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Lecture 6: “Ray Tracing”

Welcome!



Today’s Agenda:

▪ Ray Tracing Recap

▪ Shading

▪ Textures



Ray Tracing:

World space

▪ Geometry
▪ Eye
▪ Screen plane
▪ Screen pixels
▪ Primary rays
▪ Intersections
▪ Point light
▪ Shadow rays

Light transport

▪ Extension rays

Light transport

INFOGR – Lecture 6 – “Ray Tracing” 4

Ray Tracing



Recap

Ray definition

A ray is an infinite line with a start point:

𝑝(𝑡) = 𝑂 + 𝑡𝐷, where 𝑡 > 0.

struct Ray
{

float3 O; // ray origin
float3 D; // ray direction
float t; // distance

};

The ray direction is generally normalized.
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Ray setup

Point on the screen: 𝑝 𝑢, 𝑣 = 𝑝0 + 𝑢 𝑝1 − 𝑝0 + 𝑣(𝑝2 − 𝑝0),  𝑢, 𝑣 ∈ [0,1)

Ray direction (before normalization): 𝐷 = 𝑝 𝑢, 𝑣 − 𝐸

P?

O

𝑡 = −(𝑂 ∙ 𝑁 + 𝑑)/(𝐷 ∙ 𝑁)

𝐷 ∙ 𝑁 = 𝐷𝑥𝑁𝑥 + 𝐷𝑦𝑁𝑦+ 𝐷𝑧𝑁𝑧

𝑂 ∙ 𝑁 = 𝑂𝑥𝑁𝑥 + 𝑂𝑦𝑁𝑦+ 𝑂𝑧𝑁𝑧

O

𝐷

Ԧ𝑐

t

Ԧ𝑞

𝑝2



Today’s Agenda:

▪ Ray Tracing Recap

▪ Shading

▪ Textures



Shading
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Shading

The End

We used primary rays to find the primary intersection point.

Determining light transport:

▪ Sum illumination from all light sources
▪ …If they are visible.

We used a primary ray to find the object visible through a pixel:
Now we will use a shadow ray to determine visibility of a light source.
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Shading

Shadow Ray

Constructing the shadow ray:

𝑝(𝑡) = 𝑂 + 𝑡𝐷

Ray origin: the primary intersection point 𝐼.

Ray direction: 𝑃𝑙𝑖𝑔ℎ𝑡 − 𝐼

Restrictions on 𝑡:      0 < 𝑡 < | 𝑃𝑙𝑖𝑔ℎ𝑡 − 𝐼 |
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(normalized)



Shading

Shadow Ray

Direction of the shadow ray:  
𝑃𝑙𝑖𝑔ℎ𝑡−𝐼

∥𝑃𝑙𝑖𝑔ℎ𝑡−𝐼∥

Equally valid:                               
𝐼−𝑃𝑙𝑖𝑔ℎ𝑡

∥𝑃𝑙𝑖𝑔ℎ𝑡−𝐼∥
or   

𝐼−𝑃𝑙𝑖𝑔ℎ𝑡

∥𝐼−𝑃𝑙𝑖𝑔ℎ𝑡∥

Note that we get different intersection points 
depending on the direction of the shadow ray.

It doesn’t matter: the shadow ray is used to 
determine if there is an occluder, not where.

This has two consequences:

1. We need a dedicated shadow ray query;
2. Shadow ray queries are (on average) twice as fast.  (why?)
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Shading

Shadow Ray

“In theory, theory and practice are the same. In practice, they are not.”

Problem 1:

Our shadow ray queries report intersections at 𝑡 = ~0. Why?

Cause: the shadow ray sometimes finds the surface it 
originated from as an occluder, resulting in shadow acne.

Fix: offset the origin by ‘epsilon’ times the shadow ray direction.

Note: don’t forget to reduce 𝑡𝑚𝑎𝑥 by epsilon.
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Shading

Shadow Ray

“In theory, theory and practice are the same. In practice, they are not.”

