Graphics (INFOGR), 2018-19, Block 1V, lecture 8
Deb Panja

Today: Matrices and introduction
to transformations

Welcome back!



Today

e Matrices: why and what?

e Matrix operations

e Determinants

e Adjoint/adjugate and inverse of matrices
e Geometric interpretation of determinants

e Introduction to transtformations



Spatial transformations — part II of the course

Figure: Transformation of a teapot object

teapot in its object space

rotation followed by
translation
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Spatial transformations — part II of the course

Figure: Transformation of a teapot object
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rotation followed by
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(0,2,3) =

2~(10.2,0)

world space

e Why matrices?
— you need to execute such spatial transformations (a lot!)

— matrices are the vehicles you need for these tasks



Spatial transformations — part II of the course

Figure: Transformation of a teapot object

teapot in its object space

rotation followed by
translation

(0.2.3) w2

2~(10.2,0)

world space

e Why matrices?
— you need to execute such spatial transformations (a lot!)

— matrices are the vehicles you need for these tasks

e That means: it’s nearly impossible to dissociate matrices from
transformations they achieve

ot



Bigger scheme of things: three upcoming maths lectures

Today:

Matrices
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Bigger scheme of things: three upcoming maths lectures

Next class:
Transformations I

Today:

Matrices

Next class:
Transformations 11

e It’s been a choice to make a clean separation this way!



What is a matrix?



What is a matrix?

10



What is a matrix?

A Matrix

A matrix is

simple. I's

1 just a two
dimensional

array of

numbers.

e You'll store it on a computer as a two-dimensional array: arr|3]|[3]
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e Example:

Why matrices?

A Matrix

A matrix is

simple. IU's

1 2 3 just a two
dimensional

array of

4 5 6 numbers.
The

operations

defined for
matrices

makes them
special.

about that in the next lecture)
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Matrices

apj

azj

dij

Uy

4
Jth column of A

ith row of A
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Matrices

ai; ... iy « ith row of A

iy

4
Jth column of A

e Dimension of the above matrix: m X n
— when m = n, the matrix is called a square matrix
— a;; (1 € [1,m],j € [1,n]) are the matrix elements/coeflicients
— shorthand notation A = {a;;}
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Matrices

ai; ... iy « ith row of A

iy

4
Jth column of A

e Dimension of the above matrix: m x n
— when m = n, the matrix is called a square matrix
— a;; (¢ € [1,m],j € |[1,n]) are the matrix elements/coeflicients
— shorthand notation A = {a;;}

e A d-dimensional vector is a d X 1 matrix

— an m Xn matrix: n vertical concatenation of m-dimensional vectors



Matrices

a i

azj

G . i < ith row of A

U §

1
Jth column of A

e Dimension of the above matrix: m X n
— when m = n, the matrix is called a square matrix
— a;; (1 € [1,m],5 € [1,n]) are the matrix elements/coefficients
— shorthand notation A = {a;;}

e A d-dimensional vector is a d X 1 matrix
— an m Xn matrix: n vertical concatenation of m-dimensional vectors

e A scalar is a 1 x 1 matrix
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Special matrices

e Diagonal matrix: square matrix with a;; = 0
for ¢+ # j5; e.g.,

(a diagonal matrix is by definition a square matrix)

17



Special matrices

e Diagonal matrix: square matrix with a;; = 0
for ¢+ # j5; e.g.,

(a diagonal matrix is by definition a square matrix)

e Identity matrix: diagonal matrix with a;; = 1, e.g.,

(denoted by I, an identity matrix is also by definition a square matrix)

18



Special matrices

e Diagonal matrix: square matrix with a;; = 0
for + # j; e.g.,

(a diagonal matrix is by definition a square matrix)

1 0 0 0
01 0 0
e Identity matrix: diagonal matrix with a;; = 1, e.g., 00 10
000 1

(denoted by I, an identity matrix is also by definition a square matrix)

e Null matrix (denoted by @ or O): a;; =0, e.g.,
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Matrix operations
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Addition

Ayl A2

of matrices

Cnn b el 'I-] m2

ain +bn app+bia - ap, + by
asi +bar  azp +by - as, + by,

{-I'T,r]l _'_ bi"ﬂ-l (Ljﬁ_‘_g _l_ brﬂ,z e 'J'TTI.'J‘?. + bn?."ﬂ.
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Addition of matrices

Ayl A2 e A, bm.'l 'I-]m'-.?

ain +bn app+bia - ap, + by
asi +bar  azp +by - as, + by,

{-I'T,r]l _'_ bi"ﬂ-l (Ljﬁ_‘_g _l_ brﬂ,z e 'J'TTI.'J‘?. + bn?."ﬂ.

