
Graphics (INFOGR), 2018-19, Block IV, lecture 12

Deb Panja

Today: Matrix reloaded 2

(or Viewing Transformations)

Welcome

1

Note for today’s lecture

• Will be closely following book chapter 7

(read it thoroughly to grab the concepts)

• Most of the lecture will be in symbols

2

Today

• Redo part of last lecture

• Rotation co-ordinate transformation revisited

• Viewing transformation (getting world space → screen space)

− viewport transfomation

− orthographic tranformation

− camera transformation

− projection transformation

− “graphics pipeline”: putting everything together

• Summary maths lectures

3

Redo part of last lecture

4

From last lecture

• Point, or active transformations

− translation

− projection

− reflection

− scaling

− shearing

− rotation

− linear transformation properties

− combining transformations (and transformation back!)

• Co-ordinate, or passive transformations

 redo

5

Translation: a matrix operation

• We translate a point P (x, y, z) by (ax, ay, az)

i.e., x′ = x+ ax, y′ = y + ay, z′ = z + az
x′

y′

z′

1


︸ ︷︷ ︸

~wt

=


1 0 0 ax
0 1 0 ay
0 0 1 az
0 0 0 1


︸ ︷︷ ︸

Mt(~a)


x
y
z
1


︸ ︷︷ ︸

~v

; ~a =

 ax
ay
az



6

How to think about an extended vector for 2D

• Note: A “real” vector ~v, by construction, satisfies ~v · f̂ = 0

e.g., the (2+1)D representation of a real vector in 2D is

 vx
vy
0


7

Projecting and reflecting vectors

8

Projecting and reflecting vectors

original vector

projected vector reflected vector

These rules always hold!

9

Projecting a vector: a matrix operation in (3+1)D

~wp = ~v−(~v · n̂) n̂; for d = 3, ~wp =


~wp · x̂
~wp · ŷ
~wp · ẑ
~wp · f̂

 =


~v · x̂− (~v · n̂)(n̂ · x̂)
~v · ŷ − (~v · n̂)(n̂ · ŷ)
~v · ẑ − (~v · n̂)(n̂ · ẑ)

~v · f̂



~wp = Mp ~v; Mp =


1− n2

x −nxny −nxnz 0
−nxny 1− n2

y −nynz 0
−nxnz −nynz 1− n2

z 0
0 0 0 1


10

Reflecting a vector: a matrix operation in (3+1)D

~wr = ~v − 2(~v · n̂)n̂; for d = 3, ~wr =


~v · x̂− 2(~v · n̂)(n̂ · x̂)
~v · ŷ − 2(~v · n̂)(n̂ · ŷ)
~v · ẑ − 2(~v · n̂)(n̂ · ẑ)

~v · f̂



~wr = Mr ~v; Mr =


1− 2n2

x −2nxny −2nxnz 0
−2nxny 1− 2n2

y −2nynz 0
−2nxnz −2nynz 1− 2n2

z 0
0 0 0 1



11

Projecting and reflecting points

12

Projecting and reflecting points (on an object)

• Can we use vector projection/reflection formulae for points as well?

yes, provided care is taken

13

Projecting and reflecting points (on an object)

• Can we use vector projection/reflection formulae for points as well?

yes, provided care is taken

• Why?

because specifying a vector (arrow) does not specify its starting point;

although point P (x, y, z) is reached by vector

 x
y
z

 from the origin,

the origin may “move” upon projection/reflection

14

Projecting points (on an object)

• Specifying a vector (arrow) does not specify its starting point;

although point P (x, y, z) is reached by vector

 x
y
z

 from the origin,

the origin may “move” upon projection/reflection

←−−−→
contrast

15

Projecting and reflecting points (on an object)

• Specifying a vector (arrow) does not specify its starting point;

although point P (x, y, z) is reached by vector

 x
y
z

 from the origin,

the origin may “move” upon projection/reflection

←−−−→
contrast

• The case for reflection is similar (not shown further)

16

Rotation co-ordinate transformation
revisited

17

Active rotation in (2+1)D revisited

• Active:

 x′

y′

1

 =

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 x
y
1



• Now consider the passive (co-ordinate) rotation

18

Active rotation in (2+1)D revisited

• Active:

 x′

y′

1

 =

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 x
y
1



• Now consider the passive (co-ordinate) rotation

Q.

 x′

y′

1

 = Mro

 x
y
1

; Mro =?

19

Active rotation in (2+1)D revisited

• Active:

 x′

y′

1

 =

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 x
y
1



• Now consider the passive (co-ordinate) rotation

Q.

 x′

y′

1

 = Mro

 x
y
1

; Mro =?

