Graphics (INFOGR), 2018-19, Block IV, lecture 3

Deb Panja

Today: Circles, ellipses, lines in 3D, (hyper)planes and cross product

Welcome

Today

- Circles, ellipses and shooting rays
- Lines and planes in 3D
- Cross products of vectors
- (Hyper)planes and normals

Circles, ellipses and shooting rays

Equations of circles

• Circle: $(x - h)^2 + (y - k)^2 = r^2$ (h, k): location of the centre

Equations of circles and ellipses

• Circle: $(x - h)^2 + (y - k)^2 = r^2$ (h, k): location of the centre

• Ellipse: $\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$ (h,k): location of the centre a: semi-major axis, b: semi-minor axis

Equations of circles and ellipses

• Circle: $(x - h)^2 + (y - k)^2 = r^2$ (h, k): location of the centre

• Ellipse: $\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$ (h,k): location of the centre a: semi-major axis, b: semi-minor axis

(both of the above are implicit forms)

$$\bullet \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} h \\ k \end{bmatrix} + r \hat{u}_r; \quad \hat{u}_r = ?$$

•
$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} h \\ k \end{bmatrix} + r \hat{u}_r; \quad \hat{u}_r = \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}; \quad \hat{u}_\theta = ?$$

•
$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} h \\ k \end{bmatrix} + r \hat{u}_r; \quad \hat{u}_r = \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}; \quad \hat{u}_\theta = \begin{bmatrix} -\sin \theta \\ \cos \theta \end{bmatrix}$$

•
$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} h \\ k \end{bmatrix} + r \hat{u}_r; \quad \hat{u}_r = \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}; \quad \hat{u}_\theta = \begin{bmatrix} -\sin \theta \\ \cos \theta \end{bmatrix}$$

• Given (h, k) and r, P is described by θ alone: $x = h + r \cos \theta$, $y = k + r \sin \theta$ (parametric form)

The circular co-ordinate system

$$\bullet \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} h \\ k \end{bmatrix} + r \hat{u}_r; \quad \hat{u}_r = \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}; \quad \hat{u}_\theta = \begin{bmatrix} -\sin \theta \\ \cos \theta \end{bmatrix}$$

- Given (h, k) and r, P is described by θ alone: $x = h + r \cos \theta$, $y = k + r \sin \theta$ (parametric form)
- \hat{u}_r unit normal vector; \hat{u}_θ unit tangent vector to the circle at P

• Given: Eye at (x_0, y_0) , ray along \hat{v} , circle centre at (h, k), radius r Q. Find locations of P1 and P2

- Given: Eye at (x_0, y_0) , ray along \hat{v} , circle centre at (h, k), radius r Q. Find locations of P1 and P2
 - A. Shoot a ray from E along \hat{v} , intersect circle at P1 and P2

• Given: E at (x_0, y_0) , ray along \hat{v} , circle centre at (h, k), radius r

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x_0 \\ y_0 \end{bmatrix} + l \begin{bmatrix} v_x \\ v_y \end{bmatrix}; \quad (x-h)^2 + (y-k)^2 = r^2$$

• Given: E at (x_0, y_0) , ray along \hat{v} , circle centre at (h, k), radius r

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x_0 \\ y_0 \end{bmatrix} + l \begin{bmatrix} v_x \\ v_y \end{bmatrix}; \quad (x-h)^2 + (y-k)^2 = r^2$$

 \Rightarrow quadratic equation in $l: al^2 + bl + c = 0$

• Given: E at (x_0, y_0) , ray along \hat{v} , circle centre at (h, k), radius r

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x_0 \\ y_0 \end{bmatrix} + l \begin{bmatrix} v_x \\ v_y \end{bmatrix}; \quad (x-h)^2 + (y-k)^2 = r^2$$

 \Rightarrow quadratic equation in $l: al^2 + bl + c = 0$

$$\Rightarrow l = -\frac{b}{2a} \pm \frac{\sqrt{b^2 - 4ac}}{2a}$$

• Given: E at (x_0, y_0) , ray along \hat{v} , circle centre at (h, k), radius r

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x_0 \\ y_0 \end{bmatrix} + l \begin{bmatrix} v_x \\ v_y \end{bmatrix}; \quad (x-h)^2 + (y-k)^2 = r^2$$

