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Introduction

In this short chapter, we shall explain what is meant by linear programming and
sketch a history of this subject.

A DIET PROBLEM

Polly wonders how much money she must spend on food in order to get all the
energy (2,000 kcal), protein (55 g), and calcium (800 mg) that she needs every day.
(For iron and vitamins, she will depend on pills. Nutritionists would disapprove,
but the introductory example ought to be simple.) She chooses six foods that seem
to be cheap sources of the nutrients; her data are collected in Table 1.1.

Table 1.1 Nutritive Value per Serving

Energy Protein Calcium Price per serving

Food Serving size (kcal) (g} (mg) (cents)
Oatmeal 28g 110 4 2 3
Chicken 100 g 205 32 12 24
Eggs 2 large 160 13 54 i3
Whole milk 237 cc 160 8 285 9
Cherry pie 170 ¢ 420 4 2 20

Pork with beans

260 g 260 14 80 19
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would put it, she wants to

minimize 3x, + 24x; + 13x3 + 9x; + 20x5 + 19x4
subject to 0<x, <4
0<x,<3
0<x;=2
0<x, <8 (1.4)
0<x;<2
0< xe<2
110x, + 205x, + 160x, + 160x, + 420x; -+ 260xs > 2000
d4x, + 32x, + 13x3+ 8x,+ dxg+ l4xg= 55
2x; + 12x, + 54x; + 285x, + 22x5 4+ B8Oxq = 800.

Her problem is known as a diet problem.

LINEAR PROGRAMMING

Problems of this kind are called “linear programming problems,” or “LP problems”™
for short; linear programming is the branch of applied mathematics concerned with

these problems. Here are other examples:

maximize Sx; + 4x; + 3x;

subjectto  2x, +3x; + x; < 5
4x, + X, + 2x3 < 11 (1.5)

3x; +4x; + 2x; < 8

XX, X3 2 0

{with “x,, X5, X3 = 0” used as shorthand for “x, 2 0, x, 2 0,x; = 0") or

minimize Ix, — x5
subject to —x; +6x; —x3+ x, 2 -3
7, +2x,= 35 (16)
X, 4+ X3+ X3 = 1
X3+ x4 2
x5, x32 0

In general, if ¢, c,, ..., ¢, are real numbers, then the function f of real variables
X1, X3, .. ., X, defined by

n
S, X, x) =Xy + €% + 0 X, = Z €ix;
j=1
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is called a linear function. If f is a linear function and if b is a real number, then the
equation

Sixg, x3,...,x,)=b
is called a linear equation and the inequalities

f(xthsl--,x,.) < b
fxg, x0,..0,x) 2 b

are called linear inequalities. Linear equations and linear inequalities are both
referred to as linear constraints. Finally, a linear programming problem is the problem
of maximizing (or minimizing) a linear function subject to a finite number of linear
constraints. We shall usually attach different subscripts i to different constraints and
difierent subscripts j to different variables. For simplicity of exposition, we shall
restrict ourselves in Chapters 1-7 to LP problems of the following form:

"

maximize Y ex;

=1

" (1.7)
subject to Yax;=b (i=12...,m

j=1

x; 20 (j=L2,...,n).

These problems will be referred to as LP problems in the standard form. (The reader
should be warned that the terminology is far Irom unified; several authors prefer the
terms canonical or symmetric form, and others reserve these adjectives for altogether
different problems.) For example, (1.5) is a problem in the standard form (with
n=3m=3,a,, =2 a;, = 3, and so on). What distinguishes the problems in the
standard form from the rest? First, all of their constraints are linear inequalities.
Secondly, the last n of the m + n constraints in (1.7) are very special: they simply
stipulate that none of the n variables may assume negative values. Such constraints
are called nonnegativity constraints. (Note that problem (1.6) differs from the standard
form on both counts: two ol its constraints are linear equations and the variables
X;, X, may assume negative values.)

