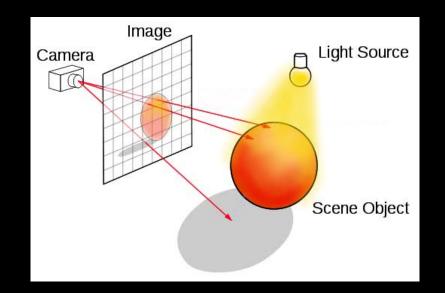
Graphics (INFOGR), 2018-19, Block IV, lecture 1 Deb Panja

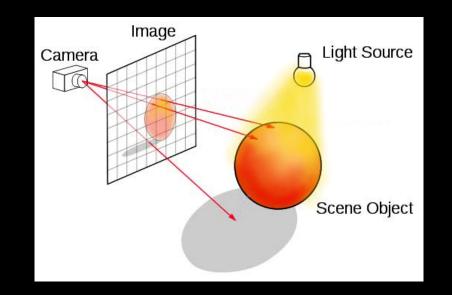
Today: Vectors and vector algebra

Welcome

Ray tracing – part I of the course



Ray tracing – part I of the course



- Why vectors?
 - you need to shoot a lot of such rays!
 - vectors are the vehicles you need for ray tracing

And vectors as vehicles for....

- Define a virtual scene
- Define a camera direction
- Trace a bullet around a scene
- Line-of-sight queries
- And greetings from the gaming community (NVIDIA, Microsoft)....
 - https://blogs.nvidia.com/blog/2018/03/21/
 (epic-games-reflections-ray-tracing-offers-peek-gdc)
 - https://www.youtube.com/watch?v=-zW3Ghz-WQw
 - $\ https://www.youtube.com/watch?v = 81E9yVU-KB8$

Scalars (before we talk about vectors!)

• Quantities that can be described by a magnitude (i.e., a single number)

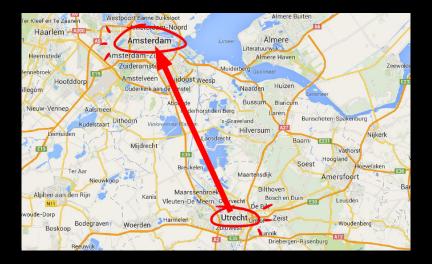
Scalars

- Quantities that can be described by a magnitude (i.e., a single number)
 - this sack of potatoes weighs 5 kilos
 - distance between Utrecht and Amsterdam is 40.5 kms
 - the car is travelling with speed 50 km/h
 - numbers like $\pi = 3.14159..., e = 2.71818..., 1/3, -1/\sqrt{2}$ etc.
- On a computer: int, float, double

• Quantities that have not only a magnitude but also a direction

• Quantities that have not only a magnitude but also a direction

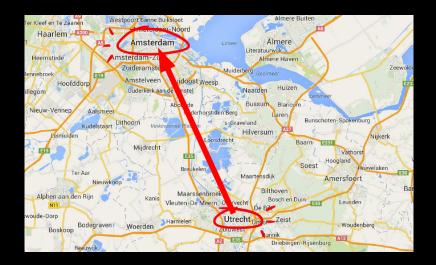
– Utrecht-Amsterdam example (40.5 kms in-between)



- the velocity of an airplane

• Quantities that have not only a magnitude but also a direction

– Utrecht-Amsterdam example (40.5 kms in-between)



• One way to represent the U-A vector:

- start at U and end at A; vector (the arrow!) spans the two
- start-point (U): move 40.5 kms in 24° west of north

• Quantities that have not only a magnitude but also a direction - Utrecht-Amsterdam example (40.5 kms in-between)

• Equivalent second way to represent the U-A vector:

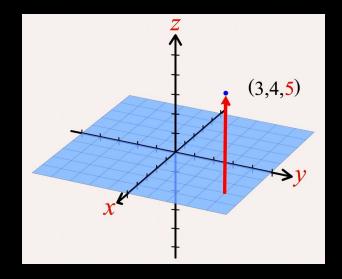
- start-point (U): move 37 kms north and 16.47 kms west

("north" and "west" are reference directions)

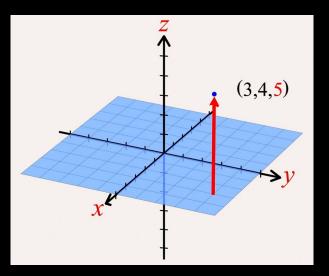
• Number of reference directions = dimensionality of space d-dimensional space $\equiv \mathbb{R}^d$; 2D $\equiv \mathbb{R}^2$, 3D $\equiv \mathbb{R}^3 \dots$

