
INFOGR – Computer Graphics
Jacco Bikker & Debabrata Panja - April-July 2018

Lecture 13: “Visibility”

Welcome!

world

plane planecar

𝑇𝑝𝑙𝑎𝑛𝑒1 𝑇𝑐𝑎𝑟2 𝑇𝑝𝑙𝑎𝑛𝑒2

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

𝑻𝒘𝒐𝒓𝒍𝒅 =

1 0 0 𝑥𝑝𝑙𝑎𝑛𝑒

0 1 0 𝑦𝑝𝑙𝑎𝑛𝑒

0 0 1 𝑧𝑝𝑙𝑎𝑛𝑒

0 0 0 1

𝑻𝒑𝒍𝒂𝒏𝒆 =

To world space:

Do nothing, or:
𝑇𝑤 = 𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 = 𝐼

𝑇𝑤 = 𝑇𝑙𝑜𝑐𝑎𝑙 ∗ 𝑇𝑤_𝑝𝑎𝑟𝑒𝑛𝑡

To camera space:

1. 𝑇𝑐 = 𝑖𝑛𝑣 𝑇𝑐𝑎𝑚

2. Render ‘world’ with 𝐼, 𝑇𝑐

3. Render children

1. 𝑇𝑐 = 𝑇𝑙𝑜𝑐𝑎𝑙 ∗ 𝑇𝑐_𝑝𝑎𝑟𝑒𝑛𝑡

2. 𝑇𝑤 = 𝑇𝑙𝑜𝑐𝑎𝑙 ∗ 𝑇𝑤_𝑝𝑎𝑟𝑒𝑛𝑡

3. Render ‘plane’ with 𝑇𝑤, 𝑇𝑐

4. Render children

void SGNode::Render(mat4 𝑇𝑤𝑝𝑎𝑟𝑒𝑛𝑡, mat4 𝑇𝑐𝑝𝑎𝑟𝑒𝑛𝑡)

{
mat4 𝑇𝑤 = 𝑇𝑙𝑜𝑐𝑎𝑙 * 𝑇𝑤𝑝𝑎𝑟𝑒𝑛𝑡;

mat4 𝑇𝑐 = 𝑇𝑙𝑜𝑐𝑎𝑙 * 𝑇𝑐𝑝𝑎𝑟𝑒𝑛𝑡;

mesh.Draw(𝑇𝑤, 𝑇𝑐);
for each child: Draw(𝑇𝑤, 𝑇𝑐);

}

Today’s Agenda:

▪ Depth Sorting

▪ Clipping

▪ Visibility

Rendering – Functional overview

1. Transform:
translating / rotating meshes

2. Project:
calculating 2D screen positions

3. Rasterize:
determining affected pixels

4. Shade:
calculate color per affected pixel

Transform

Project

Rasterize

Shade

meshes

vertices

vertices

fragment positions

pixels

Animation, culling,
tessellation, ...

Postprocessing

Depth Sorting

INFOGR – Lecture 13 – “Visibility” 4

3. Rasterize:
determining affected pixels

Questions:

▪ What is the screen space position of the fragment?
▪ Is that position actually on-screen?
▪ Is the fragment the nearest fragment for the

affected pixel?

How do we efficiently determine visibility of a pixel?

Transform

Project

Rasterize

Shade

meshes

vertices

vertices

fragment positions

pixels

Animation, culling,
tessellation, ...

Postprocessing

Depth Sorting

INFOGR – Lecture 13 – “Visibility” 5

Too far away to drawPart of the tree is off-screen

Torso closer than ground

City obscured by tree

Tree requires little detail

Tree between ground & sun

Old-skool depth sorting: Painter’s Algorithm

▪ Sort polygons by depth
▪ Based on polygon center
▪ Render depth-first

Advantage:

▪ Doesn’t require z-buffer

Problems:

▪ Cost of sorting
▪ Doesn’t handle all cases
▪ Overdraw

Depth Sorting

INFOGR – Lecture 13 – “Visibility” 7

Depth Sorting

Overdraw:

Inefficiency caused by drawing
multiple times to the same pixel.

INFOGR – Lecture 13 – “Visibility” 8

Depth Sorting

Overdraw:

Inefficiency caused by drawing
multiple times to the same pixel.

INFOGR – Lecture 13 – “Visibility” 9

Depth Sorting

Overdraw:

Inefficiency caused by drawing
multiple times to the same pixel.

INFOGR – Lecture 13 – “Visibility” 10

Depth Sorting

Overdraw:

Inefficiency caused by drawing
multiple times to the same pixel.