- $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x_0 \\ y_0 \end{bmatrix} + l \begin{bmatrix} v_x \\ v_y \end{bmatrix}; \quad (x-h)^2 + (y-k)^2 = r^2$ $\Rightarrow \text{ quadratic equation in } l: al^2 + bl + c = 0 \quad \Rightarrow \quad l = -\frac{b}{2a} \pm \frac{\sqrt{b^2 4ac}}{2a}$
- \Rightarrow (i) $b^2 4ac > 0$: (P1,P2); (ii) $b^2 4ac = 0$: P1 = P2 (tangent ray);
 - (iii) $b^2 4ac < 0$: no intersection; $\Rightarrow (\theta_1, \theta_2)$ -values for P1 and P2

• Given: E at (x_0, y_0) , ray along \hat{v} , circle centre at (h, k), radius r

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x_0 \\ y_0 \end{bmatrix} + l \begin{bmatrix} v_x \\ v_y \end{bmatrix}; \quad (x-h)^2 + (y-k)^2 = r^2$$

$$\Rightarrow \text{ quadratic equation in } l: \ al^2 + bl + c = 0 \quad \Rightarrow \quad l = -\frac{b}{2a} \pm \frac{\sqrt{b^2 - 4ac}}{2a}$$

$$\Rightarrow \text{ (i) } b^2 - 4ac > 0: \text{ (P1,P2)}; \text{ (ii) } b^2 - 4ac = 0: \text{ P1 = P2 (tangent ray)};$$

$$\text{ (iii) } b^2 - 4ac < 0: \text{ no intersection}; \Rightarrow (\theta_1, \theta_2)\text{-values for P1 and P2}$$

$$\text{P2 will not be visible to the eye!}$$

Ingredients for 3D, and recap

- Will work in 3D, Cartesian co-ordinates: (x, y, z) reference directions
 - in Cartesian co-ordinates \hat{x} , \hat{y} and \hat{z} as basis vectors
- A point P: (x, y, z), a vector $\vec{v} = \begin{bmatrix} v_x \\ v_y \\ v_z \end{bmatrix}$
 - will use vector $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$ to reach point (x, y, z) from the origin

Lines and planes in 3D

Shooting a ray for a line in 3D

$$\bullet \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x_0 \\ y_0 \\ z_0 \end{bmatrix} + l\hat{v} = \begin{bmatrix} x_0 \\ y_0 \\ z_0 \end{bmatrix} + l \begin{bmatrix} v_x \\ v_y \\ v_z \end{bmatrix}$$

(parametric form)

•
$$\frac{x - x_0}{v_x} = \frac{y - y_0}{v_y} = \frac{z - z_0}{v_z}$$
 (= l) [equivalent slope-intercept form]

Given: \hat{n} , normal to the plane, and (x_0, y_0, z_0) on the plane Q. What is the equation of this plane? (uses: storing a plane in the memory, distance to the plane...)

Given: \hat{n} , normal to the plane, and (x_0, y_0, z_0) on the plane Q. What is the equation of this plane?

A. Plane equation: $(x - x_0)n_x + (y - y_0)n_y + (z - z_0)n_z = 0$

• Plane equation: $(x - x_0)n_x + (y - y_0)n_y + (z - z_0)n_z = 0$ $n_x x + n_y y + n_z z - (n_x x_0 + n_y y_0 + n_z z_0) = 0$, or Ax + By + Cz + D = 0 (recall line in 2D form Ax + By + C = 0)
implicit form

- Plane equation: $(x x_0)n_x + (y y_0)n_y + (z z_0)n_z = 0$ $n_x x + n_y y + n_z z (n_x x_0 + n_y y_0 + n_z z_0) = 0, \text{ or}$ Ax + By + Cz + D = 0 (recall line in 2D form Ax + By + C = 0)implicit form
- A plane divides the 3D space into two: for one Ax + By + Cz + D > 0, for the other Ax + By + Cz + D < 0

- Plane equation: $(x x_0)n_x + (y y_0)n_y + (z z_0)n_z = 0$ $n_x x + n_y y + n_z z - (n_x x_0 + n_y y_0 + n_z z_0) = 0$, or Ax + By + Cz + D = 0 (recall line in 2D form Ax + By + C = 0)
 implicit form
- A plane divides the 3D space into two: for one Ax + By + Cz + D > 0, for the other Ax + By + Cz + D < 0
- Similarly a hyperplane also divides the space into two

