Graphics (INFOGR), 2018-19, Block IV, lecture 12
Deb Panja

Today: Matrix reloaded 2

(or Viewing Transformations)

Welcome



Note for today’s lecture

e Will be closely following book chapter 7
(read it thoroughly to grab the concepts)

e Most of the lecture will be in symbols



Today

e Redo part of last lecture
e Rotation co-ordinate transformation revisited

e Viewing transformation (getting world space — screen space)
— viewport transfomation
— orthographic tranformation
— camera transformation
— projection transformation

— “graphics pipeline”: putting everything together

e Summary maths lectures



Redo part of last lecture



From last lecture

e Point, or active transformations
)
— translation
— projection p redo

— reflection

/
— scaling

— shearing
— rotation
— linear transformation properties

— combining transformations (and transformation back!)

e Co-ordinate, or passive transformations



Translation: a matrix operation

e We translate a point P (z,y, 2) by (az, ay,a-)
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How to think about an extended vector for 2D

an object on
f=1plane

a "real" vector
{i.e., a vector on
the f=1 plane)

apointon extended vector
f=1 plane

e.g., the (2+1)D representation of a real vector in 2D is | v,




Projecting and reflecting vectors



Projecting and reflecting vectors

x
v — (v 7) i = projected vector

projected vector reflected vector

These rules always hold!



Projecting a vector: a matrix operation in (3+1)D
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Reflecting a vector: a matrix operation in (3+1)D

W, =
_ 7 f _
1 — 2n§ —2nzn, —2ngn, 0 ]
L R | —2ngn, 1 -— 2n,f/ —2nyn, 0
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I 0 0 0 I




Projecting and reflecting points
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Projecting and reflecting points (on an object)

e Can we use vector projection/reflection formulae for points as well?

yes, provided care is taken
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Projecting and reflecting points (on an object)

e Can we use vector projection/reflection formulae for points as well?

yes, provided care is taken

e Why?

because specifying a vector (arrow) does not specify its starting point;

although point P (x,y, z) is reached by vector

X

Y
z

the origin may “move” upon projection/reflection

from the origin,
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Projecting points (on an object)

e Specifying a vector (arrow) does not specify its starting point;

although point P (x,y, z) is reached by vector

X

Y
z

the origin may “move” upon projection/reflection

projected origin

contrast

< projected point

AN
v— (V- 7) # = projected vector

from the origin,

line/(hyper)plane
passing through origin



Projecting and reflecting points (on an object)

e Specifying a vector (arrow) does not specify its starting point;

although point P (x,y, z) is reached by vector

X

Y
z

the origin may “move” upon projection/reflection

projected origin

contrast

v— (V- 7)1 = projected vector

S~

e The case for reflection is similar (not shown further)

from the origin,

line/(hyper)plane

passing through origin
projected point

— (V. 1) 1 = projected vector
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Rotation co-ordinate transformation
revisited
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Active rotation in (2+1)D revisited

x’ cosd —sinfd 0] [ x
o Active: | v/ | = | sinf cosf O Y
1 0 0 L1

e Now consider the passive (co-ordinate) rotation KRS



e Active:

Active rotation in (2+1)D revisited

cos 0
sin 6@

0

—sinf 0 |
cosd 0O
0 1

- M., =7

19



e Active:

Active rotation in (2+1)D revisited

cosf —sinf 0O |
= | sinf® cosf O
0 0 1

X T
Q' y/ :Mro Yy ;Mro =7
[ 2 [ cosf sinf 0| [ z
A. | ¢y | = | —sinf cosf 0O Y
|1 0 0 1| |1




Passive rotation in (2+1)D

cos 0
—sin @

0

sinf 0 |
cosf 0
0 1
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—_ 8 S
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R =

Passive rotation in (3+1)D

-9 -2 0[] 2y Yu 2w O |[ 2]
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Viewing transformation
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What is viewing transformation?

Object space | Camera space

Modeling Cafnera Projection Viewport
transformation tranéformation transformation transformation

Screen space

DR\

Canonical

World space )
view volume
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What is viewing transformation?

