
Graphics (INFOGR), 2018-19, Block IV, lecture 11

Deb Panja

Today: Matrix reloaded 1
(aka Transformations)

Welcome

1

Recall: active vs. passive transformations

point transformation co-ordinate transformation

(aka active transformation) (aka passive transformation)

2

Today

• Point, or active transformations (using matrices)

− translation (redo)

− projection

− reflection

− scaling

− shearing

− rotation

− linear transformation properties

− combining transformations (and transformation back!)

• Co-ordinate, or passive transformations

• Will largely work in terms of symbols

3

Point, or active transformations

4

Translation

5

Translation as a matrix operation

• We translate a point P (x, y, z) by (ax, ay, az)

i.e., x′ = x+ ax, y
′ = y + ay, z

′ = z + az
x′

y′

z′

1

︸ ︷︷ ︸

~wt

=

1 0 0 ax
0 1 0 ay
0 0 1 az
0 0 0 1

︸ ︷︷ ︸

Mt(~a)

x
y
z
1

︸ ︷︷ ︸
extended
vector

; ~a =

 ax
ay
az

• From now on, will use the extended vector to reach P from the origin
by adding a fictitious dimension, meaning:

x̂ =

1
0
0
0

, ŷ =

0
1
0
0

, ẑ =

0
0
1
0

, f̂ =

0
0
0
1

6

How to think about an extended vector in 2D

• Note: A “real” vector ~v, by construction, satisfies ~v · f̂ = 0

e.g., the (2+1)D representation of a real vector in 2D is

 vx
vy
0

7

Projection

8

Projecting a 2D object on the x-axis: matrix operation?

9

Projecting a 2D object on the x-axis: a matrix operation

 x
0
1

 =

 1 0 0
0 0 0
0 0 1

 x
y
1

10

Projecting a 2D object on the x-axis: a matrix operation

 x
0
1

 =

 1 0 0
0 0 0
0 0 1

︸ ︷︷ ︸

Mp

 x
y
1

11

Projecting a 2D object on the x-axis: a matrix operation

 x
0
1

 =

 1 0 0
0 0 0
0 0 1

︸ ︷︷ ︸

Mp

 x
y
1

︸ ︷︷ ︸

~v

=

 ~v · x̂
0
1

12

Projecting a 2D object on the x-axis: a matrix operation

 x
0
1

︸ ︷︷ ︸

~wp

=

 1 0 0
0 0 0
0 0 1

︸ ︷︷ ︸

Mp

 x
y
1

︸ ︷︷ ︸

~v

=

 ~v · x̂
0
1

Note: ~wp = ~v − (~v · ŷ)ŷ

13

Projecting a 2D object on the x-axis: a matrix operation

 x
0
1

︸ ︷︷ ︸

~wp

=

 1 0 0
0 0 0
0 0 1

︸ ︷︷ ︸

Mp

 x
y
1

︸ ︷︷ ︸

~v

=

 ~v · x̂
0
1

Note: ~wp = ~v − (~v · ŷ) ŷ; i.e., ~wp =

 ~wp · x̂
~wp · ŷ
~wp · f̂

 =

 ~v · x̂
0
1

14

Projecting an object: a matrix operation

~wp = ~v−(~v · n̂) n̂; for d = 3, ~wp =

~wp · x̂
~wp · ŷ
~wp · ẑ
~wp · f̂

 =

~v · x̂− (~v · n̂)(n̂ · x̂)
~v · ŷ − (~v · n̂)(n̂ · ŷ)
~v · ẑ − (~v · n̂)(n̂ · ẑ)

~v · f̂

(remember: n̂ · f̂ = 0; i.e., n̂ = nxx̂+ nyŷ + nzẑ); nx = n̂ · x̂ etc.

Q. What is Mp?

15

Projecting an object: a matrix operation

~wp = ~v−(~v · n̂) n̂; for d = 3, ~wp =

~wp · x̂
~wp · ŷ
~wp · ẑ
~wp · f̂

 =

~v · x̂− (~v · n̂)(n̂ · x̂)
~v · ŷ − (~v · n̂)(n̂ · ŷ)
~v · ẑ − (~v · n̂)(n̂ · ẑ)

~v · f̂

A. Mp =

1− n2

x −nxny −nxnz 0
−nxny 1− n2

y −nynz 0
−nxnz −nynz 1− n2

z 0
0 0 0 1

16

Reflection

17

Reflecting an object: a matrix operation

Q. ~wr?

18

Reflecting an object: a matrix operation

A. ~wr = ~v − 2(~v · n̂)n̂; for d = 3, ~wr =

~v · x̂− 2(~v · n̂)(n̂ · x̂)
~v · ŷ − 2(~v · n̂)(n̂ · ŷ)
~v · ẑ − 2(~v · n̂)(n̂ · ẑ)

