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TL;DR 

In this installment of ‘NeedToKnow’: more ray tracing. The concepts of surface normals and 
interpolated vertex normals are introduced and applied to shading. Reflections and recursive 
reflections for Whitted-style ray tracing are added.  

This is the last lecture before the midterm exam. 

 

 
Figure 1: How to render a million reflective spheres in real-time remains a mystery. 

Recap 

In the previous installment of NeedToKnow we explored the principles of light transport. In a 
simple setup, a brief pulse of photons starts at a pointlight and spreads out as a sphere with a 
radius that increases at the speed of light. When the expanding sphere of photons encounters 
‘obstacles’, these obstacles may absorb, transmit or reflect photons.  

To calculate how many photons are reflected we need to know how many photons arrived. We 
are calculating this for a point, but since it’s all about densities, we can establish photon density 
per unit area for a point. This density is proportional to the brightness of the light, divided by 
the squared distance. 

The photons typically arrive at an angle. Depending on this angle the photons are spread out 
over a larger area. The density is multiplied by 𝑁 ∙ 𝐿 to account for this. 

  



Normals 

A plane is conveniently defined using an implicit equation: 

𝐴𝑥 + 𝐵𝑦 + 𝐶𝑧 + 𝐷 = 0 (or: (𝑃 ∙ 𝑁⃗⃗ ) + 𝐷 = 0 ) 

Quick intuitive verification of the maths: a horizontal (floor) plane at level 0 has a normal of 

(0,1,0)  (i.e., it points straight up) and consists of all the points for which 𝑦 = 0. Based on the 

normal and the level, we get: 

0𝑥 + 1𝑦 + 0𝑧 + 𝐷 = 0   

which reduces to:   𝑦 = 0, which indeed defines all the points on the plane.  

The second form now also makes sense: (𝑃 ∙ 𝑁⃗⃗ ) is 𝐴𝑥 + 𝐵𝑦 + 𝐶𝑧, if (𝐴, 𝐵, 𝐶) is 𝑁⃗⃗ . 

With this basic math we can do the calculations for light transport. The distance of a point 𝑃 

to a plane is simply calculated as 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑃,𝑝𝑙𝑎𝑛𝑒 = (𝑃 ∙ 𝑁⃗⃗ ) + 𝐷, and the cosine factor for 

light arriving at an angle becomes 𝐿⃗ ∙ 𝑁⃗⃗ , where 𝐿⃗  is a (normalized!) vector from the point we 

are shading to the light. This is all illustrated in Figure 2. 

 

 

Figure 2: Distance attenuation and N dot L shading. 

In some cases, we may get a negative value for 𝐿⃗ ∙ 𝑁⃗⃗ . If this is the case, 𝐿⃗  must be a vector 

that arrives from underneath the surface, which means that the light source is below the 

surface. In that case, the surface blocks itself from the light. This has two consequences: 

▪ the contribution of the light becomes 0 

▪ we don’t send a shadow ray, as this would be a waste of work. 

 

Normals and Spheres 

A normal for a sphere can be obtained easily. We typically want to 

know a normal for a point on the sphere. This normal is in the opposite 

direction of the vector from the point on the sphere to the center of 

the sphere. Don’t forget to normalize. 

  



Normal Interpolation 

For a sphere we can calculate a perfect normal at any point on the sphere. For an object 

consisting of triangles things are not that simple. 

 

 

Figure 3: A cow rendered without and with normal interpolation. 

 

The cow on the left does have perfect normals for each pixel, but the one on the right looks 

quite a bit better. It is shaded using a technique called normal interpolation, which relies on a 

counter-intuitive concept named vertex normals. The concept is illustrated in Figure 4. 

 

Figure 4: Normal interpolation. 

 

A vertex normal is typically the (normalized) average of the geometric normals of the 

polygons that use the vertex. By interpolating the vertex normals over the object we get a 

smoothly varying normal. If we use this smooth normal in our 𝑁⃗⃗ ∙ 𝐿⃗  calculations, we get the 

desired smooth mesh. 

  



Reflections 

Using normal vectors we can also calculate specular reflections. 

