Graphics (INFOGR), 2018-19, Block IV, lecture 2 Deb Panja

Today: Vector algebra (continued), primitives and projections in 2D

Welcome

Today

- Dot/scalar product between two vectors
- Lines in 2D
- Projections and shadows in 2D

Recap, and ingredients

- Will work in 2D, Cartesian co-ordinates (x and y reference directions)
- A vector (arrow) has a magnitude (length) and a direction
 - a unit vector has magnitude unity
 - in Cartesian co-ordinates \hat{x} and \hat{y} as basis vectors
- A point and a vector are two fundamentally different entities - a point P: (x, y), a vector $\vec{v} = \begin{bmatrix} v_x \\ v_y \end{bmatrix}$ - will use vector $\begin{bmatrix} x \\ y \end{bmatrix}$ to reach point (x, y) from the origin
- Primitives are basically objects, shapes or forms (lines, circles,...)
- \bullet Trigonometry: definitions of \sin,\cos,\tan

Dot/scalar product between two vectors

• Vectors
$$\vec{u} = \begin{bmatrix} u_1 \\ u_2 \\ . \\ . \\ u_d \end{bmatrix}$$
 and $\vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ . \\ . \\ v_d \end{bmatrix}$

 $\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u} = u_1 v_1 + u_2 v_2 + \ldots + u_d v_d$ (a scalar)

Dot/scalar product between two vectors

• Vectors
$$\vec{u} = \begin{bmatrix} u_1 \\ u_2 \\ \cdot \\ u_d \end{bmatrix}$$
 and $\vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ \cdot \\ \cdot \\ v_d \end{bmatrix}$

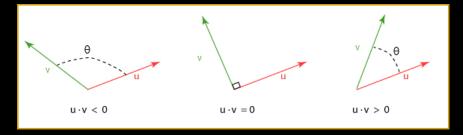
 $\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u} = u_1 v_1 + u_2 v_2 + \ldots + u_d v_d$ (a scalar)

geometrically, $\vec{u} \cdot \vec{v} = ||\vec{u}|| \, ||\vec{v}|| \cos \theta$

(notice: $||\vec{u}||^2 = \vec{u} \cdot \vec{u}; \cos 0^\circ = 1$)

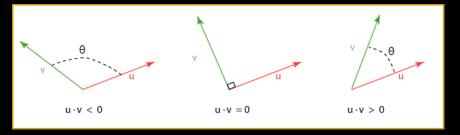
• $\vec{u} \cdot \vec{v}$: Component of \vec{v} along \vec{u} or vice versa

("how much" of \vec{v} is aligned to \vec{u} or vice versa)

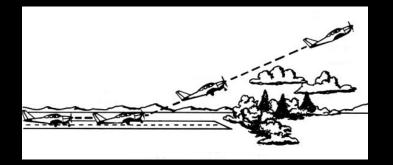


• $\vec{u} \cdot \vec{v}$: Component of \vec{v} along \vec{u} or vice versa

("how much" of \vec{v} is aligned to \vec{u} or vice versa)

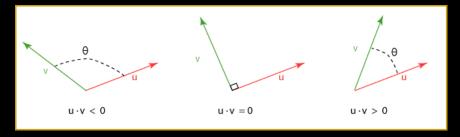


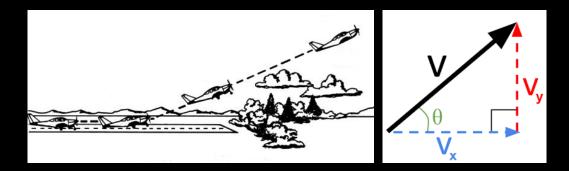
Q. How much of the plane's actual speed counts for ground speed?