A.

 x′

y′

1

 =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 x
y
1


20

Passive rotation in (2+1)D

•

 x′

y′

1

 =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 x
y
1


cos θ = x̂ · x̂′ = ŷ · ŷ′, sin θ = ŷ · x̂′ = −x̂ · ŷ′

then

 x′

y′

1

 =

 x̂′ · x̂ x̂′ · ŷ 0
ŷ′ · x̂ ŷ′ · ŷ 0

0 0 1

 x
y
1

 =

 xx′ yx′ 0
xy′ yy′ 0
0 0 1

 x
y
1



21

Passive rotation in (3+1)D

•


u
v
w
1

=


û · x̂ û · ŷ û · ẑ 0
v̂ · x̂ v̂ · ŷ v̂ · ẑ 0
ŵ · x̂ ŵ · ŷ ŵ · ẑ 0

0 0 0 1



x
y
z
1

=


xu yu zu 0
xv yv zv 0
xw yw zw 0
0 0 0 1



x
y
z
1



22

Viewing transformation

23

What is viewing transformation?

24

What is viewing transformation?

•Will achieve these (passive!) transformations by concatenating matrices

25

What is viewing transformation?

•Will achieve these (passive!) transformations by concatenating matrices

(and we need to do that in the reverse order of transformations)

26

Viewport transformation

27

Viewport transformation

−−−−→
Mvp

28

Viewport transformation

−−−−→
Mvp

• Canonical view space: (x, y, z) ∈ [−1, 1]3

• Screen space: nx × ny pixels

• Mvp: transform [−1, 1]2 → [−0.5, nx − 0.5]× [−0.5, ny − 0.5]

(only for x and y, don’t care about z)

29

Viewport transformation: Mvp

• Mvp: transform [−1, 1]2 → [−0.5, nx − 0.5]× [−0.5, ny − 0.5]

(only for x and y, don’t care about z)

• Concatenate translation after scaling (diagonal matrix):

↓ ↓
1 0 0 nx−1

2

0 1 0
ny−1

2
0 0 1 0
0 0 0 1




nx
2 0 0 0
0

ny

2 0 0
0 0 1 0
0 0 0 1



30

Viewport transformation: Mvp

• Mvp: transform [−1, 1]2 → [−0.5, nx − 0.5]× [−0.5, ny − 0.5]

(only for x and y, don’t care about z)

• Concatenate translation after scaling (diagonal matrix):

↓ ↓
1 0 0 nx−1

2

0 1 0
ny−1

2
0 0 1 0
0 0 0 1




nx
2 0 0 0
0

ny

2 0 0
0 0 1 0
0 0 0 1



31

Viewport transformation: Mvp

• Mvp: transform [−1, 1]2 → [−0.5, nx − 0.5]× [−0.5, ny − 0.5]

(only for x and y, don’t care about z)

• Concatenate translation after scaling (diagonal matrix):

↓ ↓
1 0 0 nx−1

2

0 1 0
ny−1

2
0 0 1 0
0 0 0 1




nx
2 0 0 0
0

ny

2 0 0
0 0 1 0
0 0 0 1



• After concatenation, we obtain Mvp =


nx
2 0 0 nx−1

2

0
ny

2 0
ny−1

2
0 0 1 0
0 0 0 1


32

Orthographic projection transformation

33

Orthographic transformation

−−−−→
Mortho

(canonical view volume)

• Mortho: transform [l, r]× [b, t]× [n, f]→ [−1, 1]3

34

Orthographic transformation: Mortho

• Mortho: transform [l, r]× [b, t]× [n, f]→ [−1, 1]3

• Concatenate scaling (diagonal matrix) after translation:

↓ ↓
2

r−l 0 0 0

0 2
t−b 0 0

0 0 2
n−f 0

0 0 0 1




1 0 0 −r+l
2

0 1 0 −t+b
2

0 0 1 −n+f
2

0 0 0 1



• After concatenation we obtain Mortho =


2

r−l 0 0 −r+l
r−l

0 2
t−b 0 −t+b

t−b
0 0 2

n−f −n+f
n−f

0 0 0 1


35

Camera transformation

36

The camera...

