Graphics (INFOGR), 2018-19, Block IV, lecture 4 Deb Panja

Today: Primitives (continued) and projections in 3D

Welcome

Today

• Projections

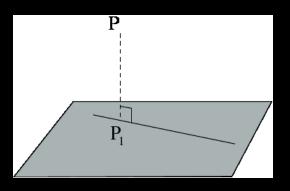
• Lines and spheres in 3D

Recap, and ingredients

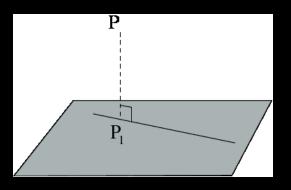
- Will work in 3D, Cartesian co-ordinates: (x, y, z) reference directions
 - in Cartesian co-ordinates \hat{x} , \hat{y} and \hat{z} as basis vectors

• A point P:
$$(x, y, z)$$
, a vector $\vec{v} = \begin{bmatrix} v_x \\ v_y \\ v_z \end{bmatrix}$
- will use vector $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$ to reach point (x, y, z) from the origin

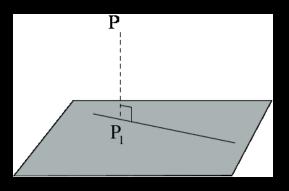
Projections in 3D



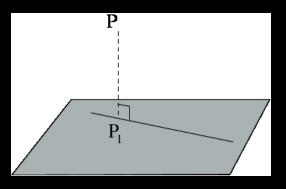
• Given: P (x_0, y_0, z_0) ; plane Ax + By + Cz + D = 0Q. Location of P₁?



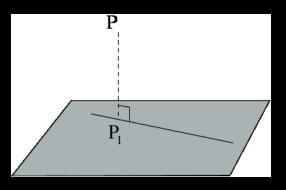
- Given: P (x_0, y_0, z_0) ; plane Ax + By + Cz + D = 0Q. Location of P₁?
 - A. Shoot a ray from $P \perp$ to the plane, intersecting at P_1



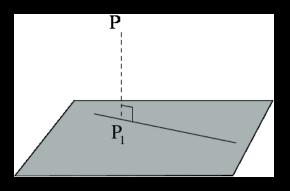
• P: (x_0, y_0, z_0) ; plane: Ax + By + Cz + D = 0shoot a ray \hat{v} from P \perp to the plane



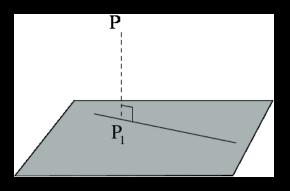
• P: (x_0, y_0, z_0) ; plane: Ax + By + Cz + D = 0 $\hat{v} = \begin{bmatrix} v_x \\ v_y \\ v_z \end{bmatrix} = \pm \frac{1}{\sqrt{A^2 + B^2 + C^2}} \begin{bmatrix} A \\ B \\ C \end{bmatrix}$



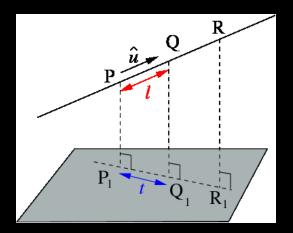
• \mathbf{P} : (x_0, y_0, z_0) ; plane: Ax + By + Cz + D = 0 \mathbf{PP}_1 : $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x_0 \\ y_0 \\ z_0 \end{bmatrix} + a \begin{bmatrix} v_x \\ v_y \\ v_z \end{bmatrix}$



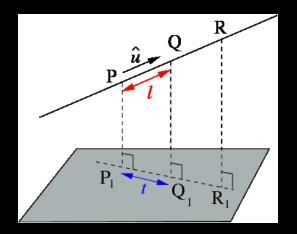
• P: (x_0, y_0, z_0) ; plane: Ax + By + Cz + D = 0P₁: $A(x_0 + av_x) + B(y_0 + av_y) + C(z_0 + av_z) + D = 0$ \Rightarrow solve a; solve for the location of P₁



