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Lecture 13: “Visibility”

Welcome!
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To world space:

Do nothing, or: 
𝑇𝑤 = 𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 = 𝐼

𝑇𝑤 = 𝑇𝑙𝑜𝑐𝑎𝑙 ∗ 𝑇𝑤_𝑝𝑎𝑟𝑒𝑛𝑡

To camera space:

1. 𝑇𝑐 = 𝑖𝑛𝑣 𝑇𝑐𝑎𝑚

2. Render ‘world’ with 𝐼, 𝑇𝑐

3. Render children

1. 𝑇𝑐 = 𝑇𝑙𝑜𝑐𝑎𝑙 ∗ 𝑇𝑐_𝑝𝑎𝑟𝑒𝑛𝑡

2. 𝑇𝑤 = 𝑇𝑙𝑜𝑐𝑎𝑙 ∗ 𝑇𝑤_𝑝𝑎𝑟𝑒𝑛𝑡

3. Render ‘plane’ with 𝑇𝑤, 𝑇𝑐

4. Render children 

void SGNode::Render( mat4 𝑇𝑤𝑝𝑎𝑟𝑒𝑛𝑡, mat4 𝑇𝑐𝑝𝑎𝑟𝑒𝑛𝑡 )

{
mat4 𝑇𝑤 = 𝑇𝑙𝑜𝑐𝑎𝑙 * 𝑇𝑤𝑝𝑎𝑟𝑒𝑛𝑡;

mat4 𝑇𝑐 = 𝑇𝑙𝑜𝑐𝑎𝑙 * 𝑇𝑐𝑝𝑎𝑟𝑒𝑛𝑡;

mesh.Draw( 𝑇𝑤, 𝑇𝑐 );
for each child: Draw( 𝑇𝑤, 𝑇𝑐 );

}



Today’s Agenda:

▪ Depth Sorting

▪ Clipping

▪ Visibility



Rendering – Functional overview

1. Transform:
translating / rotating meshes

2. Project:
calculating 2D screen positions

3. Rasterize:
determining affected pixels

4. Shade:
calculate color per affected pixel

Transform

Project

Rasterize

Shade

meshes

vertices

vertices

fragment positions

pixels

Animation, culling, 
tessellation, ...

Postprocessing

Depth Sorting
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3. Rasterize:
determining affected pixels

Questions:

▪ What is the screen space position of the fragment?
▪ Is that position actually on-screen?
▪ Is the fragment the nearest fragment for the 

affected pixel?

How do we efficiently determine visibility of a pixel?

Transform

Project

Rasterize

Shade

meshes

vertices

vertices

fragment positions

pixels

Animation, culling, 
tessellation, ...

Postprocessing

Depth Sorting
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Too far away to drawPart of the tree is off-screen

Torso closer than ground

City obscured by tree

Tree requires little detail

Tree between ground & sun



Old-skool depth sorting: Painter’s Algorithm

▪ Sort polygons by depth
▪ Based on polygon center
▪ Render depth-first

Advantage:

▪ Doesn’t require z-buffer

Problems:

▪ Cost of sorting
▪ Doesn’t handle all cases
▪ Overdraw

Depth Sorting
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Depth Sorting

Overdraw:

Inefficiency caused by drawing 
multiple times to the same pixel.
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Depth Sorting

Overdraw:

Inefficiency caused by drawing 
multiple times to the same pixel.
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Depth Sorting

Overdraw:

Inefficiency caused by drawing 
multiple times to the same pixel.
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Depth Sorting

Overdraw:

Inefficiency caused by drawing 
multiple times to the same pixel.
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Depth Sorting

Correct order: BSP

root
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Depth Sorting

Correct order: BSP

root

front back
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Depth Sorting

Correct order: BSP

root
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front back



Depth Sorting

Correct order: BSP

root
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Depth Sorting

Correct order: BSP

root
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front back



Depth Sorting

Correct order: BSP

root
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front back



Depth Sorting

Correct order: BSP

root

Sorting by BSP traversal:
Recursively
1. Render far side of plane
2. Render near side of plane
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front back



Draw order using a BSP:

▪ Guaranteed to be correct (hard cases result in polygon splits)
▪ No sorting required, just a tree traversal

But:

▪ Requires construction of BSP: not suitable for dynamic objects
▪ Does not eliminate overdraw

Depth Sorting
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Z-buffer

A z-buffer stores, per screen pixel, a depth value.
The depth of each fragment is checked against this value:

▪ If the fragment is further away, it is discarded
▪ Otherwise, it is drawn, and the z-buffer is updated.