INFOGR – Lecture 13 – “Visibility” 11

Depth Sorting

Correct order: BSP

root

INFOGR – Lecture 13 – “Visibility” 12

Depth Sorting

Correct order: BSP

root

front back

INFOGR – Lecture 13 – “Visibility” 13

Depth Sorting

Correct order: BSP

root

INFOGR – Lecture 13 – “Visibility” 14

front back

Depth Sorting

Correct order: BSP

root

INFOGR – Lecture 13 – “Visibility” 15

front back

Depth Sorting

Correct order: BSP

root

INFOGR – Lecture 13 – “Visibility” 16

front back

Depth Sorting

Correct order: BSP

root

INFOGR – Lecture 13 – “Visibility” 17

front back

Depth Sorting

Correct order: BSP

root

Sorting by BSP traversal:
Recursively
1. Render far side of plane
2. Render near side of plane

INFOGR – Lecture 13 – “Visibility” 18

front back

Draw order using a BSP:

▪ Guaranteed to be correct (hard cases result in polygon splits)
▪ No sorting required, just a tree traversal

But:

▪ Requires construction of BSP: not suitable for dynamic objects
▪ Does not eliminate overdraw

Depth Sorting

INFOGR – Lecture 13 – “Visibility” 19

Z-buffer

A z-buffer stores, per screen pixel, a depth value.
The depth of each fragment is checked against this value:

▪ If the fragment is further away, it is discarded
▪ Otherwise, it is drawn, and the z-buffer is updated.

The z-buffer requires:

▪ An additional buffer
▪ Initialization of the buffer to 𝑧𝑚𝑎𝑥

▪ Interpolation of 𝑧 over the triangle
▪ A z-buffer read and compare, and

possibly a write.

Depth Sorting

INFOGR – Lecture 13 – “Visibility” 20

Z-buffer

What is the best representation for depth in a z-buffer?

1. Interpolated z (convenient, intuitive);

2. 1/z (or: 𝑛 + 𝑓 −
𝑓𝑛

𝑧
) (more accurate nearby);

3. (int)((2^31-1)/z);
4. (uint)((2^32-1)/-z);
5. (uint)((2^32-1)/(-z + 1)).

Even more details:
https://developer.nvidia.com/content/depth-precision-visualized
http://outerra.blogspot.nl/2012/11/maximizing-depth-buffer-range-and.html

Depth Sorting

INFOGR – Lecture 13 – “Visibility” 22

Note: we use zint =
232−1

−𝑧+1
:

this way, any z < 0 will be in the range
zadjusted = −𝑧𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 + 1 = 1. . ∞, therefore

1/𝑧𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 will be in the range 0..1, and thus

the integer value we will store uses the full
range of 0. . 232 − 1.
Here, 𝑧𝑖𝑛𝑡 = 0 represents 𝑧𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 = 0, and

𝑧𝑖𝑛𝑡 = 232 − 1 represents 𝑧𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 = −∞.

https://developer.nvidia.com/content/depth-precision-visualized
http://outerra.blogspot.nl/2012/11/maximizing-depth-buffer-range-and.html

Z-buffer optimization

In the ideal case, the nearest fragment for a pixel is drawn first:

▪ This causes all subsequent fragments for the pixel to be discarded;
▪ This minimizes the number of writes to the frame buffer and z-buffer.

The ideal case can be approached by using Painter’s to ‘pre-sort’.

Depth Sorting

INFOGR – Lecture 13 – “Visibility” 23

‘Z-fighting’:

Occurs when two polygons have almost identical
z-values.

Floating point inaccuracies during interpolation
will cause unpleasant patterns in the image.

Depth Sorting

INFOGR – Lecture 13 – “Visibility” 24

Stuff that is too far to drawPart of the tree is off-screen

√ Torso closer than ground

√ City obscured by tree

Tree requires little detail

Tree between ground & sun

Today’s Agenda:

▪ Depth Sorting

▪ Clipping

▪ Visibility

Clipping

Many triangles are partially off-screen. This is
handled by clipping them.

Sutherland-Hodgeman clipping:

Clip triangle against 1 plane at a time;
Emit n-gon (0, 3 or 4 vertices).

Clipping

INFOGR – Lecture 13 – “Visibility” 27

Sutherland-Hodgeman

Input: list of vertices

Algorithm:

Per edge with vertices v0 and v1:
▪ If v0 and v1 are ‘in’, emit v1

▪ If v0 is ‘in’, but v1 is ‘out’, emit C
▪ If v0 is ‘out’, but v1 is ‘in’, emit C and v1

where C is the intersection point of the edge and the plane.

Output: list of vertices,
defining a convex n-gon.

Clipping

0

1
2

in out

Vertex 0 Vertex 1

Vertex 1 Intersection 1

Vertex 2 Intersection 2

Vertex 0

INFOGR – Lecture 13 – “Visibility” 28

Sutherland-Hodgeman

Calculating the intersections with
plane 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 = 0:

𝑑𝑖𝑠𝑡𝑣 = 𝑣 ∙
𝑎
𝑏
𝑐

+ 𝑑

𝑓 =
|𝑑𝑖𝑠𝑡𝑣0|

|𝑑𝑖𝑠𝑡𝑣0| + |𝑑𝑖𝑠𝑡𝑣1|

𝐼 = 𝑣0 + 𝑓(𝑣1 − 𝑣0)

Clipping

v0

v1

I

After clipping, the input n-gon may have at most 1
extra vertex. We may have to triangulate it:

0,1,2,3,4 ➔ 0, 1, 2 + 0, 2, 3 + 0, 3, 4.