Given a surface normal vector N and a vector V to the eye the reflected vector is: 

𝑅⃗ = 𝑉⃗ − 2(𝑉⃗ ∙ 𝑁⃗⃗ )𝑁⃗⃗  

Interesting fact: if 𝑉⃗  and 𝑁⃗⃗  are normalized vectors, 𝑅⃗  also has a magnitude of 1, so we don’t 

have to normalize it (and thus we shouldn’t; don’t make the ray tracer slower than necessary). 

 

Light Transport for Reflections 

When a primary ray hits a mirror, it will ‘see’ what the reflected ray sees. The reflected ray is 

thus an extension of the primary ray. An extension ray may hit another mirror; ray tracing is 

thus a recursive process. In pseudocode: 

vec3 Trace( Ray ray ) 

{ 

   I, N, material = scene.GetIntersection( ray ); 

   if (material.isMirror)  

      return material.color * Trace( … ); 

   return DirectIllumination() * material.color; 

} 

Note that absorption should still be applied. For example, a shiny green ball absorbs red and 

blue light. Also note that we do not use a shadow ray. A shadow ray works because diffuse 

objects reflect light from all directions, but mirrors don’t do this. The only direction from 

which relevant light arrives is the reflected direction. 

 

The Full Whitted 

We can now render diffuse and specular objects, and we can handle reflections. This (plus 

dielectrics) is what Whitted-style ray tracing is all about. We can sum up the whole process in 

two functions: 

Color Trace( vec3 O, vec3 D ) 

{ 

   I, N, mat = IntersectScene( O, D ); 

   if (!I) return BLACK; 

   return DirectIllumination( I, N ) * mat.diffuseColor; 

} 

 

The first function is what we have seen before. Based on a primary ray (with origin 𝑂 and 

direction 𝐷⃗⃗ ), we find an intersection point 𝐼, normal 𝑁⃗⃗  and a material. If we hit nothing, the 

ray left the scene, and we’re done.  

Otherwise, we calculate the illumination arriving at point 𝐼.  

https://research.nvidia.com/person/turner-whitted


Color DirectIllumination( vec3 I, vec3 N ) 

{ 

   vec3 L = lightPos – I;    

   float dist = length( L ); 

   L *= (1.0f / dist); 

   if (!IsVisibile( I, L, dist )) return BLACK; 

   float attenuation = 1 / (dist * dist); 

   return lightColor * dot( N, L ) * attenuation; 

} 

Function DirectIllumination is evaluated for each light source. It takes a primary (or 

secondary, etc.) intersection point 𝐼 and a normal 𝑁⃗⃗  at that intersection point. It then creates 

a shadow ray between the light and the intersection point. If the shadow ray hits nothing, the 

contribution of the light source is returned. 

Adding reflections is now a simple change to the Trace function: 

Color Trace( vec3 O, vec3 D ) 

{ 

   I, N, mat = IntersectScene( O, D ); 

   if (!I) return BLACK; 

   if (mat.isMirror()) 

      return Trace( I, reflect( D, N ) ) * mat.diffuseColor; 

   else 

      return DirectIllumination( I, N ) * mat.diffuseColor; 

} 

Note that mirrors do not calculate direct illumination; everything they reflect arrives via the 

recursive call to Trace. 

 

Recursion 

Whitted-style ray tracing is also known as recursive ray tracing. The recursion comes at a 

price: one primary ray potentially reflects the light of many secondary and shadow rays. The 

branching path that we get is called the ray tree. Especially when we have dielectrics in the 

scene the tree can become quite complex. 

This has some consequences: 

▪ we need a cap on the recursion 

▪ deeper rays tend to contribute little to the color of the pixel. 

A deep ray tree is expensive to evaluate. We will solve this issue later, using path tracing. 

  



Not in Whitted 

Finally, it’s useful to consider what Whitted-style ray tracing cannot do: 

▪ We do get shadows, but we do not get soft shadows. 

▪ We get reflections, but they have to be specular. 

▪ Mirrors reflect light from other mirrors, but diffuse surfaces do not reflect from other 

surfaces. 

▪ Caustics are missing. 

▪ How do we calculate depth of field and motion blur? 

We will address these later. 

 

 

 

 

 

THE END 

That’s it for this installment. If you have any questions, feel free to ask by email or on Slack! 
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