Q. Why?

Q. Why?

A. Because it allows us to easily switch between planes and their normals

$$ullet \ ec{u} = \left[egin{array}{c} u_x \ u_y \ u_z \end{array}
ight]; \quad ec{v} = \left[egin{array}{c} v_x \ v_y \ v_z \end{array}
ight]$$

$$\vec{w} = \vec{u} \times \vec{v} = \begin{bmatrix} u_y v_z - u_z v_y \\ u_z v_x - u_x v_z \\ u_x v_y - u_y v_x \end{bmatrix} : \text{ a vector}$$

$$\vec{u} \times \vec{v} = -\vec{v} \times \vec{u}$$

$$\bullet \ \vec{u} = \left[\begin{array}{c} u_x \\ u_y \\ u_z \end{array} \right]; \quad \vec{v} = \left[\begin{array}{c} v_x \\ v_y \\ v_z \end{array} \right]$$

$$\vec{w} = \vec{u} \times \vec{v} = \begin{bmatrix} u_y v_z - u_z v_y \\ u_z v_x - u_x v_z \\ u_x v_y - u_y v_x \end{bmatrix} : \text{ a vector}$$

$$\vec{u} \times \vec{v} = -\vec{v} \times \vec{u}$$

$$\vec{w} \perp (\vec{u}, \vec{v}); \ \vec{w} \cdot \vec{u} = ?$$

$$\bullet \ \vec{u} = \left[\begin{array}{c} u_x \\ u_y \\ u_z \end{array} \right]; \quad \vec{v} = \left[\begin{array}{c} v_x \\ v_y \\ v_z \end{array} \right]$$

$$\vec{w} = \vec{u} \times \vec{v} = \begin{bmatrix} u_y v_z - u_z v_y \\ u_z v_x - u_x v_z \\ u_x v_y - u_y v_x \end{bmatrix} : \text{ a vector}$$

$$\vec{u} \times \vec{v} = -\vec{v} \times \vec{u}$$

$$ec{w} \perp (ec{u}, ec{v}); \ ec{w} \cdot ec{u} = ec{w} \cdot ec{v} = 0$$

$$||ec{w}|| = ||ec{u}|| \ ||ec{v}|| \sin \theta$$

 $\mathbf{w} = \mathbf{u} \times \mathbf{v}$

$$\bullet \ \vec{u} = \left[\begin{array}{c} u_x \\ u_y \\ u_z \end{array} \right]; \quad \vec{v} = \left[\begin{array}{c} v_x \\ v_y \\ v_z \end{array} \right]$$

$$\vec{w} = \vec{u} \times \vec{v} = \begin{bmatrix} u_y v_z - u_z v_y \\ u_z v_x - u_x v_z \\ u_x v_y - u_y v_x \end{bmatrix} : \text{ a vector}$$

$$\vec{u} \times \vec{v} = -\vec{v} \times \vec{u}$$

$$\vec{w} \perp (\vec{u}, \vec{v}); \ \vec{w} \cdot \vec{u} = \vec{w} \cdot \vec{v} = 0$$

$$||\vec{w}|| = ||\vec{u}|| \ ||\vec{v}|| \sin \theta$$

$$\vec{u}$$
 and \vec{v} are parallel; $\vec{w} = \vec{u} \times \vec{v} = ?$

 $\mathbf{w} = \mathbf{u} \times \mathbf{v}$

$$\bullet \ \vec{u} = \left[\begin{array}{c} u_x \\ u_y \\ u_z \end{array} \right]; \quad \vec{v} = \left[\begin{array}{c} v_x \\ v_y \\ v_z \end{array} \right]$$

$$\vec{w} = \vec{u} \times \vec{v} = \begin{bmatrix} u_y v_z - u_z v_y \\ u_z v_x - u_x v_z \\ u_x v_y - u_y v_x \end{bmatrix} : \text{ a vector}$$

$$\vec{u} \times \vec{v} = -\vec{v} \times \vec{u}$$

$$\vec{w} \perp (\vec{u}, \vec{v}); \ \vec{w} \cdot \vec{u} = \vec{w} \cdot \vec{v} = 0$$

$$||\vec{w}|| = ||\vec{u}|| \ ||\vec{v}|| \sin \theta$$

$$\vec{u}$$
 and \vec{v} are parallel; $\vec{w} = \vec{u} \times \vec{v} = 0$

Cross product and handedness of a co-ordinate system

• Right-handed co-ordinate system: $\hat{x} \times \hat{y} = \hat{z}, \ \hat{y} \times \hat{z} = \hat{x}, \ \hat{z} \times \hat{x} = \hat{y}$

i.e.,
$$(\hat{x} \times \hat{y}) \cdot \hat{z} > 0$$
 etc.