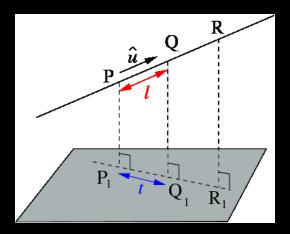
• P: (x_0, y_0, z_0) ; plane: Ax + By + Cz + D = 0P₁: $A(x_0 + av_x) + B(y_0 + av_y) + C(z_0 + av_z) + D = 0$ \Rightarrow solve *a*; solve for the location of P₁ (if a < 0 then use $-\hat{v}$ i.s.o. \hat{v})



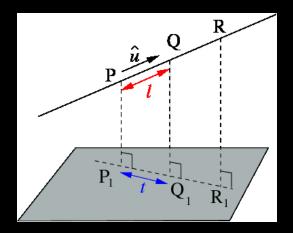
• Given: P location (x_0, y_0, z_0) , \hat{u} , plane equation Ax + By + Cz + D = 0Q. t as a function of l?



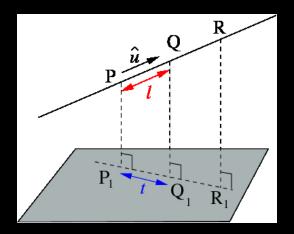
- Given: P location (x_0, y_0, z_0) , \hat{u} , plane equation Ax + By + Cz + D = 0Q. t as a function of l?
 - A. Shoot a ray \hat{v} from P, \perp to the plane, intersecting at P₁ Shoot a ray \hat{v} from Q, \perp to the plane, intersecting at Q₁ Measure P₁Q₁, compare to PQ



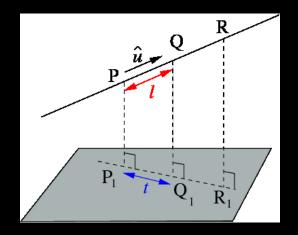
• P: (x_0, y_0, z_0) , \hat{u} , plane: Ax + By + Cz + D = 0shoot a ray \hat{v} from P, \perp plane



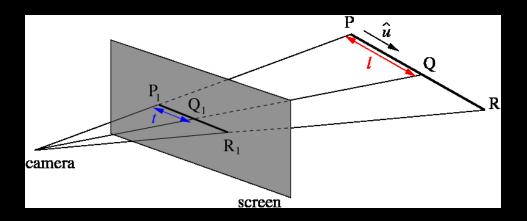
• P: (x_0, y_0, z_0) , \hat{u} , plane: Ax + By + Cz + D = 0P₁: $A(x_0 + av_x) + B(y_0 + av_y) + C(z_0 + av_z) + D = 0$ \Rightarrow solve a; solve for the location of P₁ (if a < 0 then use $-\hat{v}$ i.s.o. \hat{v})



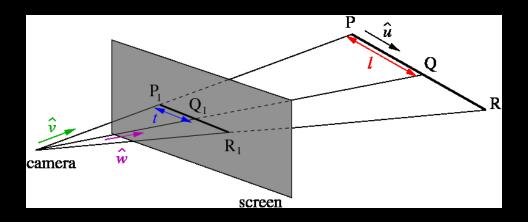
• P: (x_0, y_0, z_0) , \hat{u} , plane: Ax + By + Cz + D = 0P₁: $A(x_0 + av_x) + B(y_0 + av_y) + C(z_0 + av_z) + D = 0$ \Rightarrow solve a; solve for the location of P₁ Q₁: $A((x_0+lu_x)+bv_x)+B((y_0+lu_y)+bv_y)+C((z_0+lu_z)+bv_z)+D = 0$ \Rightarrow solve b; solve for the location of Q₁



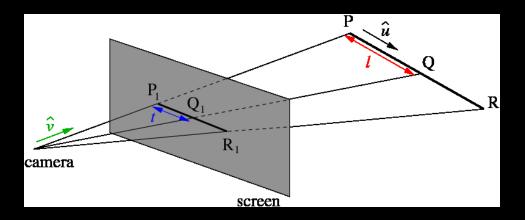
• P: (x_0, y_0, z_0) , \hat{u} , plane: Ax + By + Cz + D = 0P₁: $A(x_0 + av_x) + B(y_0 + av_y) + C(z_0 + av_z) + D = 0$ \Rightarrow solve a; solve for the location of P₁ Q₁: $A((x_0+lu_x)+bv_x)+B((y_0+lu_y)+bv_y)+C((z_0+lu_z)+bv_z)+D = 0$ \Rightarrow solve b; solve for the location of Q₁ determine t from the locations of P₁ and Q₁