Object space | Camera space

Modeling Cafmera Projection Viewport
transformation transformation transformation transformation

Screen space

D\

Canonical

World space )
view volume

e Will achieve these (passive!) transformations by concatenating matrices



What is viewing transformation?

Object space | Camera space

Modeling Cafnera Projection Viewport
transformation transformation transformation transformation

Screen space

D\

Canonical

World space )
view volume

e Will achieve these (passive!) transformations by concatenating matrices
(and we need to do that in the reverse order of transformations)

26



Viewport transtormation
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Viewport transformation

[ —
U | oo
O
S T €————
Q| —
)

—_—
-
v | —
U | «e—on
=
O | —
D

Canonical
view volume
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Viewport transformation

-
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s

Canonical
view volume

e Canonical view space: (z,y,2) € [—1,1]
e Screen space: n, X n, pixels

e M,,: transform [—1,1]* — [-0.5,n, — 0.5] x [—0.5,n,, — 0.5]

(only for = and y, don’t care about z2)
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Viewport transformation: M.,

e M,,: transform [—1,1]* — [-0.5,n, — 0.5] x [—0.5,n, — 0.5]

(only for  and y, don’t care about z2)

e Concatenate translation after scaling (diagonal matrix):

) -
(1 0 0 2217 [ 2% 0 0 0]
0 1 0 ™— 0 %2 0 0
00 1 0 0 0 10
‘000 1 | [0 0 01




Viewport transformation: M.,

e M,,: transform [—1,1]* — [-0.5,n, — 0.5] x [—0.5,n, — 0.5]

(only for  and y, don’t care about z2)

e Concatenate translation after scaling (diagonal matrix):

) -
(1 0 0 2217 [ 2% 0 0 0]
0 1 0 ™— 0 %2 0 0
00 1 0 0 0 10
‘000 1 | [0 0 01




Viewport transformation: M.,

e M,y: transform [—1,1]* — [—0.5,n, — 0.5] x [—0.5,n,, — 0.5]

(only for  and y, don’t care about z2)

e Concatenate translation after scaling (diagonal matrix):

1 ]
100 "= [% 0 0 0]
0 1 0 -t 0 3 00
00 1 0 00 10
000 1 | [0 0 01
_% 0 nx2—1'
Aft tenati btain Mo — | 0 3 0 ™5
° er concatenation, we obtam My, = 0O 0 1 0
0 0 0 1 |
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Orthographic projection transformation
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Orthographic transformation

M. ortho

ortho: transform [I,7] x [b,t] x [n, f] — [-1,1]°

(canonical view volume)
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Orthographic transformation: Mg iho
® Myrino: transform [I,r] x [b,t] x [n, f] — [-1,1]

e Concatenate scaling (diagonal matrix) after translation:

l |
2.0 0 0 1 0 0 —rt
0 2 0 0 01 0 -4
0 0 250 00 1 -t
0 0 0 1 0 0 O 1
20 0
| . 0 & 0 -
e After concatenation we obtain M the = 0 0 9
n—f
] 0 0 0
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Camera transformation
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The camera...

e Camera specifications
— position €
— gaze direction g; w = —¢g
— view up vector ¢: any vector that symmetrically bisects the
viewer’s head into left and right, and points “to the sky”
— finally, & = (£ x W) /||t x @||, and ¥ = W x @

A

(1, v,w) forms a right-handed co-ordinate system
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World co-ordinates to camera co-ordinates

© M.,m: transform (x,y,2) — (u, v, w)
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World co-ordinates to camera co-ordinates
© M .m: transform (z,y,2) — (u,v,w)

e Concatenate rotation of axes after translation:

3 3

[ 2. Yu 2w O 1 [1 0 0 —=z, |
Ly Yo v 0 0O 1 0 —Ye
Tw Yw 2w 0 0 0 1 —=z

0 o 0 1] [0 0O I

e After concatenation we obtain M .,



Finally we can put things together

Object space | Camera space

Modeling Cafnera Projection Viewport
transformation trangéformation transformation transformation

