
Graphics (INFOGR), 2018-19, Block IV, lecture 3

Deb Panja

Today: Circles, ellipses, lines in 3D,
(hyper)planes and cross product

Welcome
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Today

• Circles, ellipses and shooting rays

• Lines and planes in 3D

• Cross products of vectors

• (Hyper)planes and normals
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Circles, ellipses and shooting rays
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Equations of circles

• Circle: (x− h)2 + (y − k)2 = r2

(h, k): location of the centre
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Equations of circles and ellipses

• Circle: (x− h)2 + (y − k)2 = r2

(h, k): location of the centre

• Ellipse: (x− h)2

a2
+

(y − k)2

b2
= 1

(h, k): location of the centre

a: semi-major axis, b: semi-minor axis
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Equations of circles and ellipses

• Circle: (x− h)2 + (y − k)2 = r2

(h, k): location of the centre

• Ellipse: (x− h)2

a2
+

(y − k)2

b2
= 1

(h, k): location of the centre

a: semi-major axis, b: semi-minor axis

(both of the above are implicit forms)
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Circular co-ordinate system

•
[
x
y

]
=

[
h
k

]
+ r ûr; ûr =?
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Circular co-ordinate system

•
[
x
y

]
=

[
h
k

]
+ r ûr; ûr =

[
cos θ
sin θ

]
; ûθ =?

8



Circular co-ordinate system

•
[
x
y

]
=

[
h
k

]
+ r ûr; ûr =

[
cos θ
sin θ

]
; ûθ =

[
− sin θ
cos θ

]
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Circular co-ordinate system

•
[
x
y

]
=

[
h
k

]
+ r ûr; ûr =

[
cos θ
sin θ

]
; ûθ =

[
− sin θ
cos θ

]
• Given (h, k) and r, P is described by θ alone:

x = h+ r cos θ, y = k + r sin θ (parametric form)
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The circular co-ordinate system

•
[
x
y

]
=

[
h
k

]
+ r ûr; ûr =

[
cos θ
sin θ

]
; ûθ =

[
− sin θ
cos θ

]
• Given (h, k) and r, P is described by θ alone:

x = h+ r cos θ, y = k + r sin θ (parametric form)

• ûr unit normal vector; ûθ unit tangent vector to the circle at P
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Shooting rays at a circle

• Given: Eye at (x0, y0), ray along v̂, circle centre at (h, k), radius r

Q. Find locations of P1 and P2
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Shooting rays at a circle

• Given: Eye at (x0, y0), ray along v̂, circle centre at (h, k), radius r

Q. Find locations of P1 and P2

A. Shoot a ray from E along v̂, intersect circle at P1 and P2
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Shooting rays at a circle

• Given: E at (x0, y0), ray along v̂, circle centre at (h, k), radius r[
x
y

]
=

[
x0
y0

]
+ l

[
vx
vy

]
; (x− h)2 + (y − k)2 = r2
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Shooting rays at a circle

• Given: E at (x0, y0), ray along v̂, circle centre at (h, k), radius r[
x
y

]
=

[
x0
y0

]
+ l

[
vx
vy

]
; (x− h)2 + (y − k)2 = r2

⇒ quadratic equation in l: al2 + bl + c = 0
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Shooting rays at a circle

• Given: E at (x0, y0), ray along v̂, circle centre at (h, k), radius r[
x
y

]
=

[
x0
y0

]
+ l

[
vx
vy

]
; (x− h)2 + (y − k)2 = r2

⇒ quadratic equation in l: al2 + bl + c = 0

⇒ l = − b

2a
±
√
b2 − 4ac

2a
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Shooting rays at a circle

• Given: E at (x0, y0), ray along v̂, circle centre at (h, k), radius r[
x
y

]
=

[
x0
y0

]
+ l

[
vx
vy

]
; (x− h)2 + (y − k)2 = r2

⇒ quadratic equation in l: al2+bl+c = 0 ⇒ l = − b

2a
±
√
b2 − 4ac

2a
⇒ (i) b2− 4ac > 0: (P1,P2); (ii) b2− 4ac = 0: P1 = P2 (tangent ray);

(iii) b2 − 4ac < 0: no intersection; ⇒ (θ1, θ2)-values for P1 and P2
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Shooting rays at a circle