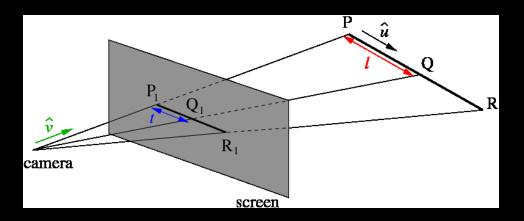
• Given: $P(x_0, y_0, z_0)$, camera (x_c, y_c, z_c) , \hat{u} , screen Ax + By + Cz + D = 0Q. Location of P_1 , and t as a function of l?



- Given: P (x_0, y_0, z_0) , camera (x_c, y_c, z_c) , \hat{u} , screen Ax + By + Cz + D = 0Q. Location of P₁, and t as a function of l?
 - A. Shoot a ray from camera along \hat{v} , intersecting screen at P_1 Shoot a ray from camera along \hat{w} , intersecting screen at Q_1 Measure P_1Q_1 , compare to PQ

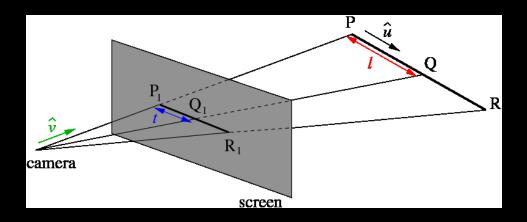


• Given: P (x_0, y_0, z_0) , camera (x_c, y_c, z_c) , \hat{u} , screen Ax + By + Cz + D = 0determine \hat{v} from (x_0, y_0, z_0) and (x_c, y_c, z_c)

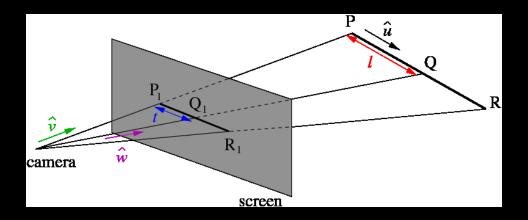


• Given: P (x_0, y_0, z_0) , camera (x_c, y_c, z_c) , \hat{u} , screen Ax + By + Cz + D = 0

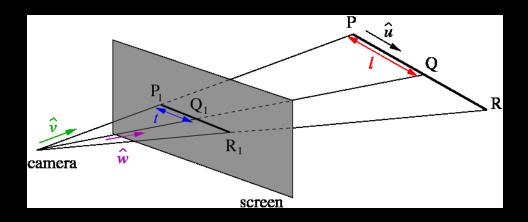
$$\hat{v} = \frac{1}{\sqrt{(x_0 - x_c)^2 + (y_0 - y_c)^2 + (z_0 - z_c)^2}} \begin{bmatrix} x_0 - x_c \\ y_0 - y_c \\ z_0 - z_c \end{bmatrix}$$



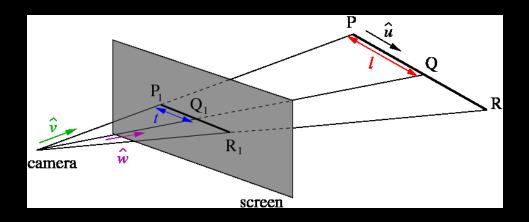
• Given: $P(x_0, y_0, z_0)$, camera (x_c, y_c, z_c) , \hat{u} , screen Ax + By + Cz + D = 0shoot a ray from the camera along \hat{v} , intersecting screen at P_1 P_1 : $A(x_c + av_x) + B(y_c + av_y) + C(z_c + av_z) + D = 0$ \Rightarrow solve *a*; solve for the location of P_1



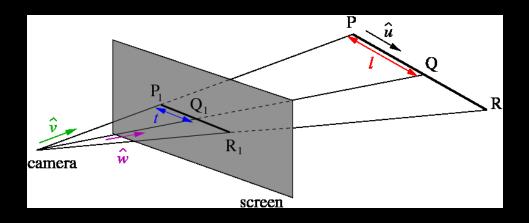
• Given: $P(x_0, y_0, z_0)$, camera (x_c, y_c, z_c) , \hat{u} , screen Ax + By + Cz + D = 0 P_1 : $A(x_c + av_x) + B(y_c + av_y) + C(z_c + av_z) + D = 0$ \Rightarrow solve a; solve for the location of P_1 determine \hat{w} from camera to Q



