

INFOGR – Computer Graphics
Jacco Bikker & Debabrata Panja - April-July 2019

Lecture 6: “Ray Tracing”

Welcome!

Today’s Agenda:

▪ Ray Tracing Recap

▪ Shading

▪ Textures

Ray Tracing:

World space

▪ Geometry
▪ Eye
▪ Screen plane
▪ Screen pixels
▪ Primary rays
▪ Intersections
▪ Point light
▪ Shadow rays

Light transport

▪ Extension rays

Light transport

INFOGR – Lecture 6 – “Ray Tracing” 4

Ray Tracing

Recap

Ray definition

A ray is an infinite line with a start point:

𝑝(𝑡) = 𝑂 + 𝑡𝐷, where 𝑡 > 0.

struct Ray
{

float3 O; // ray origin
float3 D; // ray direction
float t; // distance

};

The ray direction is generally normalized.

INFOGR – Lecture 6 – “Ray Tracing” 5

𝑝1

𝑝0

𝑝2

𝐸

𝑝
2

−
𝑝

0

Ray setup

Point on the screen: 𝑝 𝑢, 𝑣 = 𝑝0 + 𝑢 𝑝1 − 𝑝0 + 𝑣(𝑝2 − 𝑝0), 𝑢, 𝑣 ∈ [0,1)

Ray direction (before normalization): 𝐷 = 𝑝 𝑢, 𝑣 − 𝐸

P?

O

𝑡 = −(𝑂 ∙ 𝑁 + 𝑑)/(𝐷 ∙ 𝑁)

𝐷 ∙ 𝑁 = 𝐷𝑥𝑁𝑥 + 𝐷𝑦𝑁𝑦+ 𝐷𝑧𝑁𝑧

𝑂 ∙ 𝑁 = 𝑂𝑥𝑁𝑥 + 𝑂𝑦𝑁𝑦+ 𝑂𝑧𝑁𝑧

O

𝐷

Ԧ𝑐

t

Ԧ𝑞

𝑝2

Today’s Agenda:

▪ Ray Tracing Recap

▪ Shading

▪ Textures

Shading

INFOGR – Lecture 6 – “Ray Tracing” 7

Shading

The End

We used primary rays to find the primary intersection point.

Determining light transport:

▪ Sum illumination from all light sources
▪ …If they are visible.

We used a primary ray to find the object visible through a pixel:
Now we will use a shadow ray to determine visibility of a light source.

INFOGR – Lecture 6 – “Ray Tracing” 8

Shading

Shadow Ray

Constructing the shadow ray:

𝑝(𝑡) = 𝑂 + 𝑡𝐷

Ray origin: the primary intersection point 𝐼.

Ray direction: 𝑃𝑙𝑖𝑔ℎ𝑡 − 𝐼

Restrictions on 𝑡: 0 < 𝑡 < | 𝑃𝑙𝑖𝑔ℎ𝑡 − 𝐼 |

INFOGR – Lecture 6 – “Ray Tracing” 9

𝐼

𝑃𝑙𝑖𝑔ℎ𝑡

(normalized)

Shading

Shadow Ray

Direction of the shadow ray:
𝑃𝑙𝑖𝑔ℎ𝑡−𝐼

∥𝑃𝑙𝑖𝑔ℎ𝑡−𝐼∥

Equally valid:
𝐼−𝑃𝑙𝑖𝑔ℎ𝑡

∥𝑃𝑙𝑖𝑔ℎ𝑡−𝐼∥
or

𝐼−𝑃𝑙𝑖𝑔ℎ𝑡

∥𝐼−𝑃𝑙𝑖𝑔ℎ𝑡∥

Note that we get different intersection points
depending on the direction of the shadow ray.

It doesn’t matter: the shadow ray is used to
determine if there is an occluder, not where.

This has two consequences:

1. We need a dedicated shadow ray query;
2. Shadow ray queries are (on average) twice as fast. (why?)

INFOGR – Lecture 6 – “Ray Tracing” 10

𝐼

𝑃𝑙𝑖𝑔ℎ𝑡

Shading

Shadow Ray

“In theory, theory and practice are the same. In practice, they are not.”

Problem 1:

Our shadow ray queries report intersections at 𝑡 = ~0. Why?

Cause: the shadow ray sometimes finds the surface it
originated from as an occluder, resulting in shadow acne.

Fix: offset the origin by ‘epsilon’ times the shadow ray direction.

Note: don’t forget to reduce 𝑡𝑚𝑎𝑥 by epsilon.

INFOGR – Lecture 6 – “Ray Tracing” 11

Shading

Shadow Ray

“In theory, theory and practice are the same. In practice, they are not.”

Problem 2:

Our shadow ray queries report intersections at 𝑡 = 𝑡𝑚𝑎𝑥. Why?