• Number of reference directions = dimensionality of space d-dimensional space $\equiv \mathbb{R}^d$; 2D $\equiv \mathbb{R}^2$, 3D $\equiv \mathbb{R}^3 \dots$

Cartesian co-ordinate system
in 3D:
(reference directions ⊥ to each other)



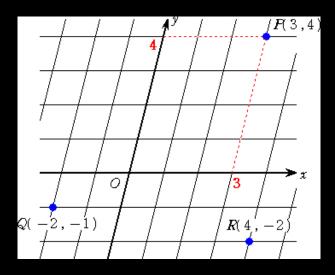
• Cartesian co-ordinate system in 3D:



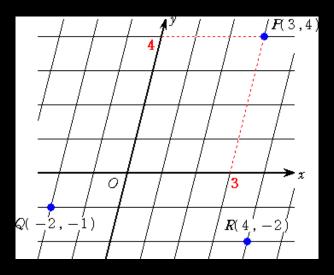
- A point P is represented
 - by (x, y) co-ordinates in two dimensions
 - by (x, y, z) co-ordinates in three-dimensions
 - by (x_1, x_2, \ldots, x_d) co-ordinates in d dimensions
- Origin of a co-ordinate system: all entries of P are zero

• Co-ordinate system does not have to be orthogonal/Cartesian!

• Co-ordinate system does not have to be orthogonal/Cartesian!

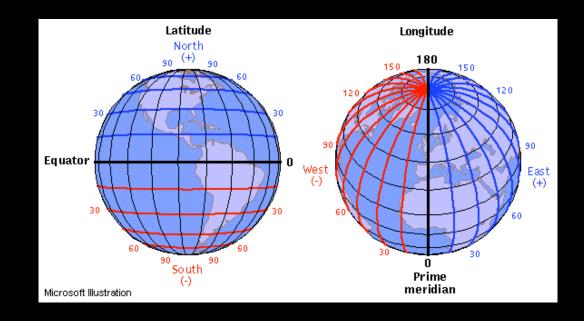


• Co-ordinate system does not have to be orthogonal/Cartesian!

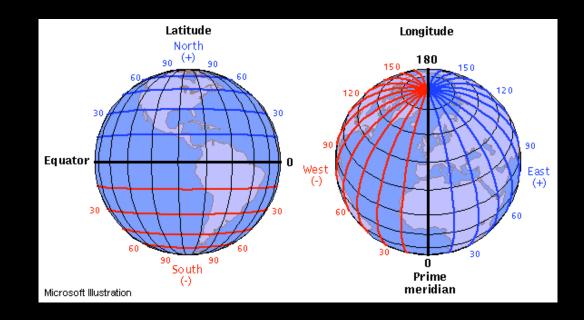


• There are advantages for Cartesian co-ordinate systems (later)

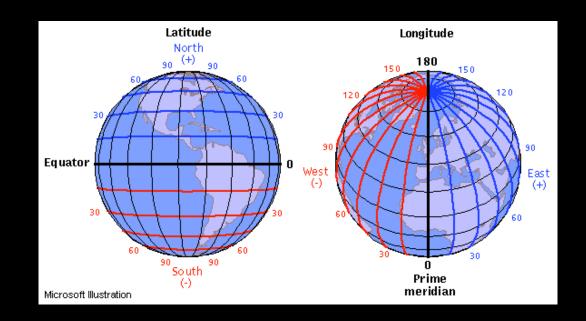
Q. Latitude-longitude: is it a co-ordinate system?



A. Latitude-longitude: It is a co-ordinate system

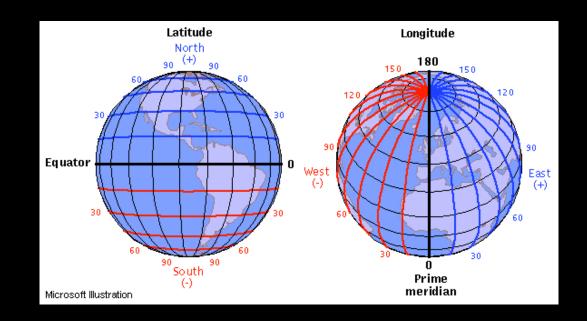


Latitude-longitude: It is a co-ordinate system



Q. Is it orthogonal?

Latitude-longitude: It is a co-ordinate system



A. It is (locally) orthogonal

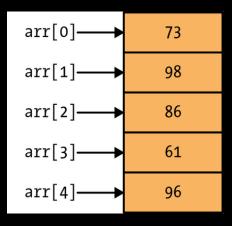
A point in a co-ordinate system

• Is represented as an array on a computer

A point in a co-ordinate system

• Is represented as an array on a computer

- example in 5 dimensions (d = 5): P = (73, 98, 86, 61, 96)