• Camera specifications

− position ~e

− gaze direction ĝ; ŵ = −ĝ
− view up vector t̂: any vector that symmetrically bisects the

viewer’s head into left and right, and points “to the sky”

− finally, û = (t̂× ŵ)/||t̂× ŵ||, and v̂ = ŵ × û
(û, v̂, ŵ) forms a right-handed co-ordinate system

37

World co-ordinates to camera co-ordinates

• Mcam: transform (x, y, z)→ (u, v, w)

38

World co-ordinates to camera co-ordinates

• Mcam: transform (x, y, z)→ (u, v, w)

• Concatenate rotation of axes after translation:

↓ ↓
xu yu zu 0
xv yv zv 0
xw yw zw 0
0 0 0 1




1 0 0 −xe
0 1 0 −ye
0 0 1 −ze
0 0 0 1


• After concatenation we obtain Mcam

39

Finally we can put things together

• The “graphics pipeline”:

world space → camera space → canonical view space → screen space

↓ ↓ ↓
Mcam Mortho Mvp︸ ︷︷ ︸

M =Mvp Mortho Mcam

40

Finally we can put things together

• The “graphics pipeline”:

world space → camera space → canonical view space → screen space

↓ ↓ ↓
Mcam Mortho Mvp︸ ︷︷ ︸

M =Mvp Mortho Mcam; no, we are not done yet!

41

Because we have missed the perspective effect

42

A simpler perspective case

• ys =
yd

z
(this is the principle we need to implement in 3D)

43

Camera field of view

44

Camera field of view

45

Projection transformation

46

Projection transformation

• After projection, we want:

− projection P


x
y
z
1

 =


nx
z
ny
z
?
1



47

Projection transformation

• After projection, we want:

− projection P


x
y
z
1

 =


nx
z
ny
z
?
1


− constraints:
z = {n, f} −→

P
{n, f}

48

Projection transformation

• After projection, we want:

− projection P


x
y
z
1

 =


nx
z
ny
z
?
1


− constraints:
z = {n, f} −→

P
{n, f}

• No unique choice for P

49

Fixing P for projection

• We want P


x
y
z
1

 =


nx
z
ny
z
?
1

, with z = {n, f} −→
P
{n, f}

• Cannot be achieved by a simple matrix multiplication by P

50

Fixing P for projection: follow the book

• We want P


x
y
z
1

 =


nx
z
ny
z
?
1

, with z = {n, f} −→
P
{n, f}

• Cannot be achieved by a simple matrix multiplication by P

• Choose P =


n 0 0 0
0 n 0 0
0 0 n+ f −fn
0 0 1 0

;

P


x
y
z
1

 =


nx
ny

(n+ f)z − fn
z

 ∼


nx
z
ny
z

n+ f − fn
z

1


51

Finally, the graphics pipeline

• World space → camera space → canonical view space → screen space

↓ ↓ ↓
Mcam Mortho Mvp︸ ︷︷ ︸

M =Mvp Mortho P Mcam

52

Summary for today’s lecture

• Redo part of last lecture

• Rotation co-ordinate transformation revisited

• Viewing transformation (getting world space → screen space)

− viewport transfomation

− orthographic tranformation

− camera transformation

− projection transformation

− “graphics pipeline”: putting everything together

53

References for today

• Book chapter 6.5: Co-ordinate transformations

• Book chapter 7: Viewing tranformations

54

Summary maths lectures

55

Summary maths lecture 1

• Vectors and Vector operations

− addition and subtraction (requires same dimensionality)

− scalar multiplication

− magnitude/length/norm of a vector; unit, null and basis vectors

− Pythagoras theorem

− elementary trigonometry: definitions of sin, cos, tan

56

Summary maths lecture 2

• Dot product of vectors

• Shooting rays for a line

− equations: parametric, slope-intercept and implicit forms

− parallel and perspective projections of a line

− projection of a point on a line, tangent and normal vectors

57

Summary maths lecture 3

• Circles, ellipses and shooting rays at them

• Shooting rays as a line in 3D

− equations: parametric and implicit-like forms

• Equation of a plane using the normal vector

• Cross product, left- and right-handed co-ordinate systems

− implicit and parametric equations of a plane

− tangent and bitangent vectors

58

Summary maths lecture 4

• projections of a line on a plane

• Spheres and spherical co-ordinate system

− surface normal and tangent planes

− shooting rays towards a sphere and their intersections

59

Summary maths lecture 5

• Why matrices? The operations defined for them make them special

− matrix dimensions, special matrices (diagonal, identity, null)

• Matrix operations (addition, scalar multiplication, subtraction,
matrix multiplication, transpose)

• Determinants (only for square matrices!)

• Adjoint/adjugate and inverse of matrices (only for square matrices!)

• Geometric interpretation of determinants

• Introduction to transformations

− translation and the fictitious coordinate

60

Summary maths lecture 6

• Point, or active transformations

− translation

− projection

− reflection

− scaling

− shearing

− rotation

− linear transformation properties

− combining transformations (and transformation back!)

• Co-ordinate, or passive transformations

61

Finally...

• Good luck with the rest of the second half of the course!

• And please do not forget to leave feedback on caracal

62