• $\vec{u} \cdot \vec{v}$: Component of \vec{v} along \vec{u} or vice versa

("how much" of \vec{v} is aligned to \vec{u} or vice versa)

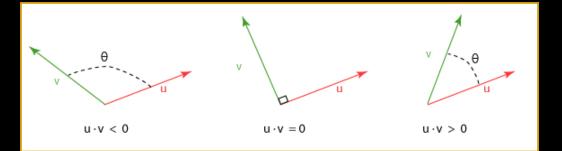




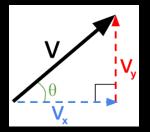
A. Actual speed: $||\vec{v}||$ Ground speed: $||\vec{v}_x|| = ||\vec{v}|| \cos \theta = \vec{v} \cdot \hat{x}$

• $\vec{u} \cdot \vec{v}$: Component of \vec{v} along \vec{u} or vice versa

("how much" of \vec{v} is aligned to \vec{u} or vice versa)



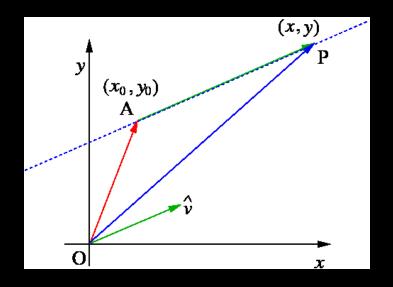
• for
$$\vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ . \\ . \\ v_d \end{bmatrix}$$
, v_i is the *i*-th component of \vec{v}
(i.e., along reference direction *i*);
e.g., v_r is the *x*-component of \vec{v} in 2D

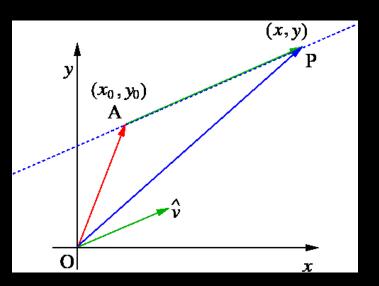


Lines in 2D

Shooting rays for a line in 2D

- Given: from point A (x_0, y_0) , a ray is shot in direction $\hat{v} = \begin{bmatrix} v_x \\ v_y \end{bmatrix}$
 - Q. Equation of point P (x, y) after the ray travels a distance l > 0? (using vector algebra)



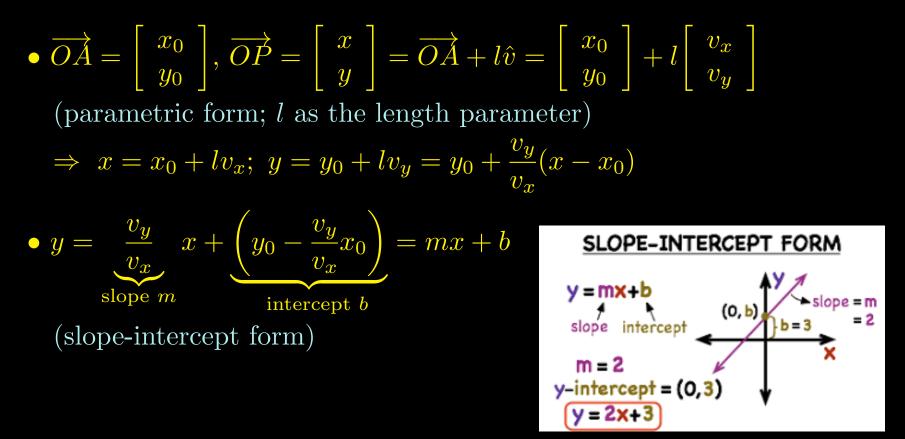


•
$$\overrightarrow{OA} = \begin{bmatrix} x_0 \\ y_0 \end{bmatrix}$$
, $\overrightarrow{OP} = \begin{bmatrix} x \\ y \end{bmatrix} = \overrightarrow{OA} + l\hat{v} = \begin{bmatrix} x_0 \\ y_0 \end{bmatrix} + l \begin{bmatrix} v_x \\ v_y \end{bmatrix}$
(parametric form; l as the length parameter)
you'll really use this form a lot for shooting rays!

