
Graphics (INFOGR), 2018-19, Block IV, lecture 1

Deb Panja

Today: Vectors and vector algebra

Welcome
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Ray tracing − part I of the course
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Ray tracing − part I of the course

• Why vectors?

− you need to shoot a lot of such rays!

− vectors are the vehicles you need for ray tracing
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And vectors as vehicles for....

• Define a virtual scene

• Define a camera direction

• Trace a bullet around a scene

• Line-of-sight queries

• And greetings from the gaming community (NVIDIA, Microsoft)....

− https://blogs.nvidia.com/blog/2018/03/21/
(epic-games-reflections-ray-tracing-offers-peek-gdc)

− https://www.youtube.com/watch?v=-zW3Ghz-WQw

− https://www.youtube.com/watch?v=81E9yVU-KB8
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Scalars (before we talk about vectors!)

• Quantities that can be described by a magnitude (i.e., a single number)
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Scalars

• Quantities that can be described by a magnitude (i.e., a single number)

− this sack of potatoes weighs 5 kilos

− distance between Utrecht and Amsterdam is 40.5 kms

− the car is travelling with speed 50 km/h

− numbers like π = 3.14159 . . ., e = 2.71818 . . ., 1/3, −1/
√

2 etc.

• On a computer: int, float, double
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Vectors

• Quantities that have not only a magnitude but also a direction
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Vectors

• Quantities that have not only a magnitude but also a direction

− Utrecht-Amsterdam example (40.5 kms in-between)

− the velocity of an airplane
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Vectors

• Quantities that have not only a magnitude but also a direction

− Utrecht-Amsterdam example (40.5 kms in-between)

• One way to represent the U-A vector:

− start at U and end at A; vector (the arrow!) spans the two

− start-point (U): move 40.5 kms in 24◦ west of north
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Vectors

• Quantities that have not only a magnitude but also a direction

− Utrecht-Amsterdam example (40.5 kms in-between)

• Equivalent second way to represent the U-A vector:

− start-point (U): move 37 kms north and 16.47 kms west

(“north” and “west” are reference directions)
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Reference directions ⇒ a co-ordinate system

• Number of reference directions = dimensionality of space

d-dimensional space ≡ Rd; 2D ≡ R2, 3D ≡ R3 . . .
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Reference directions ⇒ a co-ordinate system

• Number of reference directions = dimensionality of space

d-dimensional space ≡ Rd; 2D ≡ R2, 3D ≡ R3 . . .

• Cartesian co-ordinate system

in 3D:

(reference directions ⊥ to each other)
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Reference directions ⇒ a co-ordinate system

• Cartesian co-ordinate system

in 3D:

• A point P is represented

− by (x, y) co-ordinates in two dimensions

− by (x, y, z) co-ordinates in three-dimensions

− by (x1, x2, . . . , xd) co-ordinates in d dimensions

• Origin of a co-ordinate system: all entries of P are zero
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Reference directions ⇒ a co-ordinate system

• Co-ordinate system does not have to be orthogonal/Cartesian!
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Reference directions ⇒ a co-ordinate system

• Co-ordinate system does not have to be orthogonal/Cartesian!
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Reference directions ⇒ a co-ordinate system

• Co-ordinate system does not have to be orthogonal/Cartesian!

• There are advantages for Cartesian co-ordinate syetems (later)
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Q. Latitude-longitude: is it a co-ordinate system?
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A. Latitude-longitude: It is a co-ordinate system
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Latitude-longitude: It is a co-ordinate system

Q. Is it orthogonal?
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Latitude-longitude: It is a co-ordinate system

A. It is (locally) orthogonal
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A point in a co-ordinate system

• Is represented as an array on a computer
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A point in a co-ordinate system

• Is represented as an array on a computer

− example in 5 dimensions (d = 5): P = (73, 98, 86, 61, 96)
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A vector in a co-ordinate system

• Like Utrecht → Amsterdam (37 kms N, 16.47 kms W)
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A vector in a co-ordinate system

• Like Utrecht → Amsterdam (37 kms N, 16.47 kms W)

− an example vector in 5 dimensions (d = 5): ~v = (73, 98, 86, 61, 96)

is also represented as an array on the computer!
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A vector in a co-ordinate system

• Like Utrecht → Amsterdam (37 kms N, 16.47 kms W)

− an example vector in 5 dimensions (d = 5): ~v = (73, 98, 86, 61, 96)

is also represented as an array on the computer!