The linear function that is to be maximized or minimized in an LP problem is
called the objective functian of that problem. For example, the function z of variables
Xy, X2, X3, X4, X5, X¢ defined by

22Xy, X3, .00 Xg) = 3y + 24x, + 13x3 + 9xy + 20x5 + 19x,

is the objective function of Polly’s diet problem (1.4). Numbers x,, x,,..., X, that
satisfy all the constraints of an LP problem are said to constitute a feasible solution
of that problem. For instance, we have observed that

x, =0, x5=0, x3=0, x, =8, xs=2, x4=0
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is a feasible solution of (1.4). Finally, a feasible solution that maximizes the objective
function (or minimizes it, depending on the form of the problem) is called an optimal
solution; the corresponding value of the objective function is called the optimal value
of the problem. As it turns out, the unique optimal solution of (1.4) is

Xy = 4, X3 = 0, X3 = 0, X4 = 4-5, X5 = 2, Xg = 0

or simply (4, 0,0, 4.5, 2, 0). Accordingly, the optimal value of (1.4} is 92.5. Not every
LP problem has a unique optimal solution; some problems have many different
optimal solutions and others have no optimal solutions at all. The latter may occur
for one of two radically different reasons: either there are no feasible solutions at all
or there are, in a sense, too many of them. The first case may be illustrated on the

problem
maximize Ix, — X,
subject to X, + %X < 2
) 1 2 (1.8)
—2x, — 2x2 < -10
X, X3 = 0
which has no feasible solutions at all. Such problems are called infeasible. On the
other hand, even though the problem
maximize X, = X
subject to -2x;, + < -1
] 1 X2 (1.9)
—x; — 2%, < =2
x,x32 0
does have feasible solutions, none of them is optimal: for every number M there is a
feasible solution x,, x, such that x, — x, > M. In a sense, {1.9) has such an abun-
dance of feasible solutions that none of them can aspire to be the best. Problems with
this property are called unbounded. As we shall prove later (Theorem 3.4), every

linear programming problem belongs to one of the three categories noted here: it
has an optimal solution, is infeasible, or is unbounded.

HISTORY OF LINEAR PROGRAMMING

As mathematical disciplines go, linear programming is quite young. It started in 1947 when
G. B. Dantzig designed the “simplex method” for solving linear programming formulations of
_U.S. Air Force planning problems. What followed was an exciting period of rapid development
in this new field. It soon became clear that a surprisingly wide range of apparently unrelated
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problems in production management could be stated in linear programming terms and, most
importantly, solved by the simplex method. Such problems, if noticed at ali, had traditionally
been tackled by a hit-or-miss approach guided only by experience and intuition. The use of
linear programming often brought about a considerable increase in the efficiency of the whole
operation. (Until then, expansion of the efficiency frontier usually came from technological
innovations. This new way to increase efficiency—under existing technological conditions—by
improvements in organization and planning, made many managers appreciate the practical
importance of mathematics. At least, it made them aware of the advantage of stating their deci-
sion problems in clear-cut and well-defined terms.) As the popularity of linear programming
theory increased, applications in new areas occurred, many of them far from obvious. In turn,
these applications stimulated further theoretical research by pointing out the need for solving
problems that would have otherwise seemed uninteresting. In this fascinating interplay between |
theory and applications, a new branch of applied mathematics established itself.

As calculus developed from the seventeenth century’s need to solve problems of mechanics,
linear programming developed from the twentieth century’s need to solve problems of manage-
ment. Yet other profound influences stimulated the evolution of the new field from its very
inception. Economics was one of them: as early as 1947, T. C. Koopmans began pointing out
that lincar programming provided an excellent framework for the analysis of classical economic
theories, such as the renowned system proposed in 1874 by L. Walras. On the other hand, linear
programming brought together previously known theorems of pure mathematics concerning
such diverse topics as the geometry of convex sets, extremal problems of combinatorial nature,
and the theory of two-person games. Finally, it was fortunate and perhaps even inevitable that
linear programming developed concurrently with modern computer technology: without elec-
tronic compulers, present-day large-scale linear programming would be unthinkable.

Scientific fields are rarely born overnight; with the advantage of hindsight, one can often
track down the sources that paved the way for the decisive breakthrough. The field of linear
programming is no exception. At the core of its mathematical theory is the study of systems of
linear inequalities; such systems were investigated by Fourier as far back as 1826. Since then,
quite a few other mathematicians have considered the subject, although none of them has devised
an algorithm whose efficiency has come close to that of the simplex method. Nevertheless, some
of them proved various special cases of a fundamental theorem that is now called the duality
theorem of linear programming. On the applied side, L. V. Kantorovich pointed out the practical
significance of a restricted class of LP problems, and proposed a rudimentary algorithm for their
solution as early as 1939. Regrettably, this effort remained neglected in the U.S.S.R. and unknown
elsewhere until long after linear programming became an elegant theory through the independent
work of Dantzig and others.