•
$$\overrightarrow{OA} = \begin{bmatrix} x_0 \\ y_0 \end{bmatrix}, \ \overrightarrow{OP} = \begin{bmatrix} x \\ y \end{bmatrix} = \overrightarrow{OA} + l\hat{v} = \begin{bmatrix} x_0 \\ y_0 \end{bmatrix} + l \begin{bmatrix} v_x \\ v_y \end{bmatrix}$$

(parametric form; l as the length parameter)

$$\Rightarrow x = x_0 + lv_x; \text{ i.e., } l = \frac{(x - x_0)}{v_x}. \text{ Also, } y = y_0 + lv_y = y_0 + \frac{v_y}{v_x}(x - x_0)$$



you probably have used the slope-intercept form in high school

•
$$\overrightarrow{OA} = \begin{bmatrix} x_0 \\ y_0 \end{bmatrix}, \ \overrightarrow{OP} = \begin{bmatrix} x \\ y \end{bmatrix} = \overrightarrow{OA} + l\hat{v} = \begin{bmatrix} x_0 \\ y_0 \end{bmatrix} + l \begin{bmatrix} v_x \\ v_y \end{bmatrix}$$

(parametric form; l as the length parameter)

•
$$y = \underbrace{\frac{v_y}{v_x}}_{\text{slope }m} x + \underbrace{\left(y_0 - \frac{v_y}{v_x}x_0\right)}_{\text{intercept }b} = mx + b \text{ (slope-intercept form)}$$

• Also, Ax + By + C = 0 (implicit form)

the implicit form is useful for calculating distances, perpendiculars etc.

A. (a.1)
$$x - 1 = 3l/5$$
, $y - 2 = 4l/5$; $l = \frac{5(x - 1)}{3} = \frac{5(y - 2)}{4}$
(a.2) $y = 4x/3 + 2/3$
(a.3) $4x - 3y + 2 = 0$

• A ray shot in direction $\begin{bmatrix} 3/5\\4/5 \end{bmatrix}$ from point (1,2) yields a line L

Q. (a) Find the equation of the line L in all forms

(b) Find the equation of the line \perp to L at (4,6)

A. (a.1)
$$x - 1 = 3l/5$$
, $y - 2 = 4l/5$; $l = \frac{5(x - 1)}{3} = \frac{5(y - 2)}{4}$
(a.2) $y = 4x/3 + 2/3$
(a.3) $4x - 3y + 2 = 0$
(b.1) $\hat{v} \perp$ to L is $\pm \begin{bmatrix} 4/5 \\ -3/5 \end{bmatrix}$; $x - 4 = 4t/5$, $y - 6 = -3t/5$
(b.2) $y = -3x/4 + 9$
(b.3) $3x + 4y - 36 = 0$

A. (a.1)
$$x - 1 = 3l/5$$
, $y - 2 = 4l/5$; $l = \frac{5(x - 1)}{3} = \frac{5(y - 2)}{4}$
(a.2) $y = 4x/3 + 2/3$
(a.3) $4x - 3y + 2 = 0$
(b.1) $\hat{v} \perp$ to L is $\pm \begin{bmatrix} 4/5 \\ -3/5 \end{bmatrix}$; $x - 4 = 4t/5$, $y - 6 = -3t/5$
(b.2) $y = -3x/4 + 9$
(b.3) $3x + 4y - 36 = 0$ Vector $\begin{bmatrix} A \\ B \end{bmatrix}$ is \perp to line $Ax + By + C = 0$

this is one reason why the implicit form is so useful!

Equation of a line in 2D

•
$$\overrightarrow{OA} = \begin{bmatrix} x_0 \\ y_0 \end{bmatrix}$$
, $\overrightarrow{OP} = \begin{bmatrix} x \\ y \end{bmatrix} = \overrightarrow{OA} + l\hat{v} = \begin{bmatrix} x_0 \\ y_0 \end{bmatrix} + l\begin{bmatrix} v_x \\ v_y \end{bmatrix}$
(parametric form; l as the length parameter)
• $y = \underbrace{v_y}_{v_x} x + \underbrace{\left(y_0 - \frac{v_y}{v_x}x_0\right)}_{\text{intercept } b} = mx + b$ (slope-intercept form)
• $Ax + By + C = 0$ (implicit form)
• $m = \frac{v_y}{v_x} = -\frac{A}{B}, b = -\frac{C}{B}, v_x = \frac{1}{\sqrt{1+m^2}}, v_y = \frac{m}{\sqrt{1+m^2}}, \begin{bmatrix} v_x \\ v_y \end{bmatrix} = \pm \frac{1}{\sqrt{A^2 + B^2}} \begin{bmatrix} A \\ -B \end{bmatrix}$, vector $\begin{bmatrix} A \\ B \end{bmatrix}$ is \perp to line $Ax + By + C = 0$,
(shortest) distance from the origin to line $Ax + By + C = 0$ is $\frac{|C|}{\sqrt{A^2 + B^2}}$