• So... what is the difference between a point and a vector?
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A point (on a co-ordinate system) vs a vector (e.g., in 3D)
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A point (on a co-ordinate system) vs a vector (e.g., in 3D)

• A vector does not specify the starting point!

− it only specifies the length and the direction of the arrow
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Summary so far...

• Scalar: Quantity represented by a magnitude (a single number)

• Vector: Quantity requiring a magnitude and a direction

− to represent it, we need a co-ordinate system

(a) does not have to be Cartesian

(b) we will use Cartesian unless otherwise stated

− number of reference directions = number of spatial dimensions

− A point P is represented by (x1, x2, . . . , xd) in d spatial dimensions

[by (x, y) in 2D and by (x, y, z) in 3D]

− both points and vectors are represented by an array on a computer

(a vector is however fundamentally different entity than a point)
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Point and vector representation

• Point P: (x1, x2, . . . , xd) in d spatial dimensions

− by (x, y) in 2D and by (x, y, z) in 3D

• Vector ~v:


v1
v2
.
.
vd

 in d spatial dimensions: vector notation

− by

[
vx
vy

]
in 2D and by

 vx
vy
vz

 in 3D

− the vector

 x
y
z

 spans the origin and the point (x, y, z) in 3D
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Vector addition

(Only for vectors of the same dimension!)

• Vectors ~u =


u1
u2
.
.
ud

 and ~v =


v1
v2
.
.
vd



• Vector ~u+ ~v =


u1 + v1
u2 + v2

.

.
ud + vd
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Vector subtraction

(Only for vectors of the same dimension!)

• Vectors ~u =


u1
u2
.
.
ud

 and ~v =


v1
v2
.
.
vd



• Vector ~u− ~v =


u1 − v1
u2 − v2

.

.
ud − vd


• ~u− ~v = 0 ⇒ ~u = ~v ⇒ u1 = v1, u2 = v2, . . . , ud = vd
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Vector addition and subtraction: example

• Addition: ~a = ~u+ ~v + ~w

Example: ~u =

[
2
1

]
, ~v =

[
4
4

]
, ~w =

[
1
3

]

• Subtraction: ~a− ~w; reverse the direction of ~w and vector-add to ~a

(i.e.,to get −~w simply reverse the arrow)
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Scalar multiplication of a vector

• Vector ~v =


v1
v2
.
.
vd

, scalar λ

λ~v =


λv1
λv2
.
.
λvd
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Magnitude (length, or norm) of a vector

(Formulas below holds for Cartesian co-ordinate system only!)

• Vector ~v =


v1
v2
.
.
vd

; magnitude (norm) ||~v|| =
√
v21 + v22 + . . .+ v2d

2D: ||~v|| =
√
v2x + v2y, 3D: ||~v|| =

√
v2x + v2y + v2z

(||~v|| is the length of the arrow)
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Magnitude (length/norm) of a vector, and unit vector

(Formulas below holds for Cartesian co-ordinate system only!)

• Vector ~v =


v1
v2
.
.
vd

; magnitude (norm) ||~v|| =
√
v21 + v22 + . . .+ v2d

2D: ||~v|| =
√
v2x + v2y, 3D: ||~v|| =

√
v2x + v2y + v2z

(||~v|| is the length of the arrow)

• Corresponding unit vector v̂ =
1

||~v||


v1
v2
.
.
vd

; you can confirm ||v̂|| = 1

(this process is called normalisation)
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Magnitude (length) of a vector, unit and basis vectors

(Formulas below holds for Cartesian co-ordinate system only!)