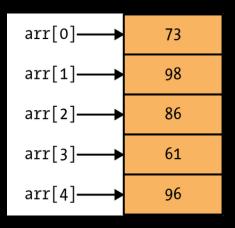


A vector in a co-ordinate system

• Like Utrecht \rightarrow Amsterdam (37 kms N, 16.47 kms W)

A vector in a co-ordinate system

- Like Utrecht \rightarrow Amsterdam (37 kms N, 16.47 kms W)
 - an example vector in 5 dimensions (d = 5): $\vec{v} = (73, 98, 86, 61, 96)$ is also represented as an array on the computer!



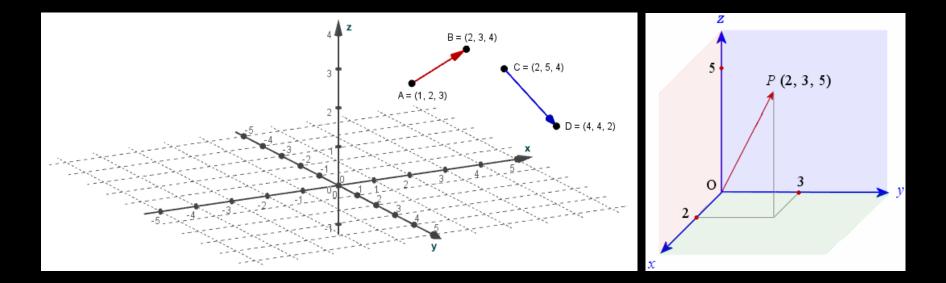
A vector in a co-ordinate system

- Like Utrecht \rightarrow Amsterdam (37 kms N, 16.47 kms W)
 - an example vector in 5 dimensions (d = 5): $\vec{v} = (73, 98, 86, 61, 96)$ is also represented as an array on the computer!

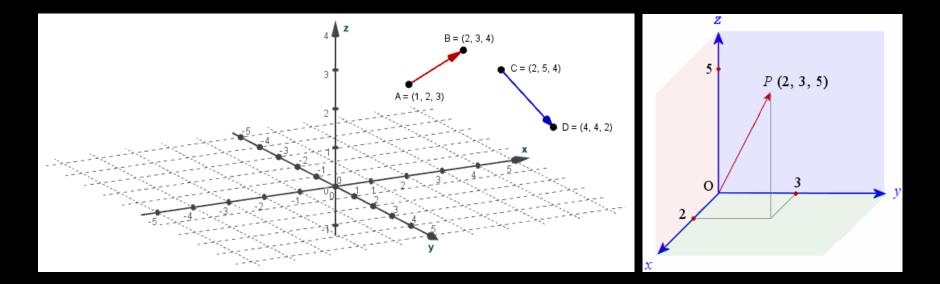


• So... what is the difference between a point and a vector?

A point (on a co-ordinate system) vs a vector (e.g., in 3D)



A point (on a co-ordinate system) vs a vector (e.g., in 3D)



• A vector does not specify the starting point!

– it only specifies the length and the direction of the arrow

Summary so far...

- Scalar: Quantity represented by a magnitude (a single number)
- Vector: Quantity requiring a magnitude and a direction
 - to represent it, we need a co-ordinate system
 - (a) does not have to be Cartesian
 - (b) we will use Cartesian unless otherwise stated
 - number of reference directions = number of spatial dimensions
 - A point P is represented by (x_1, x_2, \dots, x_d) in d spatial dimensions [by (x, y) in 2D and by (x, y, z) in 3D]
 - both points and vectors are represented by an array on a computer
 (a vector is however fundamentally different entity than a point)

Point and vector representation

• Point P: (x_1, x_2, \ldots, x_d) in d spatial dimensions

• Vector \vec{v} : $\begin{bmatrix} v_1 \\ v_2 \\ \cdot \\ \cdot \\ v_d \end{bmatrix}$ in *d* spatial dimensions: vector notation $- by \begin{bmatrix} v_x \\ v_y \end{bmatrix} \text{ in 2D and by } \begin{bmatrix} v_x \\ v_y \\ v_z \end{bmatrix} \text{ in 3D}$ - the vector $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$ spans the origin and the point (x, y, z) in 3D

Vector addition

(Only for vectors of the same dimension!)

