Graphics (INFOGR), 2018-19, Block IV, lecture 11
Deb Panja

Today: Matrix reloaded 1
(aka Transformations)

Welcome



Recall: active vs. passive transformations

point transformation co-ordinate transformation

(aka active transformation) (aka passive transformation)



Today

e Point, or active transformations (using matrices)
— translation (redo)
— projection
— reflection
— scaling
— shearing
— rotation
— linear transformation properties

— combining transformations (and transformation back!)
e Co-ordinate, or passive transformations

e Will largely work in terms of symbols



Point, or active transtormations



Translation



Translation as a matrix operation

e We translate a point P (z,y, 2) by (az, ay,a-)
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e From now on, will use the extended vector to reach P from the origin
by adding a fictitious dimension, meaning;:
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How to think about an extended vector in 2D

an object on
f=1plane

a "real" vector
{i.e., a vector on
the f=1 plane)

apointon extended vector
f=1 plane

e.g., the (2+1)D representation of a real vector in 2D is | v,




Projection



Projecting a 2D object on the x-axis: matrix operation?




Projecting a 2D object on the x-axis: a matrix operation
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Projecting a 2D object on the x-axis: a matrix operation
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Projecting a 2D object on the x-axis: a matrix operation
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Projecting a 2D object on the x-axis: a matrix operation
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Projecting a 2D object on the x-axis: a matrix operation
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Note: W, =0 — (V- 9)y; i.e., Wp = | Wp -y | = 0
R R N A
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Projecting an object: a matrix operation
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Projecting an object: a matrix operation
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Reflection
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Q. 0,7

Reflecting an object: a matrix operation

&-w)n

- o line/(hyper)planc

passing through origi
in d dimensions

reflected object
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Reflecting an object: a matrix operation
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passing through origi
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Q. 7,

Reflecting a vector: a matrix operation
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Reflecting a vector: a matrix operation
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Scaling
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Scaling: a matrix operation

x s, 0 0 X
ed=2. |y |=]0 s, O y |; uniform scaling: s, = s,
1 0 0 1 || 1]
Mie(5)
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o d=2:

o d = 3:

Scaling: a matrix operation

— N < 8

; uniform scaling: s, = s,

; uniform scaling: s, =s,=s5,
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Shearing
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Shearing: a matrix operation

0 0

(a) Original object (b) Object after x shear (a) Original object (b) Object after y shear
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Rotation
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Rotation: a matrix operation [with M.,.,(0)]
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Rotation: a matrix operation [with M.,.,(0)]

cosfB 0 smB 0

0 ] 0 0

-sin8 0 cosB 0
0 0 0 1

cos B -sinf8 0 0
sinf cosf 0

0 0

0 0 0

X Rotation

Y Rotation

‘ Z Rotation
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Linear (point) transformations
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Linear (point) transformations

e Point (1, x9,...,1q) represented as a vector ¢ drawn from the origin

e Linear point transformations satisfy the two following criteria:
(a) T(??l + ’172) = T(’Ul) -+ T(’[fg)
(b) T(av) = oT'(V)

e Examples: translation, projection, reflection, ...
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Linear (point) transformations

e Point (1, x9,...,1q) represented as a vector ¢ drawn from the origin

e Linear point transformations satisfy the two following criteria:
(a) T(??l + ’172) = T(’Ul) -+ T(’[fg)
(b) T(av) = oT'(V)

e Examples: translation, projection, reflection, ...

e Now you can see why this constitutes linear algebra:
— points/lines/(hyper)planes — points/lines/(hyper)planes

(also known as affine transformation)

32



Combining transformations
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Rule for combining transformations

e T'wo transformations: e.g., first scale and then rotate
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Rule for combining transformations

e T'wo transformations: e.g., first scale and then rotate

VvV
transformation transformation
matrix Mge matrix My,

('CE7 y? Z) — (:C//7 y//7 Z//)

Q. How do we express this as a matrix operation?
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Rule for combining transformations

e T'wo transformations: e.g., first scale and then rotate

VvV
transformation transformation
matrix Mge matrix My,

(I7 y? Z) — (:C//7 y//7 Z//)

Q. How do we express this as a matrix operation?

Hint: (z,y,2) — (x’,y’, Z/) — (CC//,?//, Z”)
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Rule for combining transformations

e T'wo transformations: e.g., first scale and then rotate

VvV
transformation transformation
matrix Mge matrix My,

(x7 y? Z) — (:C//7 y//7 Z//)