• Vector ~v =


v1
v2
.
.
vd

; magnitude (norm) ||~v|| =
√
v21 + v22 + . . .+ v2d

2D: ||~v|| =
√
v2x + v2y, 3D: ||~v|| =

√
v2x + v2y + v2z

(||~v|| is the length of the arrow)

• Corresponding unit vector v̂ =
1

||~v||


v1
v2
.
.
vd

; you can confirm ||v̂|| = 1

(this process is called normalisation)

− unit vectors in reference directions x̂1, x̂2, . . . are the basis vectors
(e.g., x̂, ŷ and ẑ are the basis vectors in 3D; in vector notation?)
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Magnitude (length) of a vector, unit and basis vectors

(Formulas below holds for Cartesian co-ordinate system only!)

• Vector ~v =


v1
v2
.
.
vd

; magnitude (norm) ||~v|| =
√
v21 + v22 + . . .+ v2d

2D: ||~v|| =
√
v2x + v2y, 3D: ||~v|| =

√
v2x + v2y + v2z

(||~v|| is the length of the arrow)

• Corresponding unit vector v̂ =
1

||~v||


v1
v2
.
.
vd

; you can confirm ||v̂|| = 1

− unit vectors in reference directions x̂1, x̂2, . . . are the basis vectors

• Why do we need a Cartesian co-ordinate system?
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Pythagoras’ theorem and elementary trigometry

(works for Cartesian co-ordinate system only!)

• In 2D: basis vectors x̂, ŷ; ~v =

[
vx
vy

]
; ||~v||2 = v2x + v2y (Pythagoras)
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Pythagoras’ theorem
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Pythagoras’ theorem

(below it works for Cartesian co-ordinate system only!)

• In 2D: basis vectors x̂, ŷ; ~v =

[
vx
vy

]
; ||~v||2 = v2x + v2y

e.g., ~v =

[
3
4

]
, ||~v|| =

√
32 + 42 = 5
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Pythagoras’ theorem

(below it works for Cartesian co-ordinate system only!)

• In 2D: basis vectors x̂, ŷ; ~v =

[
vx
vy

]
; ||~v||2 = v2x + v2y

e.g., ~v =

[
3
4

]
, ||~v|| =

√
32 + 42 = 5

• Pythagoras in d dimensions: ||~v||2 = v21 + v22 + . . .+ v2d

• Null vector: vector of magnitude zero; v1 = v2 = . . . = vd = 0
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Cartesian co-ordinate syetem vectors and trigonometry

• In 2D: basis vectors x̂, ŷ; ~v =

[
vx
vy

]
; ||~v||2 = v2x + v2y (Pythagoras)

• cos θ =
vx
||~v||

, sin θ =
vy
||~v||

, tan θ =
vy
vx

unit circle
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Cartesian co-ordinate syetem vectors and trigonometry

• In 2D: basis vectors x̂, ŷ; ~v =

[
vx
vy

]
; ||~v||2 = v2x + v2y (Pythagoras)

• cos θ =
vx
||~v||

, sin θ =
vy
||~v||

, tan θ =
vy
vx

• v2x + v2y = ||~v||2 ⇒ sin2 θ + cos2 θ = 1

Q. What is v̂ in terms of θ?
(think in terms of the unit circle!)
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Cartesian co-ordinate syetem vectors and trigonometry

• In 2D: basis vectors x̂, ŷ; ~v =

[
vx
vy

]
; ||~v||2 = v2x + v2y (Pythagoras)

• cos θ =
vx
||~v||

, sin θ =
vy
||~v||

, tan θ =
vy
vx

• v2x + v2y = ||~v||2 ⇒ sin2 θ + cos2 θ = 1

A. v̂ =

[
cos θ
sin θ

]

44



The second summary...

• Vector operations

− addition and subtraction (requires same dimensionality)

− scalar multiplication

− magnitude/length/norm of a vector; unit, null and basis vectors

− Pythagoras theorem

− elementary trigonometry: definitions of sin, cos, tan
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The second summary...

• Vector operations

− addition and subtraction (requires same dimensionality)

− scalar multiplication

− magnitude/length/norm of a vector; unit, null and basis vectors

− Pythagoras theorem

− elementary trigonometry: definitions of sin, cos, tan

• Next class: vector algebra (contd.), and shooting rays to objects in 2D
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Finally, references

• Book chapter 2: Miscellaneous Math

− Sec. 2.3

− Secs. 2.4.1-2.4.2, 2.4.5
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