Equation of a line in 2D

•
$$\overrightarrow{OA} = \begin{bmatrix} x_0 \\ y_0 \end{bmatrix}, \overrightarrow{OP} = \begin{bmatrix} x \\ y \end{bmatrix} = \overrightarrow{OA} + l\hat{v} = \begin{bmatrix} x_0 \\ y_0 \end{bmatrix} + l\begin{bmatrix} v_x \\ v_y \end{bmatrix}$$

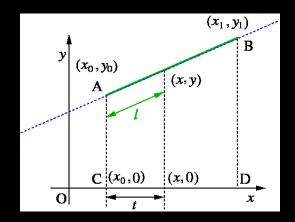
(parametric form; *l* as the parameter)
• $y = \underbrace{\frac{v_y}{v_x}}_{\text{slope }m} x + \underbrace{\left[y_0 - \frac{v_y}{v_x}x_0\right]}_{\text{intercept }b} = mx + b$ (slope-intercept form)
• $m = \frac{v_y}{v_x} = -\frac{A}{B}, b = -\frac{C}{B}; Ax + By + C = 0$ (implicit form)
Q. *m* in terms of θ ?

Equation of a line in 2D

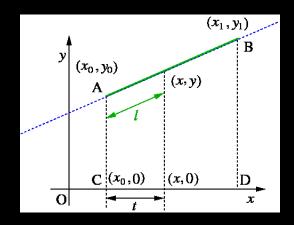
•
$$\overrightarrow{OA} = \begin{bmatrix} x_0 \\ y_0 \end{bmatrix}, \overrightarrow{OP} = \begin{bmatrix} x \\ y \end{bmatrix} = \overrightarrow{OA} + l\hat{v} = \begin{bmatrix} x_0 \\ y_0 \end{bmatrix} + l\begin{bmatrix} v_x \\ v_y \end{bmatrix}$$

(parametric form; *l* as the parameter)
• $y = \underbrace{\frac{v_y}{v_x}}_{\text{slope }m} x + \underbrace{\left[y_0 - \frac{v_y}{v_x}x_0\right]}_{\text{intercept }b} = mx + b$ (slope-intercept form)
• $m = \frac{v_y}{v_x} = -\frac{A}{B}, b = -\frac{C}{B}; Ax + By + C = 0$ (implicit form)
A. $m = \tan \theta$

Projections and shadows



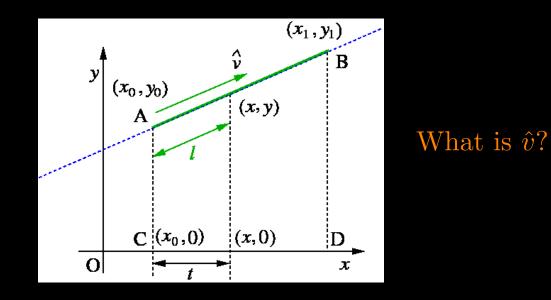
• Given: (x_0, y_0) and (x_1, y_1) Q. Express t as a function of l

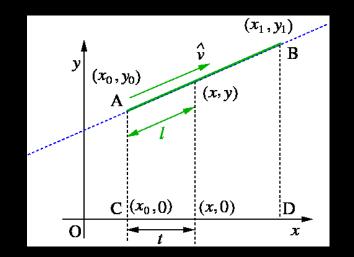


• Given:
$$(x_0, y_0)$$
 and (x_1, y_1)
Q. Express t as a function of l
A. Line CD: $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x_0 \\ 0 \end{bmatrix} + t \begin{bmatrix} 1 \\ 0 \\ \hat{x} \end{bmatrix} \Rightarrow t = x - x_0$

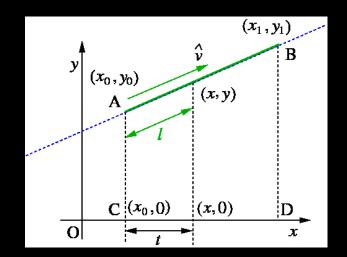
Q'. How does one determine x?