(this is what we will use)

Cross product and handedness of a co-ordinate system

• Right-handed co-ordinate system: $\hat{x} \times \hat{y} = \hat{z}, \ \hat{y} \times \hat{z} = \hat{x}, \ \hat{z} \times \hat{x} = \hat{y}$

i.e., $(\hat{x} \times \hat{y}) \cdot \hat{z} > 0$ etc. (this is what we will use)

• Left-handed co-ordinate system: $\hat{x} \times \hat{y} = -\hat{z}$, $\hat{y} \times \hat{z} = -\hat{x}$, $\hat{z} \times \hat{x} = -\hat{y}$ i.e., $(\hat{x} \times \hat{y}) \cdot \hat{z} < 0$ etc.

(Hyper)planes and normals

• Plane equation Ax + By + Cz + D = 0 (implicit form)

like line in 2D, normal
$$\hat{n} \mid\mid \pm \begin{bmatrix} A \\ B \\ C \end{bmatrix}$$

likewise, (shortest) distance from the origin is $\frac{|D|}{\sqrt{A^2 + B^2 + C^2}}$ (similarly for hyperplanes)

• Plane equation Ax + By + Cz + D = 0 (implicit form)

like line in 2D, normal
$$\hat{n} \mid\mid \pm \begin{bmatrix} A \\ B \\ C \end{bmatrix}$$

likewise, (shortest) distance from the origin is $\frac{|D|}{\sqrt{A^2 + B^2 + C^2}}$ (similarly for hyperplanes)

• Plane using two (planar) vectors (parametric form)

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x_0 \\ y_0 \\ z_0 \end{bmatrix} + l\hat{u} + t\hat{v}$$
(similarly for hyperplanes)

• Plane using two (planar) vectors (parametric form)

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x_0 \\ y_0 \\ z_0 \end{bmatrix} + l\hat{u} + t\hat{v}$$
(similarly for hyperplanes)

 $\hat{n} \parallel \hat{u} \times \hat{v}$ Q. Given \vec{u} and \vec{v} on a plane can you calculate \hat{n} ?

• Plane using two (planar) vectors (parametric form)

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x_0 \\ y_0 \\ z_0 \end{bmatrix} + l\hat{u} + t\hat{v}$$
(similarly for hyperplanes)

 $\begin{array}{c} \leftarrow \text{ line perpendicular to the plane defined by } \mathbf{u} \text{ and } \mathbf{v} \\ \\ \mathbf{n} \\ \\ \hline \\ \mathbf{v} \\ \\ \\ \mathbf{u} \\ \\ \\ -\mathbf{n} \end{array}$

 $\hat{n} \mid\mid \hat{u} \times \hat{v} \quad \text{A. Given } \vec{u} \text{ and } \vec{v} \text{ on a plane } \hat{n} = \vec{u} \times \vec{v}/\mid\mid \vec{u} \times \vec{v}\mid\mid$ for $\hat{u} \perp \hat{v}$, $(\hat{u}, \hat{v}, \hat{n})$ form a right-handed co-ordinate system in that case, normal \hat{n} , tangent \hat{u} , bitangent \hat{v}

Summary: circles, ellipses, (hyper)planes and cross product

- Circles, ellipses and shooting rays at them
- Shooting rays as a line in 3D
 - equations: parametric and implicit-like forms
- Equation of a plane using the normal vector
- Cross product, left- and right-handed co-ordinate systems
 - implicit and parametric equations of a plane
 - tangent and bitangent vectors

Summary: circles, ellipses, (hyper)planes and cross product

- Circles, ellipses and shooting rays at them
- Shooting rays as a line in 3D
 - equations: parametric and implicit-like forms
- Equation of a plane using the normal vector
- Cross product, left- and right-handed co-ordinate systems
 - implicit and parametric equations of a plane
 - tangent and bitangent vectors
- Next class: primitives (continued) and projections in 3D

Finally, references

- Book chapter 2: Miscellaneous Math
 - Sec. 2.2, Sec. 2.4.4, 2.4.6-2.4.7
 - Sec. 2.5, the relevant parts for 3D