
Graphics (INFOGR), 2018-19, Block IV, lecture 12

Deb Panja

Today: Matrix reloaded 2

(or Viewing Transformations)

Welcome
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Note for today’s lecture

• Will be closely following book chapter 7

(read it thoroughly to grab the concepts)

• Most of the lecture will be in symbols
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Today

• Redo part of last lecture

• Rotation co-ordinate transformation revisited

• Viewing transformation (getting world space → screen space)

− viewport transfomation

− orthographic tranformation

− camera transformation

− projection transformation

− “graphics pipeline”: putting everything together

• Summary maths lectures
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Redo part of last lecture

4



From last lecture

• Point, or active transformations

− translation

− projection

− reflection

− scaling

− shearing

− rotation

− linear transformation properties

− combining transformations (and transformation back!)

• Co-ordinate, or passive transformations

 redo
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Translation: a matrix operation

• We translate a point P (x, y, z) by (ax, ay, az)

i.e., x′ = x+ ax, y′ = y + ay, z′ = z + az
x′

y′

z′

1


︸ ︷︷ ︸

~wt

=


1 0 0 ax
0 1 0 ay
0 0 1 az
0 0 0 1


︸ ︷︷ ︸

Mt(~a)


x
y
z
1


︸ ︷︷ ︸

~v

; ~a =

 ax
ay
az
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How to think about an extended vector for 2D

• Note: A “real” vector ~v, by construction, satisfies ~v · f̂ = 0

e.g., the (2+1)D representation of a real vector in 2D is

 vx
vy
0
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Projecting and reflecting vectors
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Projecting and reflecting vectors

original vector

projected vector reflected vector

These rules always hold!
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Projecting a vector: a matrix operation in (3+1)D

~wp = ~v−(~v · n̂) n̂; for d = 3, ~wp =


~wp · x̂
~wp · ŷ
~wp · ẑ
~wp · f̂

 =


~v · x̂− (~v · n̂)(n̂ · x̂)
~v · ŷ − (~v · n̂)(n̂ · ŷ)
~v · ẑ − (~v · n̂)(n̂ · ẑ)

~v · f̂



~wp = Mp ~v; Mp =


1− n2

x −nxny −nxnz 0
−nxny 1− n2

y −nynz 0
−nxnz −nynz 1− n2

z 0
0 0 0 1
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Reflecting a vector: a matrix operation in (3+1)D

~wr = ~v − 2(~v · n̂)n̂; for d = 3, ~wr =


~v · x̂− 2(~v · n̂)(n̂ · x̂)
~v · ŷ − 2(~v · n̂)(n̂ · ŷ)
~v · ẑ − 2(~v · n̂)(n̂ · ẑ)

~v · f̂



~wr = Mr ~v; Mr =


1− 2n2

x −2nxny −2nxnz 0
−2nxny 1− 2n2

y −2nynz 0
−2nxnz −2nynz 1− 2n2

z 0
0 0 0 1
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Projecting and reflecting points
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Projecting and reflecting points (on an object)

• Can we use vector projection/reflection formulae for points as well?

yes, provided care is taken
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Projecting and reflecting points (on an object)

• Can we use vector projection/reflection formulae for points as well?

yes, provided care is taken

• Why?

because specifying a vector (arrow) does not specify its starting point;

although point P (x, y, z) is reached by vector

 x
y
z

 from the origin,

the origin may “move” upon projection/reflection
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Projecting points (on an object)

• Specifying a vector (arrow) does not specify its starting point;

although point P (x, y, z) is reached by vector

 x
y
z

 from the origin,

the origin may “move” upon projection/reflection

←−−−→
contrast
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Projecting and reflecting points (on an object)

• Specifying a vector (arrow) does not specify its starting point;

although point P (x, y, z) is reached by vector

 x
y
z

 from the origin,

the origin may “move” upon projection/reflection

←−−−→
contrast

• The case for reflection is similar (not shown further)
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Rotation co-ordinate transformation
revisited
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Active rotation in (2+1)D revisited

• Active:

 x′

y′

1

 =

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 x
y
1



• Now consider the passive (co-ordinate) rotation
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Active rotation in (2+1)D revisited

• Active:

 x′

y′

1

 =

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 x
y
1



• Now consider the passive (co-ordinate) rotation

Q.

 x′

y′

1

 = Mro

 x
y
1

; Mro =?
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Active rotation in (2+1)D revisited

• Active:

 x′

y′

1

 =

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 x
y
1



• Now consider the passive (co-ordinate) rotation

Q.

 x′

y′

1

 = Mro

 x
y
1

; Mro =?