Projection in 2D on the x-axis





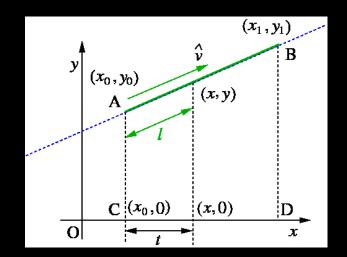
$$\hat{v} = \frac{1}{\sqrt{(x_1 - x_0)^2 + (y_1 - y_0)^2}} \begin{bmatrix} x_1 - x_0 \\ y_1 - y_0 \end{bmatrix}$$



$$\hat{v} = \frac{1}{\sqrt{(x_1 - x_0)^2 + (y_1 - y_0)^2}} \begin{bmatrix} x_1 - x_0 \\ y_1 - y_0 \end{bmatrix}$$

• Line AB:
$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x_0 \\ y_0 \end{bmatrix} + l \begin{bmatrix} v_x \\ v_y \end{bmatrix} \implies x = x_0 + lv_y$$

• $t = x - x_0 = lv_x$

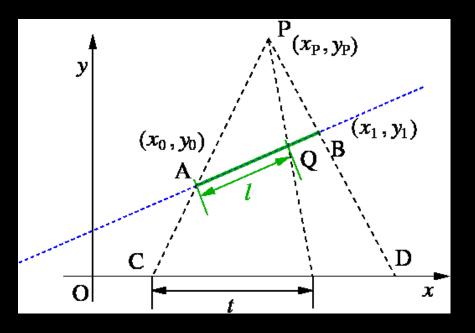


$$\hat{v} = \frac{1}{\sqrt{(x_1 - x_0)^2 + (y_1 - y_0)^2}} \begin{bmatrix} x_1 - x_0 \\ y_1 - y_0 \end{bmatrix}$$

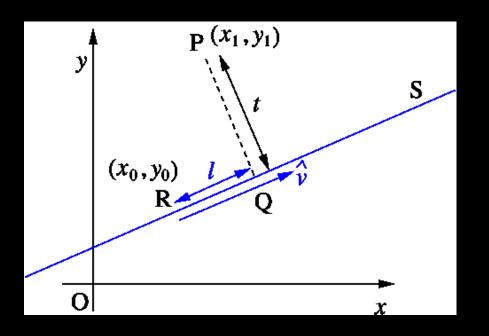
• Line AB:
$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x_0 \\ y_0 \end{bmatrix} + l \begin{bmatrix} v_x \\ v_y \end{bmatrix} \Rightarrow x = x_0 + lv$$

• $t = lv_x; t = l(\hat{v} \cdot \hat{x})$ (think components!)

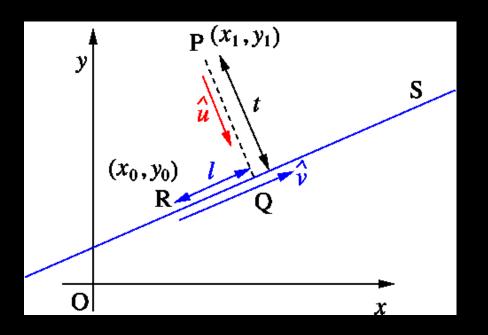
Shadows in 2D on the x-axis: see exercise



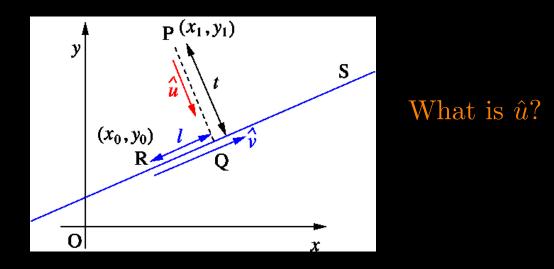
• Given: (x_0, y_0) , (x_1, y_1) and (x_P, y_P) Q. The locations of C and D, and t as a function of l?