• Given: P (x_0, y_0, z_0) , camera (x_c, y_c, z_c) , \hat{u} , screen Ax + By + Cz + D = 0P₁: $A(x_c + av_x) + B(y_c + av_y) + C(z_c + av_z) + D = 0$ \Rightarrow solve a; solve for the location of P₁ location of Q: $(x_0 + lu_x, y_0 + lu_y, z_0 + lu_z)$ determine \hat{w} from (x_c, y_c, z_c) and location of Q (note: \hat{w} contains l)



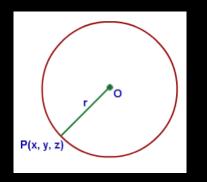
• Given: P (x_0, y_0, z_0) , camera (x_c, y_c, z_c) , \hat{u} , screen Ax + By + Cz + D = 0P₁: $A(x_c + av_x) + B(y_c + av_y) + C(z_c + av_z) + D = 0$ \Rightarrow solve a; solve for the location of P₁ shoot a ray from camera to Q, intersecting screen at Q₁ Q₁: $A(x_c + bw_x) + B(y_c + bw_y) + C(z_c + bw_z) + D = 0$ \Rightarrow solve b; solve for the location of Q₁ (note: \hat{w} contains l)



• Given: P (x_0, y_0, z_0) , camera (x_c, y_c, z_c) , \hat{u} , screen Ax + By + Cz + D = 0P₁: $A(x_c + av_x) + B(y_c + av_y) + C(z_c + av_z) + D = 0$ \Rightarrow solve a; solve for the location of P₁ Q₁: $A(x_c + bw_x) + B(y_c + bw_y) + C(z_c + bw_z) + D = 0$ \Rightarrow solve b; solve for the location of Q₁ (note: \hat{w} contains l) determine t from P₁ and Q₁ (will automatically contain l)

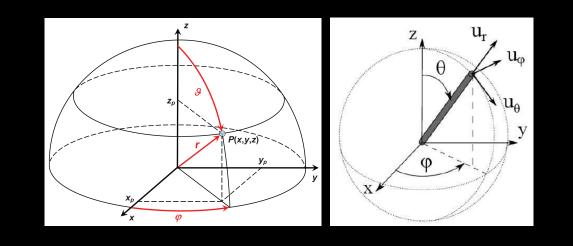
Lines and spheres in 3D

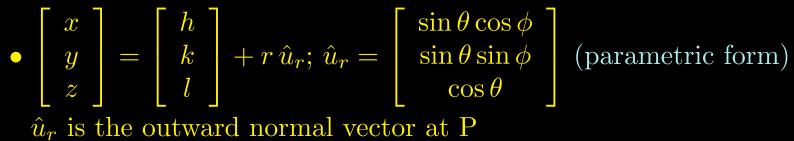
Equation of a sphere



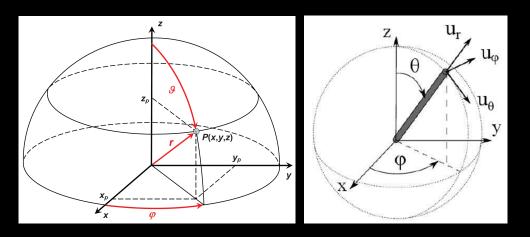
• Sphere: $(x - h)^2 + (y - k)^2 + (z - l)^2 = r^2$ (implicit form) (h, k, l): location of the centre

Spherical co-ordinate system

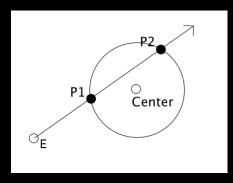




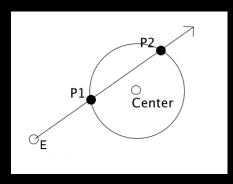
Spherical co-ordinate system



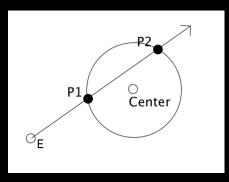
• $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} h \\ k \\ l \end{bmatrix} + r \hat{u}_r; \hat{u}_r = \begin{bmatrix} \sin \theta \cos \phi \\ \sin \theta \sin \phi \\ \cos \theta \end{bmatrix}$ (parametric form) \hat{u}_r is the outward normal vector at P $(\hat{u}_r, \hat{u}_\theta, \hat{u}_\phi)$ for a right-handed co-ordinate system \hat{u}_θ and \hat{u}_ϕ "define" the tangent plane at P (any vector \vec{v} on the tangent plane can be expressed as $\vec{v} = a\hat{u}_\theta + b\hat{u}_\phi$)