Problem 2:

Our shadow ray queries report intersections at 𝑡 = 𝑡𝑚𝑎𝑥. Why?

Cause: when firing shadow rays from the light source, they may find 
the surface that we are trying to shade.

Fix: reduce 𝑡m𝑎x by   2 ∗ 𝑒𝑝𝑠𝑖𝑙𝑜𝑛.
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Shading

Shadow Ray

“The most expensive shadow rays are those that do not find an 
intersection.”

Why?

(because those rays tested every primitive before concluding that there was no occlusion)
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Shading

Transport

The amount of energy travelling from the light via the 
surface point to the eye depends on:

▪ The brightness of the light source

▪ The distance of the light source to the surface point

▪ Absorption at the surface point

▪ The angle of incidence of the light energy
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Shading

Transport

Brightness of the light source:

Expressed in watt (W), or joule per second  ( 𝐽/𝑠 or 𝐽𝑠−1).

Energy is transported by photons.

Photon energy depends on wavelength; energy for a 
‘yellow’ photon is ~3.31 ∙ 10−19 J.

A 100W light bulb thus emits ~3.0 ∙ 1021 photons per 
second.
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Shading
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Transport

Energy at distance 𝑟:

For a point light, a brief pulse of light energy spreads out as 
a growing sphere. The energy is distributed over the 
surface of this sphere.

Energy per unit area is therefore proportional to the 
inverse area of the sphere at distance 𝑟, i.e.:

𝐸/𝑚2 = 𝐸𝑙𝑖𝑔ℎ𝑡

1

4𝜋𝑟2

Light energy thus dissipates at a rate of  
1

𝑟2.

This is referred to as distance attenuation.



Shading

Transport

Absorption:

Most materials absorb light energy. The wavelengths that 
are not fully absorbed define the ‘color’ of a material.

The reflected light is thus:

𝐸𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑒𝑑 = 𝐸𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔 ○ 𝐶𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙

Note that 𝐶𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 cannot exceed 1; the reflected light is 
never more than the incoming light.

𝐶𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 is typically a vector: we store r, g, b for all 
light transport.

𝐴 ○ 𝐵 =

𝐴𝑥𝐵𝑥

𝐴𝑦𝐶𝑦

𝐴𝑧𝐶𝑧

(‘entrywise product’)

INFOGR – Lecture 6 – “Ray Tracing” 17



Shading

Transport

Energy arriving at an angle:

A small bundle of light arriving at a surface affects a larger 
area than the cross-sectional area of the bundle.

Per 𝑚2, the surface thus receives 
less energy. The remaining energy 
is proportional to:

cos 𝛼 or:   𝑁 ∙ 𝐿.
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Shading

Transport

All factors:

▪ Emitted light : defined as RGB color, floating point

▪ Distance attenuation: 
1

𝑟2

▪ Absorption, modulate by material color

▪ N dot L
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Shading
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Today’s Agenda:

▪ Ray Tracing Recap

▪ Shading

▪ Textures



Textures
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Texturing a Plane

Given a plane: 𝑦 = 0 (i.e., with a normal vector (0,1,0) ).

Two vectors on the plane define a basis: 𝑢 = (1,0,0) and Ԧ𝑣 = (0,0,1).

Using these vectors, any point on the plane can be reached: 𝑃 = λ1𝑢 + λ2 Ԧ𝑣.

We can now use λ1, λ2 to define a color at P: 𝐹(λ1, λ2) = ⋯ .

𝑢

Ԧ𝑣 P



Textures

Example:

𝐹(λ1, λ2) = sin(λ1)

Another example:

𝐹(λ1, λ2) = ( int (2 ∗ λ1) + (int)λ2) & 1
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Textures

Other examples (not explained here):

Perlin noise
Details:  http://www.noisemachine.com/talk1

Voronoi / Worley noise
Details:  “A cellular texture basis function”, S. Worley, 1996.
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Textures

INFOGR – Lecture 3 – “Geometry”



Textures

Obviously, not all textures can be generated procedurally.