248 3+7
545 644
8+2 941

le 18 1e

le 18 18
le 18 1@

e Can only add matrices of same dimensions!
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Scalar

multiplication of matrices

23



Addition and scalar multiplication of matrices

Properties of Matrix Addition and Scalar Multiplication

Let A,
1.

B. and C be m x n matrices and let ¢ and d be scalars.

A+B=B+A

A £ (B+C)=1A+RB) + €
. (cd)A = c(dA)

. 1A =A

LAT+O=A
.c(A+B)=cA+ cB

7. (c + d)A = cA + dA

Commutative Property of Matrix Addition
Associative Property of Matrix Addition
Associative Property of Scalar Multiplication
Scalar Identity

Additive Identity

Distributive Property

Distributive Property
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Subtraction of matrices

e A and B are matrices of the same dimensions; then A—B = A+(—1)B;

1-0 3-0
=|1-7 0-5
1-2 2-1

(can only subtract matrices of same dimensions!)



Matrix multiplication

e A and B are m x n and n X p dimensional matrices respectively

then C' = AB is an m X p-dimensional matrix
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Matrix multiplication

e A and B are m x n and n X p dimensional matrices respectively
then C' = AB is an m X p-dimensional matrix

mn
e matrix elements c¢;; = g ;b
k=1
on a computer: ¢;; = 0; for (k=1; k <=n; k++) ¢;; += airbi;

9
7 10| _ {50 94 178

11
12

60 120 220
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e Vectors u =

]

<y
|

[ug us .

Uq

. ud]

and v =

(%)

Ud

— U - U= U1 + UV + ...+ ugvy

U1
(%)

Ud

Vector dot product as a matrix multiplication
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Matrix multiplication properties

e In general, AB # BA! (i.e., they do not commute)
however, AB = BA if both A and B are diagonal
in particular, JA = Al = A and AO=0A =0

e A(B+C)=AB+ AC, (A+ B)C = AC + BC: distributive
e (AB)C = A(BC): associative
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Transpose of a matrix

Original
matrix
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Transpose of a matrix

Original
matrix

IMatrix - Transpose of matrix

12 135
34
Lﬂ] = [2“]

Matrix Transpose of matmix :

135 = lj
246 ;s

o Al = transpose(A); (A1) =A
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Determinants and cofactors
(only for square matrices!)
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Determinants

e Determinant of matrix A = det(A), or |A|; a scalar quantity

Notation for 3x3 determinant :

a; by ¢

e Also as det a b2 ¢

az bz c3

e Determinants and cofactors are inextricably linked
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Determinant (1 x 1 matrices)

e Determinant of a 1 X 1 matrix is the value of its element

e.g., A=[-5], det(A) = -5
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Determinant (2 x 2 matrices)

e Consider the 2 x 2 matrix A = [ air ai2 ]

az1 Q22
det(A) = aq1 cof(ai1) + a2 cof(ai2)
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Determinant (2 x 2 matrices)

e Consider the 2 x 2 matrix A = [ air ai2 ]

21 Q22
det(A) = a1y cof(ai1) + a2 cof(arz) = asy cof(asy) + ase cof(ass)
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Determinant (2 x 2 matrices)

e Consider the 2 x 2 matrix A = [ air  ai2 ]

21 Q22
det(A) = a1y cof(ai1) + a2 cof(arz) = asy cof(asy) + ase cof(ass)

= a1 COf(afll) + a1 COf(an)
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Determinant (2 x 2 matrices)

e Consider the 2 x 2 matrix A = [ a1l ai2 ]

21 Q22
det(A) = a1y cof(ai1) + a2 cof(arz) = asy cof(asy) + ase cof(ass)

= ay1 cof(ay1) + asy cof(asr) = ays cof(ar) + ass cof(ass)
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Determinant (2 x 2 matrices)

az; 22
det(A) = aq1 cof(ai1) + a2 cof(ai2)
cof(a;;) = (—1)"*7 det(minor(a;;))

minor(a;;) is the matrix without the ¢-th row and j-th column of A

e Consider the 2 x 2 matrix A = [ air ai2 ]

Q. What is the determinant of the above matrix A?
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Determinant (2 x 2 matrices)

ail a2
a1 a2
det(A) = aq1 cof(ay1) + a2 cof(ais)
cof(a;;) = (—1)"*7 det(minor(a;;))

minor(a;;) is the matrix without the i-th row and j-th column of A

e Consider the 2 x 2 matrix A = [

Q. What is the determinant of of the above matrix A?
A. COf(CLll) — det(agg) — a929; COf(Cng) = — det(alg) — —Aa921
det(A) = ay1as0 — a12a01; note also that det(A) = det(Al)