~v · f̂

~wr = Mr~v; Mr =

1− 2n2

x −2nxny −2nxnz 0
−2nxny 1− 2n2

y −2nynz 0
−2nxnz −2nynz 1− 2n2

z 0
0 0 0 1

19

Reflecting a vector: a matrix operation

Q. ~vr?

20

Reflecting a vector: a matrix operation

A. ~vr = ~v − 2(~v · n̂)n̂; e.g. d = 3, ~vr =

~v · x̂− 2(~v · n̂)(n̂ · x̂)
~v · ŷ − 2(~v · n̂)(n̂ · ŷ)
~v · ẑ − 2(~v · n̂)(n̂ · ẑ)

0

 = Mr~v

21

Scaling

22

Scaling: a matrix operation

• d = 2:

 x′

y′

1

 =

 sx 0 0
0 sy 0
0 0 1

︸ ︷︷ ︸

Msc(~s)

 x
y
1

; uniform scaling: sx = sy

~s =

[
sx
sy

]

23

Scaling: a matrix operation

• d = 2:

 x′

y′

1

 =

 sx 0 0
0 sy 0
0 0 1

︸ ︷︷ ︸

Msc(~s)

 x
y
1

; uniform scaling: sx = sy

• d = 3:

x′

y′

z′

1

=

sx 0 0 0
0 sy 0 0
0 0 sz 0
0 0 0 1

x
y
z
1

; uniform scaling: sx=sy=sz

• . . .

24

Shearing

25

Shearing: a matrix operation

 x′

y′

1

 =

 1 b 0
0 1 0
0 0 1

︸ ︷︷ ︸

Msh(b)

 x
y
1

 x′

y′

1

 =

 1 0 0
b 1 0
0 0 1

 x
y
1

26

Rotation

27

Rotation: a matrix operation [with Mro(θ)]

28

Rotation: a matrix operation [with Mro(θ)]

29

Linear (point) transformations

30

Linear (point) transformations

• Point (x1, x2, . . . , xd) represented as a vector ~v drawn from the origin

• Linear point transformations satisfy the two following criteria:

(a) T (~v1 + ~v2) = T (~v1) + T (~v2)

(b) T (α~v) = αT (~v)

• Examples: translation, projection, reflection, . . .

31

Linear (point) transformations

• Point (x1, x2, . . . , xd) represented as a vector ~v drawn from the origin

• Linear point transformations satisfy the two following criteria:

(a) T (~v1 + ~v2) = T (~v1) + T (~v2)

(b) T (α~v) = αT (~v)

• Examples: translation, projection, reflection, . . .

• Now you can see why this constitutes linear algebra:

− points/lines/(hyper)planes → points/lines/(hyper)planes

(also known as affine transformation)

32

Combining transformations

33

Rule for combining transformations

• Two transformations: e.g., first scale and then rotate

34

Rule for combining transformations

• Two transformations: e.g., first scale︸ ︷︷ ︸
transformation
matrixMsc

and then rotate︸ ︷︷ ︸
transformation
matrixMro

(x, y, z)→ (x′′, y′′, z′′)

Q. How do we express this as a matrix operation?

35

Rule for combining transformations

• Two transformations: e.g., first scale︸ ︷︷ ︸
transformation
matrixMsc

and then rotate︸ ︷︷ ︸
transformation
matrixMro

(x, y, z)→ (x′′, y′′, z′′)

Q. How do we express this as a matrix operation?

Hint: (x, y, z)→ (x′, y′, z′)→ (x′′, y′′, z′′)

36

Rule for combining transformations

• Two transformations: e.g., first scale︸ ︷︷ ︸
transformation
matrixMsc

and then rotate︸ ︷︷ ︸
transformation
matrixMro

(x, y, z)→ (x′′, y′′, z′′)

Q. How do we express this as a matrix operation?

A. (x, y, z) →︸︷︷︸
Msc

(x′, y′, z′) →︸︷︷︸
Mro

(x′′, y′′, z′′)

37

Rule for combining transformations

• Two transformations: e.g., first scale︸ ︷︷ ︸
transformation
matrixMsc

and then rotate︸ ︷︷ ︸
transformation
matrixMro

(x, y, z)→ (x′′, y′′, z′′)

Q. How do we express this as a matrix operation?

A. (x, y, z) →︸︷︷︸
Msc

(x′, y′, z′) →︸︷︷︸
Mro

(x′′, y′′, z′′)

Q′. (x, y, z) →︸︷︷︸
M

(x′′, y′′, z′′). Is M = MscMro or M = MroMsc?