The z-buffer requires:

▪ An additional buffer
▪ Initialization of the buffer to 𝑧𝑚𝑎𝑥

▪ Interpolation of 𝑧 over the triangle
▪ A z-buffer read and compare, and 

possibly a write.

Depth Sorting
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Z-buffer

What is the best representation for depth in a z-buffer?

1. Interpolated z (convenient, intuitive);

2. 1/z (or: 𝑛 + 𝑓 −
𝑓𝑛

𝑧
)     (more accurate nearby);

3. (int)((2^31-1)/z);
4. (uint)((2^32-1)/-z);
5. (uint)((2^32-1)/(-z + 1)).

Even more details:
https://developer.nvidia.com/content/depth-precision-visualized
http://outerra.blogspot.nl/2012/11/maximizing-depth-buffer-range-and.html

Depth Sorting
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Note: we use zint =
232−1

−𝑧+1
: 

this way, any z < 0 will be in the range 
zadjusted = −𝑧𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 + 1 = 1. . ∞, therefore

1/𝑧𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 will be in the range 0..1, and thus

the integer value we will store uses the full 
range of 0. . 232 − 1.
Here, 𝑧𝑖𝑛𝑡 = 0 represents 𝑧𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 = 0, and

𝑧𝑖𝑛𝑡 = 232 − 1 represents 𝑧𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 = −∞.

https://developer.nvidia.com/content/depth-precision-visualized
http://outerra.blogspot.nl/2012/11/maximizing-depth-buffer-range-and.html


Z-buffer optimization

In the ideal case, the nearest fragment for a pixel is drawn first:

▪ This causes all subsequent fragments for the pixel to be discarded;
▪ This minimizes the number of writes to the frame buffer and z-buffer.

The ideal case can be approached by using Painter’s to ‘pre-sort’.

Depth Sorting
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‘Z-fighting’:

Occurs when two polygons have almost identical 
z-values.

Floating point inaccuracies during interpolation 
will cause unpleasant patterns in the image.

Depth Sorting
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Stuff that is too far to drawPart of the tree is off-screen

√  Torso closer than ground

√  City obscured by tree

Tree requires little detail

Tree between ground & sun



Today’s Agenda:

▪ Depth Sorting

▪ Clipping

▪ Visibility



Clipping

Many triangles are partially off-screen. This is 
handled by clipping them.

Sutherland-Hodgeman clipping:

Clip triangle against 1 plane at a time;
Emit n-gon (0, 3 or 4 vertices).

Clipping
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Sutherland-Hodgeman

Input: list of vertices

Algorithm:

Per edge with vertices v0 and v1:
▪ If v0 and v1 are ‘in’, emit v1

▪ If v0 is ‘in’, but v1 is ‘out’, emit C
▪ If v0 is ‘out’, but v1 is ‘in’, emit C and v1

where C is the intersection point of the edge and the plane.

Output: list of vertices, 
defining a convex n-gon.

Clipping

0

1
2

in out

Vertex 0 Vertex 1

Vertex 1 Intersection 1

Vertex 2 Intersection 2

Vertex 0
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Sutherland-Hodgeman

Calculating the intersections with 
plane 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 = 0:

𝑑𝑖𝑠𝑡𝑣 = 𝑣 ∙
𝑎
𝑏
𝑐

+ 𝑑

𝑓 =
|𝑑𝑖𝑠𝑡𝑣0|

|𝑑𝑖𝑠𝑡𝑣0| + |𝑑𝑖𝑠𝑡𝑣1|

𝐼 = 𝑣0 + 𝑓(𝑣1 − 𝑣0)

Clipping

v0

v1

I

After clipping, the input n-gon may have at most 1 
extra vertex. We may have to triangulate it:

0,1,2,3,4 ➔ 0, 1, 2 + 0, 2, 3 + 0, 3, 4.
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Guard bands

To reduce the number of polygons that 
need clipping, some hardware uses 
guard bands : an invisible band of 
pixels outside the screen.