I

Canonical
view volume

World space

e The “graphics pipeline”:
world space — camera space — canonical view space — screen space

3 \ 3
Mcam Mortho Mvp

A\ . 7
~

M = MVp Mortho Mcam
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Finally we can put things together

Object space | Camera space

Modeling Cafnera Projection Viewport
transformation trangformation transformation transformation

Screen space

Canonical
view volume

World space

e The “graphics pipeline”:
world space — camera space — canonical view space — screen space

3 \ 3
Mcam Mortho Mvp

\ 7
-~

M = Myp Myrtho Mcam; no, we are not done yet!
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Because we have missed the perspective effect
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A simpler perspective case

Q
S
-
al
3
A
>

yd
.yS:?

(this is the principle we need to implement in 3D)
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Camera field of view
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Camera field of view




Projection transformation
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Projection transformation

— projection P

X

—_ N

e After projection, we want:
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Projection transformation

X

— projection P

—_ N

— constraints:

=1n fF o, f}

e After projection, we want:
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Projection transformation

X

— projection P

—_ N

— constraints:

=1n, fF o, f}

e No unique choice for P

e After projection, we want:
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Fixing P for projection

e We want P ,Wich:{naf}?{’n’af}

— N < 8

— 0w |§N |§

e Cannot be achieved by a simple matrix multiplication by P



Fixing P for projection: follow the book

e We want P ,Wich:{naf}?{naf}

~ ~ufiufg

— N < 8

e Cannot be achieved by a simple matrix multiplication by P

‘n 0 0 0
0 n 0 0
e Choose P = 0 0 ntf —fnl
00 1 0 |
[ x| I nax | i e |
ny
ply | ny N .
z (n+ f)z— fn n—l—f—f7”
| 1] I z | i 1 |




Finally, the graphics pipeline

Object space Camera space

T

Modeling Cafnera Projection Viewport
transformation trangformation transformation transformation

Canonical
view volume
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Summary for today’s lecture

e Redo part of last lecture
e Rotation co-ordinate transformation revisited

e Viewing transformation (getting world space — screen space)
— viewport transfomation
— orthographic tranformation
— camera transformation
— projection transformation

— “graphics pipeline”: putting everything together



References for today

e Book chapter 6.5: Co-ordinate transformations

e Book chapter 7: Viewing tranformations
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Summary maths lectures
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Summary maths lecture 1

e Vectors and Vector operations

addition and subtraction (requires same dimensionality)

scalar multiplication

magnitude/length /norm of a vector; unit, null and basis vectors
Pythagoras theorem

elementary trigonometry: definitions of sin, cos, tan
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Summary maths lecture 2

e Dot product of vectors

e Shooting rays for a line
— equations: parametric, slope-intercept and implicit forms
— parallel and perspective projections of a line

— projection of a point on a line, tangent and normal vectors
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Summary maths lecture 3

e Circles, ellipses and shooting rays at them

e Shooting rays as a line in 3D

— equations: parametric and implicit-like forms
e Equation of a plane using the normal vector

e Cross product, left- and right-handed co-ordinate systems
— implicit and parametric equations of a plane

— tangent and bitangent vectors
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Summary maths lecture 4

e projections of a line on a plane

e Spheres and spherical co-ordinate system
— surface normal and tangent planes

— shooting rays towards a sphere and their intersections
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Summary maths lecture 5

e Why matrices? The operations defined for them make them special

— matrix dimensions, special matrices (diagonal, identity, null)

e Matrix operations (addition, scalar multiplication, subtraction,
matrix multiplication, transpose)

e Determinants (only for square matrices!)
e Adjoint/adjugate and inverse of matrices (only for square matrices!)
e Geometric interpretation of determinants

e Introduction to transtformations

— translation and the fictitious coordinate
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Summary maths lecture 6

e Point, or active transformations
— translation
— projection
— reflection
— scaling
— shearing
— rotation
— linear transformation properties

— combining transformations (and transformation back!)

e Co-ordinate, or passive transformations
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Finally...

e Good luck with the rest of the second half of the course!

e And please do not forget to leave feedback on caracal
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