INFOGR – Lecture 13 – “Visibility” 29

Guard bands

To reduce the number of polygons that
need clipping, some hardware uses
guard bands : an invisible band of
pixels outside the screen.

▪ Polygons outside the screen are
discarded, even if they touch the
guard band;

▪ Polygons partially inside, partially
in the guard band are drawn
without clipping;

▪ Polygons partially inside the screen,
partially outside the guard band are
clipped.

Clipping

INFOGR – Lecture 13 – “Visibility” 30

Sutherland-Hodgeman

Clipping can be done against arbitrary planes.

Clipping

INFOGR – Lecture 13 – “Visibility” 31

Today’s Agenda:

▪ Depth Sorting

▪ Clipping

▪ Visibility

Stuff that is too far to draw√ Part of the tree is off-screen

√ Torso closer than ground

√ City obscured by tree

Tree requires little detail

Tree between ground & sun

Visibility

Only rendering what’s visible:

“Performance should be determined by visible geometry, not overall world size.”

▪ Do not render geometry
outside the view frustum

▪ Better: do not process
geometry outside frustum

▪ Do not render occluded
geometry

▪ Do not render anything
more detailed than strictly
necessary

INFOGR – Lecture 13 – “Visibility” 36

Visibility

Culling

Observation:
50% of the faces of a cube are not visible.

On average, this is true for all meshes.

Culling ‘backfaces’:

Triangle: 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 = 0
Camera: 𝑥, 𝑦, 𝑧
Visible: fill in camera position in plane equation.

𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 > 0: visible.

Cost: 1 dot product per triangle.

INFOGR – Lecture 13 – “Visibility” 37

Visibility

Culling

Observation:
If the bounding sphere of a mesh is outside the
view frustum, the mesh is not visible.

But also:
If the bounding sphere of a mesh intersects the
view frustum, the mesh may be not visible.

View frustum culling is typically a conservative
test: we sacrifice accuracy for efficiency.

Cost: 1 dot product per mesh.

INFOGR – Lecture 13 – “Visibility” 38

Visibility

Culling

Observation:
If the bounding sphere over a group of bounding
spheres is outside the view frustum, a group of
meshes is invisible.

We can store a bounding volume hierarchy in the
scene graph:

▪ Leaf nodes store the bounds of the meshes
they represent;

▪ Interior nodes store the bounds over their
child nodes.

Cost: 1 dot product per scene graph subtree.

INFOGR – Lecture 13 – “Visibility” 39

Visibility

INFOGR – Lecture 13 – “Visibility” 40

Culling

Observation:
If a grid cell is outside the view frustum, the
contents of that grid cell are not visible.

Cost: 0 for out-of-range grid cells.

Occlusion Culling

Not rendering things that are
guaranteed to be behind
something else.

Hierarchical z-buffer:

a set of MIP-maps of the z-buffer.

Use: with a small amount of tests,
we can check the bounds of a mesh
against this buffer.

INFOGR – Lecture 13 – “Visibility” 41

Visibility

Occlusion Culling

Not rendering things that are
guaranteed to be behind
something else.

Coverage buffer:

A low-resolution version of (a
simplified version of) the scene,
rendered on the CPU, which we can
use for visibility tests.

INFOGR – Lecture 13 – “Visibility” 42

Visibility

Flipcode IOTD, 2000: https://www.flipcode.com/archives/10-18-2000.shtml

https://www.flipcode.com/archives/10-18-2000.shtml

Occlusion Culling

Not rendering things that are
guaranteed to be behind
something else.

Coverage buffer:

A low-resolution version of (a
simplified version of) the scene,
rendered on the CPU, which we can
use for visibility tests.

INFOGR – Lecture 13 – “Visibility” 43

Visibility

Masked Software Occlusion Culling, Intel, 2016

INFOGR – Lecture 13 – “Visibility” 44

Visibility

Occlusion Culling

Not rendering things that are
guaranteed to be behind
something else.

Potential Visibility Set:

a table that tells us which areas are
mutually visible.

Visibility

Indoor visibility: Portals

Observation: if a window is invisible, the room it
links to is invisible.

INFOGR – Lecture 13 – “Visibility” 45

Welcome!

Welcome!

Welcome!

Welcome!

Welcome!

Welcome!

Welcome!

Welcome!

Welcome!

Welcome!

Welcome!

Visibility determination

Coarse:

▪ Grid-based (typically outdoor)
▪ Portals (typically indoor)

Finer:

▪ Frustum culling
▪ Occlusion culling

Finest:

▪ Backface culling
▪ Clipping
▪ Z-buffer

Visibility

INFOGR – Lecture 13 – “Visibility” 57

Today’s Agenda:

▪ Depth Sorting

▪ Clipping

▪ Visibility

INFOGR – Computer Graphics
Jacco Bikker & Debabrata Panja - April-July 2018

END OF lecture 13: “Visibility”

Next lecture: “Postprocessing”