Cause: when firing shadow rays from the light source, they may find
the surface that we are trying to shade.

Fix: reduce 𝑡m𝑎x by 2 ∗ 𝑒𝑝𝑠𝑖𝑙𝑜𝑛.

INFOGR – Lecture 6 – “Ray Tracing” 12

Shading

Shadow Ray

“The most expensive shadow rays are those that do not find an
intersection.”

Why?

(because those rays tested every primitive before concluding that there was no occlusion)

INFOGR – Lecture 6 – “Ray Tracing” 13

Shading

Transport

The amount of energy travelling from the light via the
surface point to the eye depends on:

▪ The brightness of the light source

▪ The distance of the light source to the surface point

▪ Absorption at the surface point

▪ The angle of incidence of the light energy

INFOGR – Lecture 6 – “Ray Tracing” 14

Shading

Transport

Brightness of the light source:

Expressed in watt (W), or joule per second (𝐽/𝑠 or 𝐽𝑠−1).

Energy is transported by photons.

Photon energy depends on wavelength; energy for a
‘yellow’ photon is ~3.31 ∙ 10−19 J.

A 100W light bulb thus emits ~3.0 ∙ 1021 photons per
second.

INFOGR – Lecture 6 – “Ray Tracing” 15

Shading

INFOGR – Lecture 6 – “Ray Tracing” 16

Transport

Energy at distance 𝑟:

For a point light, a brief pulse of light energy spreads out as
a growing sphere. The energy is distributed over the
surface of this sphere.

Energy per unit area is therefore proportional to the
inverse area of the sphere at distance 𝑟, i.e.:

𝐸/𝑚2 = 𝐸𝑙𝑖𝑔ℎ𝑡

1

4𝜋𝑟2

Light energy thus dissipates at a rate of
1

𝑟2.

This is referred to as distance attenuation.

Shading

Transport

Absorption:

Most materials absorb light energy. The wavelengths that
are not fully absorbed define the ‘color’ of a material.

The reflected light is thus:

𝐸𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑒𝑑 = 𝐸𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔 ○ 𝐶𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙

Note that 𝐶𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 cannot exceed 1; the reflected light is
never more than the incoming light.

𝐶𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 is typically a vector: we store r, g, b for all
light transport.

𝐴 ○ 𝐵 =

𝐴𝑥𝐵𝑥

𝐴𝑦𝐶𝑦

𝐴𝑧𝐶𝑧

(‘entrywise product’)

INFOGR – Lecture 6 – “Ray Tracing” 17

Shading

Transport

Energy arriving at an angle:

A small bundle of light arriving at a surface affects a larger
area than the cross-sectional area of the bundle.

Per 𝑚2, the surface thus receives
less energy. The remaining energy
is proportional to:

cos 𝛼 or: 𝑁 ∙ 𝐿.

INFOGR – Lecture 6 – “Ray Tracing” 18

Shading

Transport

All factors:

▪ Emitted light : defined as RGB color, floating point

▪ Distance attenuation:
1

𝑟2

▪ Absorption, modulate by material color

▪ N dot L

INFOGR – Lecture 6 – “Ray Tracing” 19

𝛼

cos 𝛼

𝐸𝑙𝑖𝑔ℎ𝑡

𝒄𝒐𝒍𝒐𝒓

𝑵

𝑳

Shading

INFOGR – Lecture 6 – “Ray Tracing” 20

Today’s Agenda:

▪ Ray Tracing Recap

▪ Shading

▪ Textures

Textures

INFOGR – Lecture 6 – “Ray Tracing” 22

Texturing a Plane

Given a plane: 𝑦 = 0 (i.e., with a normal vector (0,1,0)).

Two vectors on the plane define a basis: 𝑢 = (1,0,0) and Ԧ𝑣 = (0,0,1).

Using these vectors, any point on the plane can be reached: 𝑃 = λ1𝑢 + λ2 Ԧ𝑣.

We can now use λ1, λ2 to define a color at P: 𝐹(λ1, λ2) = ⋯ .

𝑢

Ԧ𝑣 P

Textures

Example:

𝐹(λ1, λ2) = sin(λ1)

Another example:

𝐹(λ1, λ2) = (int (2 ∗ λ1) + (int)λ2) & 1

INFOGR – Lecture 6 – “Ray Tracing” 23

Textures

Other examples (not explained here):

Perlin noise
Details: http://www.noisemachine.com/talk1

Voronoi / Worley noise
Details: “A cellular texture basis function”, S. Worley, 1996.

INFOGR – Lecture 6 – “Ray Tracing” 24

http://www.noisemachine.com/talk1

Textures

INFOGR – Lecture 3 – “Geometry”

Textures

Obviously, not all textures can be generated procedurally.