Q. How do we express this as a matrix operation?

A (2,y,2) — (ZC/, Y, Z’) \7/(33//, y". Z//)
Mg Mo
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Rule for combining transformations

e T'wo transformations: e.g., first scale and then rotate

TV
transformation transformation
matrix Mge matrix My,

(CE7 y? Z) — (.CC//, y//7 Z//)

Q. How do we express this as a matrix operation?

A (2,y,2) — (CC/, Y, Z’) \7_/(33//, y", Z//)
Mg Mo

Q. (x,y,z) —_ (", y".2"). Is M = Ms.M,, or M = M, M."?
M
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Rule for combining transformations

e T'wo transformations: e.g., first scale and then rotate

VvV
transformation transformation
matrix Mge matrix My,

(x7 y? Z) — (:C//7 y//7 Z//)

Q. How do we express this as a matrix operation?

A. (aj? Y, Z) \j(I/, y,7 Z,> \7./(33//7 y//7 Z//)
Mg Mo
Q. (x,y,z) —_ (", y".2"). Is M = Ms.M,, or M = M, M."?
M

Ao M = M, ,M,. (order important!)
Remember: for matrices AB is not necessarily = BA!

(e.g., y-rotation after x-rotation # z-rotation after y-rotation)
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Transforming back
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Transforming back

e So far, (z,y,z) —_(z',y, 2')
M
now we want (x',y’, 2’). ]\7/ (z,y, 2)

Q. Given M, how do we calculate M'?
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Transforming back

e So far, (z,y,z) —_(z',y, 2')
M
now we want (x',vy’, 2") —_(z,y, 2)

M/
Q. Given M, how do we calculate M'?
A M =M1
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Transforming back

e So far, (x,y,2) —_(z',y, 2"
M

now we want (x',vy’, 2") —_(z,y, 2)
M/
Q. Given M, how do we calculate M'?
A M =M1

e Sometimes the inverse may not exist (e.g., for projection)
in that case, M is?
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Transforming back

e So far, (x,y,2) —_(z',y, 2"
M

now we want (x',vy’, 2") —_(z,y, 2)
M/
Q. Given M, how do we calculate M'?
A M =M1

e Sometimes the inverse may not exist (e.g., for projection)

in that case, M is a singular matrix
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Transforming back, and rotation matrices

e So far, (x,y,2) —_(z',y, 2"
M
now we want (x',vy’, 2") —_(z,y, 2)
M/

Q. Given M, how do we calculate M'?
A M =M1

e Sometimes the inverse may not exist (e.g., for projection)

in that case, M is a singular matrix

e Inverse calculation is expensive (cofactors, determinants...)
it is however cheap for rotation matrices, since MTOM;FO = M;FOMTO,

i.e., simply Mt = ML
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Transforming back, and rotation matrices

e So far, (x,y,2) —_(z',y, 2"
M

now we want (x',vy’, 2") —_(z,y, 2)
M/
Q. Given M, how do we calculate M'?
A M =M1

e Sometimes the inverse may not exist (e.g., for projection)

in that case, M is a singular matrix

e Inverse calculation is expensive (cofactors, determinants...)
it is however cheap for rotation matrices, since MTOM;}; = M;FOMTO,

i.e., simply M ' = M?L: note: M 1(0) = M~ (0) = M,,(—0)

ro’
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Co-ordinate, or passive transformations
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Active vs. passive transformations (with rotation)

point transformation co-ordinate transformation

(aka active transformation) (aka passive transformation)

e Co-ordinate 2 is anti-clockwise rotated (6) wrt co-ordinate 1

means (r1,Yy1,21) — (Z2,y2,22) describes the same physical point

Myo(—0)
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Active vs. passive transformations: translation

e Co-ordinate 2 is translated (@) wrt co-ordinate 1

means (r1,y1,21) —_ (T2,Yys, 22) describes the same physical point

My(—a)
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Active vs. passive transformations: translation and scaling

e Co-ordinate 2 is translated (@) wrt co-ordinate 1

means (r1,y1,21) > (T2,¥y2, 22) describes the same physical point

My(—a)

e Co-ordinate 2 is scaled (s) wrt co-ordinate 1

means (1,1, zl) (2, Y2, 22) describes the same physical point
Msc(l/s)
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Summary

e Point, or active transformations
— translation
— projection
— reflection
— scaling
— shearing
— rotation
— linear transformation properties

— combining transformations (and transformation back!)
e Co-ordinate, or passive transformations

e Next class: viewing transformations

o1



Finally, references...

e Book chapter 6: Transformation matrices (can leave out Sec. 6.5)

52