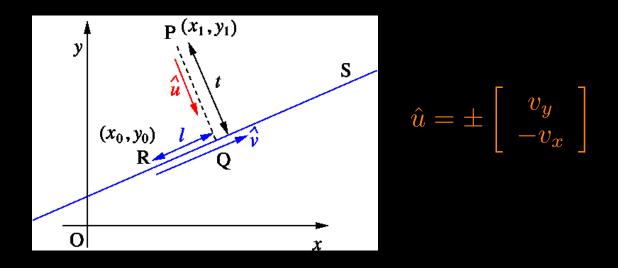


• Given: (x_0, y_0) , (x_1, y_1) and \hat{v} , PQ \perp RS Q. Determine the location of Q, and determine t and l

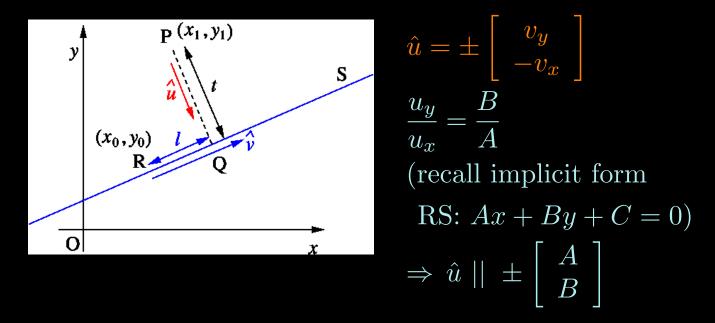


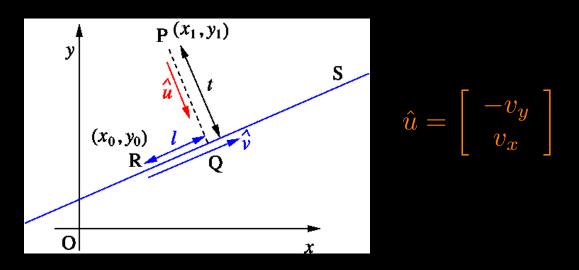
- Given: (x_0, y_0) , (x_1, y_1) and \hat{v} , $\overline{PQ} \perp$
 - Q. Determine the location of Q, and determine t and l
 - A. Determine $\hat{u} \perp$ to RS, shoot a ray from P, intersecting RS at Q





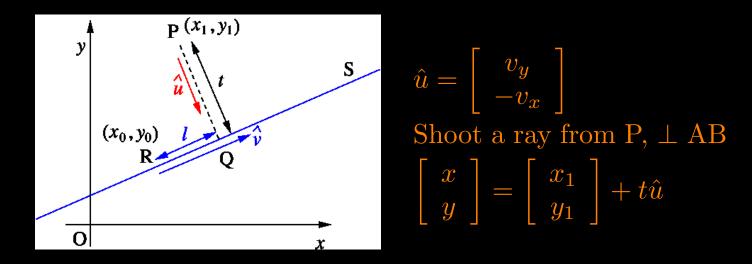
Projection of a point on a line



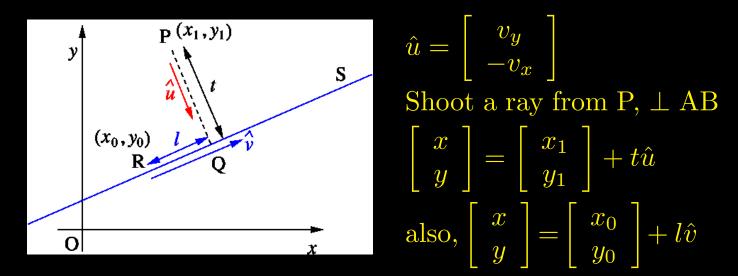


• \hat{v} is the tangent vector for the line, and $\pm \hat{u}$ is the normal vector