• Given: E at (x0, y0), ray along v̂, circle centre at (h, k), radius r[
x
y

]
=

[
x0
y0

]
+ l

[
vx
vy

]
; (x− h)2 + (y − k)2 = r2

⇒ quadratic equation in l: al2+bl+c = 0 ⇒ l = − b

2a
±
√
b2 − 4ac

2a
⇒ (i) b2− 4ac > 0: (P1,P2); (ii) b2− 4ac = 0: P1 = P2 (tangent ray);

(iii) b2 − 4ac < 0: no intersection; ⇒ (θ1, θ2)-values for P1 and P2

P2 will not be visible to the eye!
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Ingredients for 3D, and recap

• Will work in 3D, Cartesian co-ordinates: (x, y, z) reference directions

− in Cartesian co-ordinates x̂, ŷ and ẑ as basis vectors

• A point P: (x, y, z), a vector ~v =

 vx
vy
vz


− will use vector

 x
y
z

 to reach point (x, y, z) from the origin
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Lines and planes in 3D
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Shooting a ray for a line in 3D

•

 x
y
z

 =

 x0
y0
z0

+ lv̂ =

 x0
y0
z0

+ l

 vx
vy
vz


(parametric form)

• x− x0
vx

=
y − y0
vy

=
z − z0
vz

(= l) [equivalent slope-intercept form]
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A plane in 3D

Given: n̂, normal to the plane, and (x0, y0, z0) on the plane

Q. What is the equation of this plane?

(uses: storing a plane in the memory, distance to the plane. . .)
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A plane in 3D

Given: n̂, normal to the plane, and (x0, y0, z0) on the plane

Q. What is the equation of this plane?

A. Plane equation: (x− x0)nx + (y − y0)ny + (z − z0)nz = 0
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A plane in 3D

• Plane equation: (x− x0)nx + (y − y0)ny + (z − z0)nz = 0

nxx+ nyy + nzz − (nxx0 + nyy0 + nzz0) = 0, or

Ax+By + Cz +D = 0︸ ︷︷ ︸
implicit form

(recall line in 2D form Ax+By + C = 0)
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A plane in 3D

• Plane equation: (x− x0)nx + (y − y0)ny + (z − z0)nz = 0

nxx+ nyy + nzz − (nxx0 + nyy0 + nzz0) = 0, or

Ax+By + Cz +D = 0︸ ︷︷ ︸
implicit form

(recall line in 2D form Ax+By + C = 0)

• A plane divides the 3D space into two:

for one Ax+By + Cz +D > 0, for the other Ax+By + Cz +D < 0
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A plane in 3D

• Plane equation: (x− x0)nx + (y − y0)ny + (z − z0)nz = 0

nxx+ nyy + nzz − (nxx0 + nyy0 + nzz0) = 0, or

Ax+By + Cz +D = 0︸ ︷︷ ︸
implicit form

(recall line in 2D form Ax+By + C = 0)

• A plane divides the 3D space into two:

for one Ax+By + Cz +D > 0, for the other Ax+By + Cz +D < 0

• Similarly a hyperplane also divides the space into two
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Cross products of vectors
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Cross product of vectors

Q. Why?
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Cross product of vectors

Q. Why?

A. Because it allows us to easily switch between planes and their normals
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Cross product of two vectors

• ~u =

 ux
uy
uz

; ~v =

 vx
vy
vz



~w = ~u× ~v =

 uyvz − uzvy
uzvx − uxvz
uxvy − uyvx

: a vector

~u× ~v = −~v × ~u

30



Cross product of two vectors

• ~u =

 ux
uy
uz

; ~v =

 vx
vy
vz



~w = ~u× ~v =

 uyvz − uzvy
uzvx − uxvz
uxvy − uyvx

: a vector

~u× ~v = −~v × ~u

• Geometric interpretation:

~w ⊥ (~u,~v); ~w · ~u =?
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Cross product of two vectors

• ~u =

 ux
uy
uz

; ~v =

 vx
vy
vz



~w = ~u× ~v =

 uyvz − uzvy
uzvx − uxvz
uxvy − uyvx

: a vector

~u× ~v = −~v × ~u

• Geometric interpretation:

~w ⊥ (~u,~v); ~w · ~u = ~w · ~v = 0

||~w|| = ||~u|| ||~v|| sin θ

32



Cross product of two vectors

• ~u =

 ux
uy
uz

; ~v =

 vx
vy
vz



~w = ~u× ~v =

 uyvz − uzvy
uzvx − uxvz
uxvy − uyvx

: a vector

~u× ~v = −~v × ~u

• Geometric interpretation:

~w ⊥ (~u,~v); ~w · ~u = ~w · ~v = 0

||~w|| = ||~u|| ||~v|| sin θ
~u and ~v are parallel; ~w = ~u× ~v =?
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Cross product of two vectors

• ~u =

 ux
uy
uz

; ~v =

 vx
vy
vz



~w = ~u× ~v =

 uyvz − uzvy
uzvx − uxvz
uxvy − uyvx

: a vector

~u× ~v = −~v × ~u

• Geometric interpretation:

~w ⊥ (~u,~v); ~w · ~u = ~w · ~v = 0

||~w|| = ||~u|| ||~v|| sin θ
~u and ~v are parallel; ~w = ~u× ~v = 0
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Cross product and handedness of a co-ordinate system

• Right-handed co-ordinate system: x̂× ŷ = ẑ, ŷ × ẑ = x̂, ẑ × x̂ = ŷ

i.e., (x̂× ŷ) · ẑ > 0 etc.

(this is what we will use)
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Cross product and handedness of a co-ordinate system

• Right-handed co-ordinate system: x̂× ŷ = ẑ, ŷ × ẑ = x̂, ẑ × x̂ = ŷ

i.e., (x̂× ŷ) · ẑ > 0 etc.

(this is what we will use)

• Left-handed co-ordinate system: x̂× ŷ = −ẑ, ŷ × ẑ = −x̂, ẑ × x̂ = −ŷ
i.e., (x̂× ŷ) · ẑ < 0 etc.
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(Hyper)planes and normals
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Revisit: (hyper)planes and normals

• Plane equation Ax+By + Cz +D = 0 (implicit form)

like line in 2D, normal n̂ || ±

 A
B
C


likewise, (shortest) distance from

the origin is
|D|√

A2 +B2 + C2

(similarly for hyperplanes)
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Revisit: (hyper)planes and normals

• Plane equation Ax+By + Cz +D = 0 (implicit form)

like line in 2D, normal n̂ || ±

 A
B
C


likewise, (shortest) distance from

the origin is
|D|√

A2 +B2 + C2

(similarly for hyperplanes)

• Plane using two (planar) vectors (parametric form) x
y
z

 =

 x0
y0
z0

+ lû+ tv̂

(similarly for hyperplanes)
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Revisit: (hyper)planes and normals

• Plane using two (planar) vectors (parametric form) x
y
z

 =

 x0
y0
z0

+ lû+ tv̂

(similarly for hyperplanes)

n̂ || û× v̂ Q. Given ~u and ~v on a plane can you calculate n̂?
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Revisit: (hyper)planes and normals

• Plane using two (planar) vectors (parametric form) x
y
z

 =

 x0
y0
z0

+ lû+ tv̂

(similarly for hyperplanes)

n̂ || û× v̂ A. Given ~u and ~v on a plane n̂ = ~u× ~v/||~u× ~v||
for û ⊥ v̂, (û, v̂, n̂) form a right-handed co-ordinate system

in that case, normal n̂, tangent û, bitangent v̂
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Summary: circles, ellipses, (hyper)planes and cross product

• Circles, ellipses and shooting rays at them

• Shooting rays as a line in 3D

− equations: parametric and implicit-like forms

• Equation of a plane using the normal vector

• Cross product, left- and right-handed co-ordinate systems

− implicit and parametric equations of a plane

− tangent and bitangent vectors
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Summary: circles, ellipses, (hyper)planes and cross product

• Circles, ellipses and shooting rays at them

• Shooting rays as a line in 3D

− equations: parametric and implicit-like forms

• Equation of a plane using the normal vector

• Cross product, left- and right-handed co-ordinate systems

− implicit and parametric equations of a plane

− tangent and bitangent vectors

• Next class: primitives (continued) and projections in 3D
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Finally, references

• Book chapter 2: Miscellaneous Math

− Sec. 2.2, Sec. 2.4.4, 2.4.6-2.4.7

− Sec. 2.5, the relevant parts for 3D
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