Given: Eye at (x₀, y₀, z₀), ray v̂, sphere centre at (h, k, l), radius r
 Q. Find locations of P1 and P2

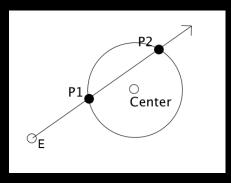


- Given: Eye at (x₀, y₀, z₀), ray v̂, sphere centre at (h, k, l), radius r
 Q. Find locations of P1 and P2
 - A. Shoot a ray from E along \hat{v} , intersect sphere at P1 and P2



• Given: E at (x_0, y_0, z_0) , ray \hat{v} , sphere centre at (h, k, l), radius r

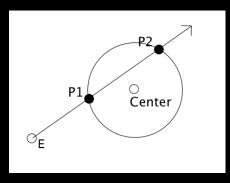
$$\begin{bmatrix} x\\y\\z \end{bmatrix} = \begin{bmatrix} x_0\\y_0\\z_0 \end{bmatrix} + t \begin{bmatrix} v_x\\v_y\\v_z \end{bmatrix}; \quad (x-h)^2 + (y-k)^2 + (z-l)^2 = r^2$$



• Given: E at (x_0, y_0, z_0) , ray \hat{v} , sphere centre at (h, k, l), radius r

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x_0 \\ y_0 \\ z_0 \end{bmatrix} + t \begin{bmatrix} v_x \\ v_y \\ v_z \end{bmatrix}; \quad (x-h)^2 + (y-k)^2 + (z-l)^2 = r^2$$

 \Rightarrow quadratic equation in t: $at^2 + bt + c = 0$

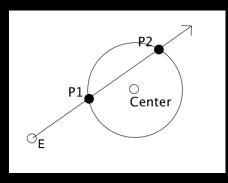


• Given: E at (x_0, y_0, z_0) , ray \hat{v} , sphere centre at (h, k, l), radius r

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x_0 \\ y_0 \\ z_0 \end{bmatrix} + t \begin{bmatrix} v_x \\ v_y \\ v_z \end{bmatrix}; \quad (x-h)^2 + (y-k)^2 + (z-l)^2 = r^2$$

$$\Rightarrow \text{ quadratic equation in } t: at^2 + bt + c = 0$$

$$\Rightarrow t = -\frac{b}{2a} \pm \frac{\sqrt{b^2 - 4ac}}{2a}$$



• Given: E at (x_0, y_0, z_0) , ray \hat{v} , sphere centre at (h, k, l), radius r

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x_0 \\ y_0 \\ z_0 \end{bmatrix} + t \begin{bmatrix} v_x \\ v_y \\ v_z \end{bmatrix}; \quad (x-h)^2 + (y-k)^2 + (z-l)^2 = r^2$$

 $\Rightarrow \text{quadratic equation in } t: at^2 + bt + c = 0 \quad \Rightarrow \quad t = -\frac{b}{2a} \pm \frac{\sqrt{b^2 - 4ac}}{2a}$ $\Rightarrow \text{(i) } b^2 - 4ac > 0: \text{(P1,P2); (ii) } b^2 - 4ac = 0: \text{P1} = \text{P2 (tangent ray);}$ $\text{(iii) } b^2 - 4ac < 0: \text{ no intersection; P2 will not be visible to the eye!}$

Summary: primitives and projections in 3D

- projections of a line on a plane
- Spheres and spherical co-ordinate system
 - surface normal and tangent planes
 - shooting rays towards a sphere and their intersections

Finally, references

- Book chapter 2: Miscellaneous Math
 - Sec. 2.2
 - Sec. 2.5, the relevant parts for 3D
- Good luck with the rest of the first half of the course!