38

Rule for combining transformations

• Two transformations: e.g., first scale︸ ︷︷ ︸
transformation
matrixMsc

and then rotate︸ ︷︷ ︸
transformation
matrixMro

(x, y, z)→ (x′′, y′′, z′′)

Q. How do we express this as a matrix operation?

A. (x, y, z) →︸︷︷︸
Msc

(x′, y′, z′) →︸︷︷︸
Mro

(x′′, y′′, z′′)

Q′. (x, y, z) →︸︷︷︸
M

(x′′, y′′, z′′). Is M = MscMro or M = MroMsc?

A′. M = MroMsc (order important!)

Remember: for matrices AB is not necessarily = BA!

(e.g., y-rotation after x-rotation 6≡ x-rotation after y-rotation)

39

Transforming back

40

Transforming back

• So far, (x, y, z) →︸︷︷︸
M

(x′, y′, z′)

now we want (x′, y′, z′) →︸︷︷︸
M ′

(x, y, z)

Q. Given M , how do we calculate M ′?

41

Transforming back

• So far, (x, y, z) →︸︷︷︸
M

(x′, y′, z′)

now we want (x′, y′, z′) →︸︷︷︸
M ′

(x, y, z)

Q. Given M , how do we calculate M ′?

A. M ′ = M−1

42

Transforming back

• So far, (x, y, z) →︸︷︷︸
M

(x′, y′, z′)

now we want (x′, y′, z′) →︸︷︷︸
M ′

(x, y, z)

Q. Given M , how do we calculate M ′?

A. M ′ = M−1

• Sometimes the inverse may not exist (e.g., for projection)

in that case, M is?

43

Transforming back

• So far, (x, y, z) →︸︷︷︸
M

(x′, y′, z′)

now we want (x′, y′, z′) →︸︷︷︸
M ′

(x, y, z)

Q. Given M , how do we calculate M ′?

A. M ′ = M−1

• Sometimes the inverse may not exist (e.g., for projection)

in that case, M is a singular matrix

44

Transforming back, and rotation matrices

• So far, (x, y, z) →︸︷︷︸
M

(x′, y′, z′)

now we want (x′, y′, z′) →︸︷︷︸
M ′

(x, y, z)

Q. Given M , how do we calculate M ′?

A. M ′ = M−1

• Sometimes the inverse may not exist (e.g., for projection)

in that case, M is a singular matrix

• Inverse calculation is expensive (cofactors, determinants...)

it is however cheap for rotation matrices, since MroM
T
ro = MT

roMro,

i.e., simply M−1ro = MT
ro

45

Transforming back, and rotation matrices

• So far, (x, y, z) →︸︷︷︸
M

(x′, y′, z′)

now we want (x′, y′, z′) →︸︷︷︸
M ′

(x, y, z)

Q. Given M , how do we calculate M ′?

A. M ′ = M−1

• Sometimes the inverse may not exist (e.g., for projection)

in that case, M is a singular matrix

• Inverse calculation is expensive (cofactors, determinants...)

it is however cheap for rotation matrices, since MroM
T
ro = MT

roMro,

i.e., simply M−1ro = MT
ro; note: M−1ro (θ) = MT

ro(θ) = Mro(−θ)

46

Co-ordinate, or passive transformations

47

Active vs. passive transformations (with rotation)

point transformation co-ordinate transformation

(aka active transformation) (aka passive transformation)

• Co-ordinate 2 is anti-clockwise rotated (θ) wrt co-ordinate 1

means (x1, y1, z1) →︸︷︷︸
Mro(−θ)

(x2, y2, z2) describes the same physical point

48

Active vs. passive transformations: translation

• Co-ordinate 2 is translated (~a) wrt co-ordinate 1

means (x1, y1, z1) →︸︷︷︸
Mt(−~a)

(x2, y2, z2) describes the same physical point

49

Active vs. passive transformations: translation and scaling

• Co-ordinate 2 is translated (~a) wrt co-ordinate 1

means (x1, y1, z1) →︸︷︷︸
Mt(−~a)

(x2, y2, z2) describes the same physical point

• Co-ordinate 2 is scaled (~s) wrt co-ordinate 1

means (x1, y1, z1) →︸︷︷︸
Msc(

−→
1/s)

(x2, y2, z2) describes the same physical point

50

Summary

• Point, or active transformations

− translation

− projection

− reflection

− scaling

− shearing

− rotation

− linear transformation properties

− combining transformations (and transformation back!)

• Co-ordinate, or passive transformations

• Next class: viewing transformations

51

Finally, references...

• Book chapter 6: Transformation matrices (can leave out Sec. 6.5)

52