-::1Eet.[ }= [1){4)-[2]]3]
3 l:I- L N s . EL T

e Eixample:
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Determinant (3 x 3 matrices)

aixz ailz2 ais
e Consider the 3 x 3 matrix A = | as1 a9 as3
as1 a3z as3

det(A) = aq1 cof(ai1) + ar2 cof(ai2) + ais cof(ais)



Determinant (3 x 3 matrices)

ai1 ai2 a3
e Consider the 3 x 3 matrix A = | ao1 a9 as3

as31 a3z as3

det(A) = aq1 cof(ai1) + ar2 cof(ai2) + ays cof(ais)

= a9 cof(asy) + ass cof(ass) + asz cof(ass)



e Consider the 3 x 3 matrix A = as1 a22 a3

det(A) =

e Example:

Determinant (3 x 3 matrices)

aixz ailz2 ais

| a31 a32 AdAs3
ai COf(all) —|— a9 COf(a,lg) -+ ais COf(alg)
a22 0423 az1 a23 a1
ai — 12 + a13
asz2 as3 as; ass asi
11022033 — 111023032 + 412023031 — A12021033

_ T
+ a13a21a32 — a13a22631 = det(A")

N

a22
RS
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Determinant (3 x 3 matrices), Sarrus’ rule

gec+hfa+idb

N

aei+bfg+cdh

Now, subtract the sums: (aei+bfg+cdh) - (gec+hfa+idb)

2-7-6)+(-3-1-3)+(5-—-4-8)=84+-9+-160 = -85
= 3-7-55+®8-1-2)+6-—4--3)=105+16+72 =193
—85 —193 = -278
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Determinant (3 x 3 matrices), Sarrus’ rule

gec+hfa+idb

N

aei+bfg+cdh
Now, subtract the sums: (aei+bfg+cdh) - (gec+hfa+idb)

2-7-6)+(=3-1-3)+(5-—4-8) =84+ -9+ —160 = —85
— (3-7-5)+8-1-2)4+(6-—4--3)=105+16+72 = 193
—85—193 = —278

e Does not work for 2 x 2, 4 x 4, ... matrices



Adjoint /adjugate and inverse

(only for square matrices!)
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Cofactor matrix and adjoint/adjugate

e Cofactor matrix C' = {¢;;} of matrix A = {a;;}

i.e., Cij =— cof(a,ij)

e f d f d e
h 1 q 1 g h
a b ¢ ' '
. |: . b ¢ a c a b
cof - .

example: d e |

g h i h 1 g 1 g h

b ¢ a c a b

e [ d f d e

e Adjoint/adjugate(A) = adj(A) = transpose(cof(A))
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Inverse of a matrix

adj(A)
Al

e Inverse of A = A~ =

e Has the property AA™1 = A7'A = I (identity matrix)

e Inverse does not exist if |A| = 0; then A is a singular matrix
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(Geometric interpretation of determinants
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Determinants of 2 x 2 martrices

e Consider the 2 x 2 matrix A = [ air a2 ]

az21 a2

and the two vectors u = [ 911 ] and v = [ 12 ]
a1 a2

then det(A) is the oriented area of the parallelogram formed by (u, ¥)

Oriented area is positive if © to v

Areo of o Tacolllogram requires a counterclockwise rotation.
ConsiJer ‘Hle Po\fou“e|03rm with er\-[ces
{0/O> [712') (S,Q) (IZ/")

S\QELC\'I O\Ni COMP\A‘& oreo..

Otherwise oriented area is negative.

\Je{'[gz_ \= l10-03 |
=|-53|

T ] | A(‘&k o{ex'e.rmi"“l l°7

50



Determinants of 3 X 3 matrices

e Consider the 3 x 3 matrix A =

and the three vectors u =

w)

then det(A) is the oriented volume of the parallelepiped
formed by (u, ¥,

aii
aai
asi

aii
a1
asi

7?}:

a2
a22
RY)

a13
a3
RE

ai2
a2

a3

and W =

oriented volume is negative.

Oriented volume is positive if (u,v,w) forms a
right-handed co-ordinate system. Otherwise




Determinants of 3 X 3 matrices

e Consider the 3 x 3 matrix A =

and the three vectors u =

then det(A) is the oriented volume of the parallelepiped
formed by (u, ¥, W)

aii
aai
asi

ailxz ai2
a1 a22
asyp as2
) v —

a13
a3
RE

ai2
a2
a3

Q. How to determine (4,

and W =

Oriented volume is positive if (u,v,w) forms a
right-handed co-ordinate system. Otherwise
oriented volume is negative.

v,)’s handedness?




Cross product and handedness of a co-ordinate system

e Right-handed co-ordinate Syste CIXY=Z,YX =T, 2XT =7
i.e., (ZxX7g)-2z2>0 etc.