A.

 x′

y′

1

 =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 x
y
1
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Passive rotation in (2+1)D

•

 x′

y′

1

 =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 x
y
1


cos θ = x̂ · x̂′ = ŷ · ŷ′, sin θ = ŷ · x̂′ = −x̂ · ŷ′

then

 x′

y′

1

 =

 x̂′ · x̂ x̂′ · ŷ 0
ŷ′ · x̂ ŷ′ · ŷ 0

0 0 1

 x
y
1

 =

 xx′ yx′ 0
xy′ yy′ 0
0 0 1

 x
y
1
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Passive rotation in (3+1)D

•


u
v
w
1

=


û · x̂ û · ŷ û · ẑ 0
v̂ · x̂ v̂ · ŷ v̂ · ẑ 0
ŵ · x̂ ŵ · ŷ ŵ · ẑ 0

0 0 0 1



x
y
z
1

=


xu yu zu 0
xv yv zv 0
xw yw zw 0
0 0 0 1



x
y
z
1
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Viewing transformation
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What is viewing transformation?
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What is viewing transformation?

•Will achieve these (passive!) transformations by concatenating matrices
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What is viewing transformation?

•Will achieve these (passive!) transformations by concatenating matrices

(and we need to do that in the reverse order of transformations)

26



Viewport transformation
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Viewport transformation

−−−−→
Mvp
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Viewport transformation

−−−−→
Mvp

• Canonical view space: (x, y, z) ∈ [−1, 1]3

• Screen space: nx × ny pixels

• Mvp: transform [−1, 1]2 → [−0.5, nx − 0.5]× [−0.5, ny − 0.5]

(only for x and y, don’t care about z)
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Viewport transformation: Mvp

• Mvp: transform [−1, 1]2 → [−0.5, nx − 0.5]× [−0.5, ny − 0.5]

(only for x and y, don’t care about z)

• Concatenate translation after scaling (diagonal matrix):

↓ ↓
1 0 0 nx−1

2

0 1 0
ny−1

2
0 0 1 0
0 0 0 1




nx
2 0 0 0
0

ny

2 0 0
0 0 1 0
0 0 0 1
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Viewport transformation: Mvp

• Mvp: transform [−1, 1]2 → [−0.5, nx − 0.5]× [−0.5, ny − 0.5]

(only for x and y, don’t care about z)

• Concatenate translation after scaling (diagonal matrix):

↓ ↓
1 0 0 nx−1

2

0 1 0
ny−1

2
0 0 1 0
0 0 0 1




nx
2 0 0 0
0

ny

2 0 0
0 0 1 0
0 0 0 1
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Viewport transformation: Mvp

• Mvp: transform [−1, 1]2 → [−0.5, nx − 0.5]× [−0.5, ny − 0.5]

(only for x and y, don’t care about z)

• Concatenate translation after scaling (diagonal matrix):

↓ ↓
1 0 0 nx−1

2

0 1 0
ny−1

2
0 0 1 0
0 0 0 1




nx
2 0 0 0
0

ny

2 0 0
0 0 1 0
0 0 0 1



• After concatenation, we obtain Mvp =


nx
2 0 0 nx−1

2

0
ny

2 0
ny−1

2
0 0 1 0
0 0 0 1
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Orthographic projection transformation
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Orthographic transformation

−−−−→
Mortho

(canonical view volume)

• Mortho: transform [l, r]× [b, t]× [n, f ]→ [−1, 1]3
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Orthographic transformation: Mortho

• Mortho: transform [l, r]× [b, t]× [n, f ]→ [−1, 1]3

• Concatenate scaling (diagonal matrix) after translation:

↓ ↓
2

r−l 0 0 0

0 2
t−b 0 0

0 0 2
n−f 0

0 0 0 1




1 0 0 −r+l
2

0 1 0 −t+b
2

0 0 1 −n+f
2

0 0 0 1



• After concatenation we obtain Mortho =


2

r−l 0 0 −r+l
r−l

0 2
t−b 0 −t+b

t−b
0 0 2

n−f −n+f
n−f

0 0 0 1
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Camera transformation
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The camera...

