the half spaces is split again, until only half spaces remain that cannot be 

split by polygons (i.e., convex volumes). 



      

Using a BSP we can draw the scene with perfect sorting, without using a z-buffer. Starting at the 

root, we determine on which side of the split plane the camera is located. We then first process 

the far half space, then the near one. Once we get to the leafs of the tree we draw the triangles 

they contain. These will now be drawn back-to-front, without any explicit sorting. 

Quake used a z-write for the static geometry. This means that the z-buffer is unconditionally 

written to, but it is never read, which also saves the comparison. Once all static geometry has 

been processed, the dynamic entities are drawn with full z-buffering (read-test-write-write). 

The resulting renderer has no sorting problems at all, and is efficient. 

 

 
 

PVS 

The BSP provides correct sorting, but it does not eliminate overdraw. For this, Quake used 

another technique: the PVS, or potential visibility set. 

The PVS is a large table which stores the mutual visibility of areas in the game. Constructing the 

PVS is a complex and time consuming procedure, so it is only useful for static geometry. Once 

it has been calculated we can use it to quickly find the areas that may be visible from the area 

that the camera is in. The test is conservative: often an area is visible from the area the camera 

is in, but not from the camera location itself. 



Clipping 

A triangle that is only partially on the screen needs to be clipped. Clipping is also needed when 

a triangle crosses the 𝑧 = 0 plane, and ideally, we also clip to the far clipping plane. OpenGL 

takes care of this for us, but in some cases, we may actually want to do the clipping ourselves, 

e.g. when we want an arbitrary cut of a scene. 

 

To clip an ngon (i.e., planar polygon with any number of vertices) to an arbitrary plane, we use 

Sutherland-Hodgeman clipping. The algorithm takes a list of vertices, and emits a new list of 

vertices, which forms the clipped ngon. To do so, it loops over the edges of the ngon. For each 

edge, it looks at the start vertex 𝑣0 and the end vertex 𝑣1 to classify the edge. There are four 

cases: 

1. The edge is ‘in’: 𝑣0 and 𝑣1 are both in front of the plane. 

2. The edge is ‘out’:  𝑣0 and 𝑣1 are both behind the plane. 

3. The edge is ‘coming in’: only 𝑣1 is in front of the plane. 

4. The edge is ‘going out’: only 𝑣0 is in front of the plane. 

If the edge intersects the plane, we calculate the intersection point 𝐶. Depending on the case, 

we now emit 0, 1 or 2 vertices for the clipped ngon: 

▪ Case 1: emit 𝑣1. 

▪ Case 2: emit nothing. 

▪ Case 3: emit 𝐶 and 𝑣1. 

▪ Case 4: emit 𝐶. 

Make sure you practice this on a piece of paper at least once. 

 

Guard Bands 

To prevent excessive clipping for detailed meshes, the PS2 introduced guard bands. By making 

the screen slightly larger, triangles that are partially off-screen but not outside the guard band 

can be safely drawn without clipping.  

 



Large Scale Culling 

Although the z-buffer and clipping allow us to render scenes of arbitrary size, this is not 

exactly efficient for large scenes. 

Culling is the process of preventing the rendering of (groups of) triangles. This can be done at 

several levels: 

Backface culling eliminates the triangles that are not facing the camera. If we assume that 

triangles are single-sided, this reduces the number of visible triangles by 50%, at the cost of a 

dot product per triangle. 

We can also cull using bounding spheres. If we know the bounds for a mesh, we can check if 

these bounds intersect the view frustum. If not, the object can be safely ignored. 

Multiple meshes (with their bounding spheres) can be grouped. We now have a bounding 

volume hierarchy, which allows us to very efficiently cull large groups of objects. 

Alternatively, if we have a world that is organized in a grid, we can simply limit our efforts to 

the tiles that the view frustum overlaps. 

 

 

 

 

THE END 

There is more, but this document is already six pages! The rest of the topics discussed in the 
lecture will not appear in this year’s exam.  

If you have any questions, feel free to ask by email or on Slack! 
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