(this is what we will use)

A

e Left-handed co-ordinate system: & X §j = —2, gy X 2 = —Z, 2 X T = —
i.e., (T xg)-2 <0 etc.

53



Determinants of 3 X 3 matrices

11 Q12 0413
e Consider the 3 x 3 matrix A = | as1 ass as3 |,
| a31 a32 Aas3z |
11 a2 a13
and the three vectors t = | as1 |, U= | age | and W = | as3
| a31 | | a23 a33

then det(A) is the oriented volume of the parallelepiped
formed by (u, ¥, W)

Oriented volume is positive if (u,v,w) forms a
right-handed co-ordinate system. Otherwise
oriented volume is negative.

Y

Q. How to determine (u,v,w)’s handedness?

A. Check if (& x ¥) - is 2 0
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Determinants of n X n matrices
aij; a2 ais
az1 G222 a3

e Consider the n x n matrix A = I
asi aso ass ...

aii ai2 ais
- a1 - a2 - a23

and the vectors u; = , Uy = , Uz = .
asi a23 R

then det(A) is the oriented volume of -the n—_dimensional parallelepiped

Q. What is the determinant when, e.g., i3 = A\t + pus?
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Determinants of n X n matrices
aij; a2 ais
as1 Q22 G23

e Consider the n X n matrix A = B I
asi aso ass ...

aii ai2 ais
— a1 — as2 — a3

and the vectors u; = , Uy = , Uz = .
asi a23 R

then det(A) is the oriented volume of -the n—_dimensional parallelepiped

Q. What is the determinant when, e.g., i3 = A\t + pus?

A. 0 (use the oriented volume argument!)
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Introduction to transformations
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Remember...

A Matrix

A matrix is

simple. It's

1 2 just a two
dimensional

array of

4 5 numbers.
The

operations
defined for
7 8 matrices
makes them
special.
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Remember...

A Matrix

i

e Operations defined: they can transform vectors!

A matrix is
simple. IU's
just a two
dimensional
array of
numbers.
The
operations
defined for
matrices
makes them

special,

— use them to project, scale, reflect, shear, rotate.... objects
(objects means objects one point at a time)

e Point transformations: P — P’ (also, active transformations)

[point (x,y, z) represented as vector

X

Y
z

drawn from the origin|
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That brings us to... active vs. passive transformations

-Slmc'ly ¢ Chickens

An ERReR HAS OCCuRRED,

M SAVING THIS 1M THE PASSIVE
Voltg Te Aveld TAKWG ANY
PERSenAL RESPeNSIBILITY.

W
3
&
.;'q-
&
@
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That brings us to... active vs. passive transformations

point transformation co-ordinate transformation

(aka active transformation) (aka passive transformation)

61



Point, or active transtormations
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Translation
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Translation: a matrix operation?

e We translate a point P (z,y, 2) by (az, ay,a-)

: / / /
L€, T =T+ 0z, Yy =Y T 0y, 2 =2+ a;,

Q. How do we express this transformation as a matrix operation?

[think of using (z,y, z) as a vector ¢ from the origin|
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Translation: a matrix operation

e We translate a point P (z,y, 2) by (az, ay,a-)

: / / /
L€, T =T+ 0z, Yy =Y T 0y, 2 =2+ a,

o OO =

O O = O
O = O O

M; (@)

—_ N < 8
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Translation: a matrix operation

e We translate a point P (z,y, 2) by (az, ay,a-)

: / / /
L€, L' =T+ 0z, Y =Y T Ay, 2 =2+ a,

1 0 0 a, T
0 1 0 ay Yl.a_
0O 0 1 a, z |’
1L 0O 0 0 1 I 1 1
W

e From now on, will use the extended vector to reach P from the origin
i.e., we add a fictitious dimension, meaning:

T

oo O

Nat

0

1
0
_O_

N>

0

0
1
_O_

-

_ o O O
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How to think about an extended vector for 2D

an object on
f=1plane

a "real" vector
{i.e., a vector on
the f=1 plane)

apointon extended vector
f=1 plane

e.g., the (2+1)D representation of a real vector in 2D is | v,
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Summary

e Why? The operations defined for matrices make them special

— matrix dimensions, special matrices (diagonal, identity, null)

e Matrix operations (addition, scalar multiplication, subtraction,
matrix multiplication, transpose)

e Determinants (only for square matrices!)
e Adjoint/adjugate and inverse of matrices (only for square matrices!)
e Geometric interpretation of determinants

e Introduction to transformations

— translation and the fictitious coordinate

e Next class: transformations (much more detailed), with matrices
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Finally, references...

e Book chapter 5: Linear algebra (leave out Sec. 5.4)
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