• Camera specifications

− position ~e

− gaze direction ĝ; ŵ = −ĝ
− view up vector t̂: any vector that symmetrically bisects the

viewer’s head into left and right, and points “to the sky”

− finally, û = (t̂× ŵ)/||t̂× ŵ||, and v̂ = ŵ × û
(û, v̂, ŵ) forms a right-handed co-ordinate system
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World co-ordinates to camera co-ordinates

• Mcam: transform (x, y, z)→ (u, v, w)
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World co-ordinates to camera co-ordinates

• Mcam: transform (x, y, z)→ (u, v, w)

• Concatenate rotation of axes after translation:

↓ ↓
xu yu zu 0
xv yv zv 0
xw yw zw 0
0 0 0 1




1 0 0 −xe
0 1 0 −ye
0 0 1 −ze
0 0 0 1


• After concatenation we obtain Mcam
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Finally we can put things together

• The “graphics pipeline”:

world space → camera space → canonical view space → screen space

↓ ↓ ↓
Mcam Mortho Mvp︸ ︷︷ ︸

M =Mvp Mortho Mcam
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Finally we can put things together

• The “graphics pipeline”:

world space → camera space → canonical view space → screen space

↓ ↓ ↓
Mcam Mortho Mvp︸ ︷︷ ︸

M =Mvp Mortho Mcam; no, we are not done yet!
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Because we have missed the perspective effect
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A simpler perspective case

• ys =
yd

z
(this is the principle we need to implement in 3D)
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Camera field of view
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Camera field of view
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Projection transformation
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Projection transformation

• After projection, we want:

− projection P


x
y
z
1

 =


nx
z
ny
z
?
1
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Projection transformation

• After projection, we want:

− projection P


x
y
z
1

 =


nx
z
ny
z
?
1


− constraints:
z = {n, f} −→

P
{n, f}
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Projection transformation

• After projection, we want:

− projection P


x
y
z
1

 =


nx
z
ny
z
?
1


− constraints:
z = {n, f} −→

P
{n, f}

• No unique choice for P
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Fixing P for projection

• We want P


x
y
z
1

 =


nx
z
ny
z
?
1

, with z = {n, f} −→
P
{n, f}

• Cannot be achieved by a simple matrix multiplication by P
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Fixing P for projection: follow the book

• We want P


x
y
z
1

 =


nx
z
ny
z
?
1

, with z = {n, f} −→
P
{n, f}

• Cannot be achieved by a simple matrix multiplication by P

• Choose P =


n 0 0 0
0 n 0 0
0 0 n+ f −fn
0 0 1 0

;

P


x
y
z
1

 =


nx
ny

(n+ f)z − fn
z

 ∼


nx
z
ny
z

n+ f − fn
z

1
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Finally, the graphics pipeline

• World space → camera space → canonical view space → screen space

↓ ↓ ↓
Mcam Mortho Mvp︸ ︷︷ ︸

M =Mvp Mortho P Mcam
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Summary for today’s lecture

• Redo part of last lecture

• Rotation co-ordinate transformation revisited

• Viewing transformation (getting world space → screen space)

− viewport transfomation

− orthographic tranformation

− camera transformation

− projection transformation

− “graphics pipeline”: putting everything together
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References for today

• Book chapter 6.5: Co-ordinate transformations

• Book chapter 7: Viewing tranformations
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Summary maths lectures
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Summary maths lecture 1

• Vectors and Vector operations

− addition and subtraction (requires same dimensionality)

− scalar multiplication

− magnitude/length/norm of a vector; unit, null and basis vectors

− Pythagoras theorem

− elementary trigonometry: definitions of sin, cos, tan

56



Summary maths lecture 2

• Dot product of vectors

• Shooting rays for a line

− equations: parametric, slope-intercept and implicit forms

− parallel and perspective projections of a line

− projection of a point on a line, tangent and normal vectors
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Summary maths lecture 3

• Circles, ellipses and shooting rays at them

• Shooting rays as a line in 3D

− equations: parametric and implicit-like forms

• Equation of a plane using the normal vector

• Cross product, left- and right-handed co-ordinate systems

− implicit and parametric equations of a plane

− tangent and bitangent vectors
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Summary maths lecture 4

• projections of a line on a plane

• Spheres and spherical co-ordinate system

− surface normal and tangent planes

− shooting rays towards a sphere and their intersections
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Summary maths lecture 5

• Why matrices? The operations defined for them make them special

− matrix dimensions, special matrices (diagonal, identity, null)

• Matrix operations (addition, scalar multiplication, subtraction,
matrix multiplication, transpose)

• Determinants (only for square matrices!)

• Adjoint/adjugate and inverse of matrices (only for square matrices!)

• Geometric interpretation of determinants

• Introduction to transformations

− translation and the fictitious coordinate
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Summary maths lecture 6

• Point, or active transformations

− translation

− projection

− reflection

− scaling

− shearing

− rotation

− linear transformation properties

− combining transformations (and transformation back!)

• Co-ordinate, or passive transformations
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Finally...

• Good luck with the rest of the second half of the course!

• And please do not forget to leave feedback on caracal

62