• Vectors
$$\vec{u} = \begin{bmatrix} u_1 \\ u_2 \\ \cdot \\ \cdot \\ u_d \end{bmatrix}$$
 and $\vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ \cdot \\ \cdot \\ v_d \end{bmatrix}$

• Vector
$$\vec{u} + \vec{v} = \begin{bmatrix} u_1 + v \\ u_2 + v \\ \vdots \\ u_d + v \end{bmatrix}$$

Vector subtraction

(Only for vectors of the same dimension!)

• Vectors
$$\vec{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_d \end{bmatrix}$$
 and $\vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ \vdots \\ v_d \end{bmatrix}$
• Vector $\vec{u} - \vec{v} = \begin{bmatrix} u_1 - v_1 \\ u_2 - v_2 \\ \vdots \\ u_d - v_d \end{bmatrix}$

• $\vec{u} - \vec{v} = 0 \quad \Rightarrow \quad \vec{u} = \vec{v} \quad \Rightarrow \quad u_1 = v_1, u_2 = v_2, \dots, u_d = v_d$

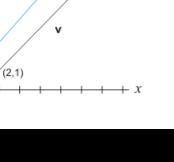
31

Vector addition and subtraction: example

Example:
$$\vec{u} = \begin{bmatrix} 2\\1 \end{bmatrix}, \vec{v} = \begin{bmatrix} 4\\4 \end{bmatrix}, \vec{w} = \begin{bmatrix} 1\\3 \end{bmatrix}$$

• Addition: $\vec{a} = \vec{u} + \vec{v} + \vec{w}$

• Subtraction: $\vec{a} - \vec{w}$; reverse the direction of \vec{w} and vector-add to \vec{a} (i.e.,to get $-\vec{w}$ simply reverse the arrow)



A (6.5)

u + v + w

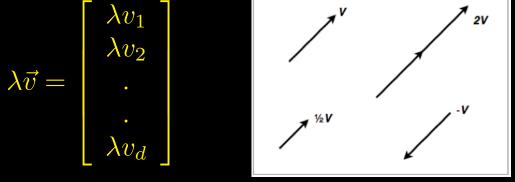
(0.0)

u

(7,8)

Scalar multiplication of a vector

• Vector
$$\vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ . \\ . \\ v_d \end{bmatrix}$$
, scalar λ



Magnitude (length, or norm) of a vector

(Formulas below holds for Cartesian co-ordinate system only!)

• Vector
$$\vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ . \\ . \\ v_d \end{bmatrix}$$
; magnitude (norm) $||\vec{v}|| = \sqrt{v_1^2 + v_2^2 + \ldots + v_d^2}$
2D: $||\vec{v}|| = \sqrt{v_x^2 + v_y^2}$, 3D: $||\vec{v}|| = \sqrt{v_x^2 + v_y^2 + v_z^2}$

 $(||\vec{v}||$ is the length of the arrow)

Magnitude (length/norm) of a vector, and unit vector

(Formulas below holds for Cartesian co-ordinate system only!)

• Vector $\vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_d \end{bmatrix}$; magnitude (norm) $||\vec{v}|| = \sqrt{v_1^2 + v_2^2 + \ldots + v_d^2}$ 2D: $||\vec{v}|| = \sqrt{v_x^2 + v_y^2}$, 3D: $||\vec{v}|| = \sqrt{v_x^2 + v_y^2 + v_z^2}$ ($||\vec{v}||$ is the length of the arrow) • Corresponding unit vector $\hat{v} = \frac{1}{||\vec{v}||} \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_d \end{bmatrix}$; you can confirm $||\hat{v}|| = 1$ (this process is called normalisation) Magnitude (length) of a vector, unit and basis vectors

(Formulas below holds for Cartesian co-ordinate system only!)