In the 1970s, linear programming came twice to public attention. On October 14, 1975, the
Royal Sweden Academy of Sciences awarded the Nobel Prize in economic science to L. V.
Kantorovich and T. C. Koopmans “for their contributions to the theory of optimum allocation
of resources.” (As the reader may know, there is no Nobel Prize in mathematics. Apparently the
Academy regarded the work of G. B. Dantzig, who is universally recognized as the father of
linear programming, as being too mathematical.) The second event was even more dramatic.
Ever since the invention of the simplex method, mathematicians had been looking for a theo-
retically satisfactory algorithm to solve LP problems. (A word of explanation is in order: theo-
retical criteria for judging the efficiency of algorithms are quite different from practical ones.
Thus, an algorithm like the simplex methed, which is eminently satisfactory in practical applica-
tions, may be found theoretically unsatisfactory. The converse is also true: theoretically satis-
factory algorithms may be thoroughly useless in practice. We shall return to this distinction in




ear programming terms and, most
if noticed at all, had traditionally
perience and intuition. The use of
rease in the efficiency of the whole
usually came from technological
isting technological conditions— by
managers appreciate the practical
the advantage of stating their deci-
popularity of linear programming
of them far from obvious. In turn,
pointing out the need for solving
1 this fascinating interplay between
s established itself.
d to solve problems of mechanics,
1eed to solve problems of manage-
on of the new field from its very
C. Koopmans began pointing out
r the analysis of classical economic
. Walras, On the other hand, linear
i of pure mathematics concerning
problems of combinatorial nature,
¢ and perhaps even inevitable that
ymputer technology: without elec-
: would be unthinkable.
ntage of hindsight, one can often
breakthrough. The field of linear
ul theory is the study of systems of
:r as far back as 1826. Since then,
although none of them has devised
mplex method. Nevertheless, some
rem that is now called the duality
utorovich pointed out the practical
| a rudimentary algorithm for their
ected in the US.S.R. and unknown
nt theory through the independent

tention, On QOctober 14, 1975, the
rize in economic science to L. V.
the theory of optimum allocation
ze in mathematics. Apparently the
xsally recognized as the father of
d event was even more dramatic.
ians had been looking for a theo-
1 of explanation is in order: theo-
vite different from practical ones.
ly satisfactory in practical applica-
ie is also true: theoretically satis-
: shall return to this distinction in

Problems 9 0

Chapter 4.) The breakthrough came in 1979 when L. G. Khachian published a description of
such an algorithm (based on earlier works by Shor, and by Judin and Nemirovskii). Newspapers
around the world published reports of this result, some of them full of hilarious misinterpretations.
We shall present the algorithm in the appendix.

For a thorough survey of the history of linear programming, the reader is referred to Chapter 2
of Dantzig's monograph (1963). References to many applications of linear programming may be
found in Riley and Gass (1958). Some of the more tecent applications are referenced in Gass
(1975). o

PROBLEMS,

Answers to problems marked with the symbol A are found at the back of the book.

1.1 Which of the problems below are in the standard form?
a. Maximize 3x; — 5x;
subject to 4x, + S5x, = 3
6x, - 6x2 =/
Xy + sz = 20
X, xp 2 0.
b. Minimize Ix; + xXp o+ dxy + x4+ Sxg
subject to 9%y + 2x5 + 6x3 + Sxy + Ix, < 5
8xy + 9x; 4+ Txy + 9x; + 3x5 52
Xy X2y X35 Xy = 0-
¢. Maximize 8x, — 4x,
subject 1o Ix, + x, = 7
9x1 + ng S —2

X%, 20
12 State in the standard form:
minimize —8x; + 9x3 + 2x; — bx, — 5x,
subject to 6xy + 6x; — 10x3 + 2xy —~ 8x; 2 3

Xy X5 X3, Xgq, Xs = 0.

13  Prove that (1.8) is infeasible and (1.9) is unbounded.

A4 Find necessary and sufficient conditions for the numbers s and 7 to make the LP problem
maximize Xy + X,
subject to sxy + tx; <1
X,x3 20
4. have an optimal solution,
b. be infeasible,
C. be unbounded.
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£ 1.5 Prove or disprove: Iil problem (1.7) is unbounded, then there is a subscript & such that the
problem
maximize Xy

subject to Yap=b (i=12_.,m
i=1
=0 (f=0L2...,m
is unbounded.