▪ Polygons outside the screen are 
discarded, even if they touch the 
guard band;

▪ Polygons partially inside, partially 
in the guard band are drawn 
without clipping;

▪ Polygons partially inside the screen, 
partially outside the guard band are 
clipped.

Clipping
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Sutherland-Hodgeman

Clipping can be done against arbitrary planes.

Clipping
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Today’s Agenda:

▪ Depth Sorting

▪ Clipping

▪ Visibility



Stuff that is too far to draw√  Part of the tree is off-screen

√  Torso closer than ground

√  City obscured by tree

Tree requires little detail

Tree between ground & sun







Visibility

Only rendering what’s visible:

“Performance should be determined by visible geometry, not overall world size.”

▪ Do not render geometry 
outside the view frustum

▪ Better: do not process 
geometry outside frustum

▪ Do not render occluded
geometry

▪ Do not render anything
more detailed than strictly
necessary
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Visibility

Culling

Observation:
50% of the faces of a cube are not visible.

On average, this is true for all meshes.

Culling ‘backfaces’:

Triangle: 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 = 0
Camera: 𝑥, 𝑦, 𝑧
Visible: fill in camera position in plane equation.

𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 > 0: visible.

Cost: 1 dot product per triangle.
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Visibility

Culling

Observation:
If the bounding sphere of a mesh is outside the 
view frustum, the mesh is not visible.

But also:
If the bounding sphere of a mesh intersects the 
view frustum, the mesh may be not visible.

View frustum culling is typically a conservative 
test:  we sacrifice accuracy for efficiency.

Cost: 1 dot product per mesh.
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Visibility

Culling

Observation:
If the bounding sphere  over a group of bounding 
spheres is outside the view frustum, a group of 
meshes is invisible.

We can store a bounding volume hierarchy in the 
scene graph:

▪ Leaf nodes store the bounds of the meshes 
they represent;

▪ Interior nodes store the bounds over their 
child nodes.

Cost: 1 dot product per scene graph subtree.
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Visibility
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Culling

Observation:
If a grid cell is outside the view frustum, the 
contents of that grid cell are not visible.

Cost: 0 for out-of-range grid cells.



Occlusion Culling

Not rendering things that are 
guaranteed to be behind 
something else.

Hierarchical z-buffer:

a set of MIP-maps of the z-buffer.

Use: with a small amount of tests, 
we can check the bounds of a mesh 
against this buffer.
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Visibility



Occlusion Culling

Not rendering things that are 
guaranteed to be behind 
something else.

Coverage buffer:

A low-resolution version of (a 
simplified version of) the scene, 
rendered on the CPU, which we can 
use for visibility tests.
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Visibility

Flipcode IOTD, 2000: https://www.flipcode.com/archives/10-18-2000.shtml

https://www.flipcode.com/archives/10-18-2000.shtml


Occlusion Culling

Not rendering things that are 
guaranteed to be behind 
something else.

Coverage buffer:

A low-resolution version of (a 
simplified version of) the scene, 
rendered on the CPU, which we can 
use for visibility tests.
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Visibility

Masked Software Occlusion Culling, Intel, 2016
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Visibility

Occlusion Culling

Not rendering things that are 
guaranteed to be behind 
something else.

Potential Visibility Set:

a table that tells us which areas are 
mutually visible.



Visibility

Indoor visibility: Portals

Observation: if a window is invisible, the room it 
links to is invisible.
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Welcome!
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Visibility determination

Coarse: 

▪ Grid-based (typically outdoor)
▪ Portals (typically indoor)

Finer:

▪ Frustum culling
▪ Occlusion culling

Finest:

▪ Backface culling
▪ Clipping
▪ Z-buffer

Visibility
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Today’s Agenda:

▪ Depth Sorting

▪ Clipping

▪ Visibility



INFOGR – Computer Graphics
Jacco Bikker & Debabrata Panja - April-July 2018

END OF lecture 13: “Visibility”

Next lecture: “Postprocessing”