• Vector $\vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ . \\ . \\ v_d \end{bmatrix}$; magnitude (norm) $||\vec{v}|| = \sqrt{v_1^2 + v_2^2 + \ldots + v_d^2}$ 2D: $||\vec{v}|| = \sqrt{v_x^2 + v_y^2}$, 3D: $||\vec{v}|| = \sqrt{v_x^2 + v_y^2 + v_z^2}$ ($||\vec{v}||$ is the length of the arrow) • Corresponding unit vector $\hat{v} = \frac{1}{||\vec{v}||} \begin{bmatrix} v_1 \\ v_2 \\ . \\ . \\ v_d \end{bmatrix}$; you can confirm $||\hat{v}|| = 1$ (this process is called normalisation)

- unit vectors in reference directions $\hat{x}_1, \hat{x}_2, \ldots$ are the basis vectors (e.g., \hat{x}, \hat{y} and \hat{z} are the basis vectors in 3D; in vector notation?)

Magnitude (length) of a vector, unit and basis vectors (Formulas below holds for Cartesian co-ordinate system only!)

• Vector
$$\vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_d \end{bmatrix}$$
; magnitude (norm) $||\vec{v}|| = \sqrt{v_1^2 + v_2^2 + \ldots + v_d^2}$
2D: $||\vec{v}|| = \sqrt{v_x^2 + v_y^2}$, 3D: $||\vec{v}|| = \sqrt{v_x^2 + v_y^2 + v_z^2}$
($||\vec{v}||$ is the length of the arrow)
• Corresponding unit vector $\hat{v} = \frac{1}{||\vec{v}||} \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_d \end{bmatrix}$; you can confirm $||\hat{v}|| = 1$

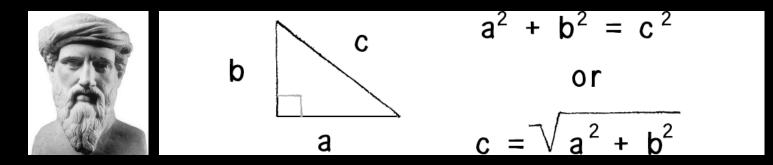
- unit vectors in reference directions $\hat{x}_1, \hat{x}_2, \ldots$ are the basis vectors

• Why do we need a Cartesian co-ordinate system?

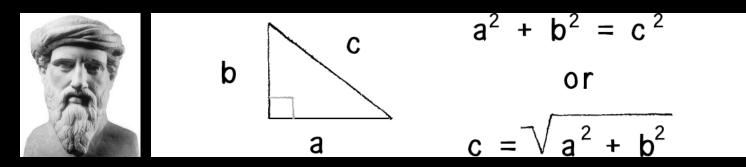
Pythagoras' theorem and elementary trigometry (works for Cartesian co-ordinate system only!)

• In 2D: basis vectors
$$\hat{x}, \hat{y}; \vec{v} = \begin{bmatrix} v_x \\ v_y \end{bmatrix}; ||\vec{v}||^2 = v_x^2 + v_y^2$$
 (Pythagoras)

Pythagoras' theorem

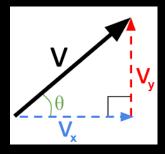


Pythagoras' theorem

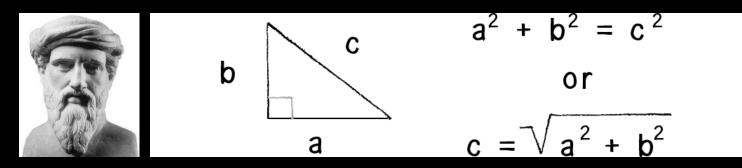


(below it works for Cartesian co-ordinate system only!)

• In 2D: basis vectors $\hat{x}, \hat{y}; \vec{v} = \begin{bmatrix} v_x \\ v_y \end{bmatrix}; ||\vec{v}||^2 = v_x^2 + v_y^2$ e.g., $\vec{v} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}, ||\vec{v}|| = \sqrt{3^2 + 4^2} = 5$

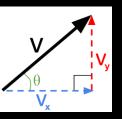


Pythagoras' theorem



(below it works for Cartesian co-ordinate system only!)