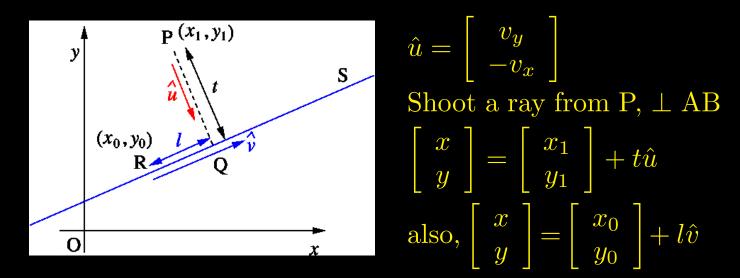
Projection of a point on a line



Projection of a point on a line



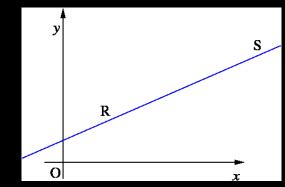
Projection of a point on a line



• $x_{\mathbf{Q}} = x_0 + lv_x = x_1 - tv_y;$ $y_{\mathbf{Q}} = y_0 + lv_y = y_1 + tv_x;$ solve l and t

A line f(x, y) = y - (mx + b) = 0 divides the plane in two

• On one side f(x, y) > 0, and on the other f(x, y) < 0

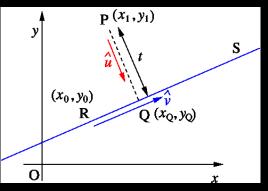


A line f(x, y) = y - (mx + b) = 0 divides the plane in two

• On one side f(x, y) > 0, and on the other f(x, y) < 0

RS:
$$f(x,y) = y - \left[\frac{v_y}{v_x}x + y_0 - \frac{v_y}{v_x}x_0\right] = 0$$

 $f(x_Q, y_Q) = 0 \quad \Rightarrow \quad y_Q = \frac{v_y}{v_x}x_Q + y_0 - \frac{v_y}{v_x}x_0$



A line f(x,y) = y - (mx + b) = 0 divides the plane in two

• On one side f(x, y) > 0, and on the other f(x, y) < 0

RS:
$$f(x,y) = y - \left[\frac{v_y}{v_x}x + y_0 - \frac{v_y}{v_x}x_0\right] = 0$$

 $f(x_Q, y_Q) = 0 \implies y_Q = \frac{v_y}{v_x}x_Q + y_0 - \frac{v_y}{v_x}x_0$

$$f(x_1, y_1) = \underbrace{(y_1 - y_Q)}_{=-tu_y} - \frac{v_y}{v_x} \underbrace{(x_1 - x_Q)}_{=-tu_x} = t \ \frac{u_x v_y - u_y v_x}{v_x}$$

A line f(x,y) = y - (mx + b) = 0 divides the plane in two

• On one side f(x,y) > 0, and on the other f(x,y) < 0

RS:
$$f(x,y) = y - \left[\frac{v_y}{v_x}x + y_0 - \frac{v_y}{v_x}x_0\right] = 0$$

 $f(x_Q, y_Q) = 0 \implies y_Q = \frac{v_y}{v_x}x_Q + y_0 - \frac{v_y}{v_x}x_0$

$$f(x_1, y_1) = \underbrace{(y_1 - y_Q)}_{=-tu_y} - \frac{v_y}{v_x} \underbrace{(x_1 - x_Q)}_{=-tu_x} = t \ \frac{u_x v_y - u_y v_x}{v_x}$$

if P lies on the other side of line RS then

$$f(x_1, y_1) = -t \ \frac{u_x v_y - u_y v_x}{v_x}$$

Summary: Vector algebra, and uses in 2D

- Dot product of vectors
- Shooting rays for a line
 - equations: parametric, slope-intercept and implicit forms
 - parallel and perspective projections of a line
 - projection of a point on a line, tangent and normal vectors

Summary: vector algebra, and uses in 2D

- Dot product of vectors
- Shooting rays (along a line)
 - equations: parametric, slope-intercept and implicit forms
 - parallel and perspective projections of a line
 - projection of a point on a line, tangent and normal vectors
- Next class: circles, ellipses, lines in 3D, (hyper)planes and cross product

Finally, references

- Book chapter 2: Miscellaneous Math
 - Sec. 2.5, only the relevant parts for 2D