Finding P using basis vectors 𝑢, Ԧ𝑣 and parameters λ1, λ2:

𝑃𝑥

𝑃𝑦
= λ1𝑢 + λ2 Ԧ𝑣 =

λ1𝑢𝑥 + λ2 Ԧ𝑣𝑥

λ1𝑢𝑦 + λ2 Ԧ𝑣𝑦

...But what about the opposite, i.e. can we find λ1, λ2 given P?

𝑢

Ԧ𝑣

P
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Textures

Obviously, not all textures can be generated procedurally.

For the generic case, we lookup the color value in a pixel buffer.

𝑥
𝑦 = 𝑃 ∙ 𝑢

𝑃 ∙ Ԧ𝑣

Note that we find the pixel to read based on 𝑃; we don’t find a ‘𝑃’ 
for every pixel of the texture.

𝑢

Ԧ𝑣

P

∗
𝑇𝑤𝑖𝑑𝑡ℎ

𝑇ℎ𝑒𝑖𝑔ℎ𝑡
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Textures

Retrieving a pixel from a texture:

𝑥
𝑦 = 𝑃 ∙ 𝑢

𝑃 ∙ Ԧ𝑣
∗

𝑇𝑤𝑖𝑑𝑡ℎ

𝑇ℎ𝑒𝑖𝑔ℎ𝑡

We don’t want to read outside the texture. To prevent this, we have 
two options:

1. Clamping

2. Tiling

Tiling is efficiently achieved using a bitmask. This requires texture 
dimensions that are a power of 2.

0 255
0

255
𝑥
𝑦 =

𝑐𝑙𝑎𝑚𝑝(𝑃 ∙ 𝑢, 0, 1)

𝑐𝑙𝑎𝑚𝑝(𝑃 ∙ Ԧ𝑣, 0,1)
∗

𝑇𝑤𝑖𝑑𝑡ℎ

𝑇ℎ𝑒𝑖𝑔ℎ𝑡

𝑥
𝑦 =

𝑓𝑟𝑎𝑐(𝑃 ∙ 𝑢)

𝑓𝑟𝑎𝑐(𝑃 ∙ Ԧ𝑣)
∗

𝑇𝑤𝑖𝑑𝑡ℎ

𝑇ℎ𝑒𝑖𝑔ℎ𝑡
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Textures

Texture mapping: oversampling
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Textures

Texture mapping: undersampling
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Textures

Fixing oversampling

Oversampling: reading the same pixel from a texture multiple times.
Symptoms: blocky textures.

Remedy: bilinear interpolation:
Instead of clamping the pixel location to 
the nearest pixel, we read from four pixels.

𝑤𝑝1 :  (1 − 𝑓𝑟𝑎𝑐(𝑥)) ∗ (1 − 𝑓𝑟𝑎𝑐(𝑦))
𝑤𝑝2 :  𝑓𝑟𝑎𝑐 𝑥 ∗ (1 − 𝑓𝑟𝑎𝑐 𝑦 )

𝑤𝑝3 :  1 − 𝑓𝑟𝑎𝑐 𝑥 ∗ 𝑓𝑟𝑎𝑐(𝑦)

𝑤𝑝4 :  1 − (𝑤𝑃1 +
𝑤𝑃2 +

𝑤𝑃3)
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Textures

Fixing oversampling

INFOGR – Lecture 6 – “Ray Tracing” 32



Textures

Fixing undersampling

Undersampling: skipping pixels while reading from a texture.
Symptoms: Moiré, flickering, noise.

Remedy: MIP-mapping.

The texture is reduced to 25% by averaging
2x2 pixels. This is repeated until a 1x1 image
remains.

When undersampling occurs, we switch to
the next MIP level.
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Textures

INFOGR – Lecture 3 – “Geometry”



Textures
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Textures

Trilinear interpolation: blending between MIP levels.
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Today’s Agenda:

▪ Ray Tracing Recap

▪ Shading

▪ Textures
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END OF Lecture 6: “Ray Tracing”

Next lecture: “Ray Tracing (2)”