Finding P using basis vectors 𝑢, Ԧ𝑣 and parameters λ1, λ2:

𝑃𝑥

𝑃𝑦
= λ1𝑢 + λ2 Ԧ𝑣 =

λ1𝑢𝑥 + λ2 Ԧ𝑣𝑥

λ1𝑢𝑦 + λ2 Ԧ𝑣𝑦

...But what about the opposite, i.e. can we find λ1, λ2 given P?

𝑢

Ԧ𝑣

P

INFOGR – Lecture 6 – “Ray Tracing” 26

0 255
0

255

Textures

Obviously, not all textures can be generated procedurally.

For the generic case, we lookup the color value in a pixel buffer.

𝑥
𝑦 = 𝑃 ∙ 𝑢

𝑃 ∙ Ԧ𝑣

Note that we find the pixel to read based on 𝑃; we don’t find a ‘𝑃’
for every pixel of the texture.

𝑢

Ԧ𝑣

P

∗
𝑇𝑤𝑖𝑑𝑡ℎ

𝑇ℎ𝑒𝑖𝑔ℎ𝑡

INFOGR – Lecture 6 – “Ray Tracing” 27

Textures

Retrieving a pixel from a texture:

𝑥
𝑦 = 𝑃 ∙ 𝑢

𝑃 ∙ Ԧ𝑣
∗

𝑇𝑤𝑖𝑑𝑡ℎ

𝑇ℎ𝑒𝑖𝑔ℎ𝑡

We don’t want to read outside the texture. To prevent this, we have
two options:

1. Clamping

2. Tiling

Tiling is efficiently achieved using a bitmask. This requires texture
dimensions that are a power of 2.

0 255
0

255
𝑥
𝑦 =

𝑐𝑙𝑎𝑚𝑝(𝑃 ∙ 𝑢, 0, 1)

𝑐𝑙𝑎𝑚𝑝(𝑃 ∙ Ԧ𝑣, 0,1)
∗

𝑇𝑤𝑖𝑑𝑡ℎ

𝑇ℎ𝑒𝑖𝑔ℎ𝑡

𝑥
𝑦 =

𝑓𝑟𝑎𝑐(𝑃 ∙ 𝑢)

𝑓𝑟𝑎𝑐(𝑃 ∙ Ԧ𝑣)
∗

𝑇𝑤𝑖𝑑𝑡ℎ

𝑇ℎ𝑒𝑖𝑔ℎ𝑡

INFOGR – Lecture 6 – “Ray Tracing” 28

Textures

Texture mapping: oversampling

INFOGR – Lecture 6 – “Ray Tracing” 29

Textures

Texture mapping: undersampling

INFOGR – Lecture 6 – “Ray Tracing” 30

Textures

Fixing oversampling

Oversampling: reading the same pixel from a texture multiple times.
Symptoms: blocky textures.

Remedy: bilinear interpolation:
Instead of clamping the pixel location to
the nearest pixel, we read from four pixels.

𝑤𝑝1 : (1 − 𝑓𝑟𝑎𝑐(𝑥)) ∗ (1 − 𝑓𝑟𝑎𝑐(𝑦))
𝑤𝑝2 : 𝑓𝑟𝑎𝑐 𝑥 ∗ (1 − 𝑓𝑟𝑎𝑐 𝑦)

𝑤𝑝3 : 1 − 𝑓𝑟𝑎𝑐 𝑥 ∗ 𝑓𝑟𝑎𝑐(𝑦)

𝑤𝑝4 : 1 − (𝑤𝑃1 +
𝑤𝑃2 +

𝑤𝑃3)

INFOGR – Lecture 6 – “Ray Tracing” 31

Textures

Fixing oversampling

INFOGR – Lecture 6 – “Ray Tracing” 32

Textures

Fixing undersampling

Undersampling: skipping pixels while reading from a texture.
Symptoms: Moiré, flickering, noise.

Remedy: MIP-mapping.

The texture is reduced to 25% by averaging
2x2 pixels. This is repeated until a 1x1 image
remains.

When undersampling occurs, we switch to
the next MIP level.

INFOGR – Lecture 6 – “Ray Tracing” 33

Textures

INFOGR – Lecture 3 – “Geometry”

Textures

INFOGR – Lecture 3 – “Geometry”

Textures

Trilinear interpolation: blending between MIP levels.

INFOGR – Lecture 6 – “Ray Tracing” 36

Today’s Agenda:

▪ Ray Tracing Recap

▪ Shading

▪ Textures

INFOGR – Computer Graphics
Jacco Bikker & Debabrata Panja - April-July 2019

END OF Lecture 6: “Ray Tracing”

Next lecture: “Ray Tracing (2)”