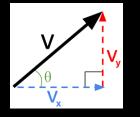
• In 2D: basis vectors $\hat{x}, \hat{y}; \vec{v} = \begin{bmatrix} v_x \\ v_y \end{bmatrix}; ||\vec{v}||^2 = v_x^2 + v_y^2$ e.g., $\vec{v} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}, ||\vec{v}|| = \sqrt{3^2 + 4^2} = 5$



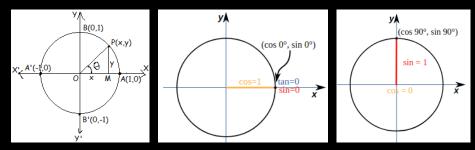
- Pythagoras in d dimensions: $||\vec{v}||^2 = v_1^2 + v_2^2 + \ldots + v_d^2$
- Null vector: vector of magnitude zero; $v_1 = v_2 = \ldots = v_d = 0$

Cartesian co-ordinate system vectors and trigonometry

• In 2D: basis vectors
$$\hat{x}, \hat{y}; \vec{v} = \begin{bmatrix} v_x \\ v_y \end{bmatrix}; ||\vec{v}||^2 = v_x^2 + v_y^2$$
 (Pythagoras)



•
$$\cos \theta = \frac{v_x}{||\vec{v}||}, \sin \theta = \frac{v_y}{||\vec{v}||}, \tan \theta = \frac{v_y}{v_x}$$



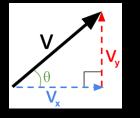
unit circle

Exact Values of Trigonometric Functions

Angle (θ)		$\sin(\theta)$	aaa(0)	tan(A)
Degrees	Radians	$\sin(\theta)$	$\cos(\theta)$	$tan(\theta)$
0 °	0	0	1	0
30°	$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{3}}$
45°	$\frac{\pi}{4}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	1
60°	$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$
90°	$\frac{\pi}{2}$	1	0	Not Defined

Cartesian co-ordinate system vectors and trigonometry

• In 2D: basis vectors
$$\hat{x}, \hat{y}; \vec{v} = \begin{bmatrix} v_x \\ v_y \end{bmatrix}; ||\vec{v}||^2 = v_x^2 + v_y^2$$
 (Pythagoras)



•
$$\cos \theta = \frac{v_x}{||\vec{v}||}, \sin \theta = \frac{v_y}{||\vec{v}||}, \tan \theta = \frac{v_y}{v_x}$$

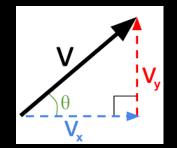
•
$$v_x^2 + v_y^2 = ||\vec{v}||^2 \implies \sin^2 \theta + \cos^2 \theta = 1$$

Q. What is \hat{v} in terms of θ ? (think in terms of the unit circle!)

Angle (θ)			aaa(0)	tan(0)
Degrees	Radians	$\sin(\theta)$	$\cos(\theta)$	$\tan(\theta)$
0 °	0	0	1	0
30°	$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{3}}$
45°	$\frac{\pi}{4}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	1
60°	$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$
90°	$\frac{\pi}{2}$	1	0	Not Defined

Cartesian co-ordinate system vectors and trigonometry

• In 2D: basis vectors
$$\hat{x}, \hat{y}; \vec{v} = \begin{bmatrix} v_x \\ v_y \end{bmatrix}; ||\vec{v}||^2 = v_x^2 + v_y^2$$
 (Pythagoras)



•
$$\cos \theta = \frac{v_x}{||\vec{v}||}, \sin \theta = \frac{v_y}{||\vec{v}||}, \tan \theta = \frac{v_y}{v_x}$$

• $v_x^2 + v_y^2 = ||\vec{v}||^2 \implies \sin^2 \theta + \cos^2 \theta =$
A. $\hat{v} = \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}$

Exact Values of Trigonometric Functions

Angle (θ)		$\sin(\theta)$	aaa(0)	tan(0)
Degrees	Radians	$\sin(\theta)$	$\cos(\theta)$	$tan(\theta)$
0 °	0	0	1	0
30°	$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{3}}$
45°	$\frac{\pi}{4}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	1
60°	$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$
90°	$\frac{\pi}{2}$	1	0	Not Defined

The second summary...

- Vector operations
 - addition and subtraction (requires same dimensionality)
 - scalar multiplication
 - magnitude/length/norm of a vector; unit, null and basis vectors
 - Pythagoras theorem
 - elementary trigonometry: definitions of sin, cos, tan

The second summary...

- Vector operations
 - addition and subtraction (requires same dimensionality)
 - scalar multiplication
 - magnitude/length/norm of a vector; unit, null and basis vectors
 - Pythagoras theorem
 - elementary trigonometry: definitions of sin, cos, tan
- Next class: vector algebra (contd.), and shooting rays to objects in 2D

Finally, references

- Book chapter 2: Miscellaneous Math
 - Sec. 2.3
 - Secs. 2.4.1-2.4.2, 2.4.5