416 [Adapled from Greene et al. (1959).] A meat packing plant produces 480 hams, 400 pork
bellies, and 230 picnic hams every day; each of these products can be sold either fresh or
smoked. The total number of hams, bellies, and picnics that can be smoked during a normal
working day is 420; in addition, up to 250 products can be smoked on overtime at a higher
cost. The ner profits are as follows:

Smoked on Smoked
Fresh regular time on overtime

Hams 38 N E) 811
Bellies 54 S12 57
Picnics S4 $13 89

For example, the following schedule yields a total net profit of $9,965:

Fresh Smoked Smoked {overtime)

Hams 165 280 35
Belties 298 70 35
Picnics 55 70 105

The objective is to find the schedule that maximizes the total net profit. Formulate as an
LP problem in the standard form.

1.7 [Adapted from Charnes et al. (1952).] An oil refinery produces four types of raw gasoline:
alkylate, catalytic-cracked, straight-run, and isopentane. Two important characteristics of
each gasoline arc its performance number PN (indicating antiknock properties) and its
vapor pressure RVP (indicating volatility). These two characteristics, together with the
production levels in barrels per day, are as follows:

PN RVP Barrels produced

Alkylaie 107 5 3814
Catalytic-cracked 93 8 2,666
Straight-run 87 4 4,016

lsopentane 1,300
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These gasolines can be sold either raw, at 34.83 per barrel, or blended into aviation gaso-
lines (Avgas A and/or Avgas B). Quality standards impose certain requirements on the
aviation gasolines; these requirements, together with the selling prices, are as follows:

PN RVP Price per barrel
Avgas A at keast 100 ut most 7 56.45
Avgas B at least 91 at most 7 591

The PN and RVP of each mixture are simply weighted averages of the PNs and RVPs of its
constituents. For example, the refinery could adopt the following strategy:

* Blend 2,666 barrels of alkylate and 2,666 barrels of catalytic into 5,332 barrels of Avgas
A with

(2,666 x 107) + (2,666 x 93)

PN 5332 100
(2,666 x 5) + (2,666 x 8)
VP = = 6.5.
RVP 533 6.5

* Blend 1,148 barrels of alkylate, 4,016 barrels of straight-run, and 1,024 barrels of iso-
pentane into 6,188 barrels of Avgas B with

_ (1,148 x 107) + (4,016 x 87) + (1,024 x 108)

PN 6.188 = 94,2
4 2 2
RVP __(l,l 8 x 5)+(4,016618X84)+(l,04 x l,'lé_‘7

Sell 276 barrels of isopentane raw.,
This sample plan yields a 1otal profit of
(5,332 x 6.45) + (6,188 x 591) + (276 x 4.83) = $72,296,

The refinery aims for the plan that yields the largest possible profit. Formulate as an LP
problem in the standard form.

An electronics company has a contract to deliver 20,000 radios within the next four weeks.
The client is willing to pay $20 for each radio delivered by the end of the first week, $18 for
those delivered by the end of the second week, $16 by the end of the third week, and 314 by
the end of the fourth week. Since each worker can assemble only 50 radios per week, the
company cannot meet the order with its present labor force of 40; hence it must hire and
train temporary help. Any of the experienced workers can be taken off the assembly line to
instruct a class of three trainees; after one week of instruction, each of the trainees can either
proceed to the assembly line or instruct additional new classes.

At present, the company has no other contracts; hence some workers may become idle
once the delivery is completed. All of them, whether permanent or temporary, must be kept
on the payroll tifl the end of the fourth week. The weekly wages of a worker, whether assem-
bling, instructing, or being idle, are $200; the weekly wages of a trainee are $100. The pro-
duction costs, excluding the worker’s wages, are $5 per radio.

For example, the company could adopt the following program.

First week: 10 assemblers, 30 instructors, 90 trainees
Workers™ wages: $8,000
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Trainees” wages: $9,000
Profit from 500 radios: $7,500
Net loss: $9,500

Second week: 120 assemblers, 10 instructors, 30 trainees
Workers’ wages: $26,000
Trainees’ wages: $3,000
Profit from 6,000 radios: $78,000
Net profit: $49,000

Third week: 160 assemblers
Workers' wages: $32,000
Profit from 8,000 radios: $88,000
Net profit: $56,000

Fourth week: 110 assemblers, 50 idle
Workers' wages: $32,000
Profit from 5,500 radios: $49,500
Net profit: $17,500

This program, leading to a total net profit of $113,000, is one of many possible programs,
The company’s aim is to maximize the total net profit. Formulate as an LP problem (not
necessarily in the standard form).

£19  [S, Masuda (1970); see also V. Chvatal (1983).] The bicycle problem involves n people who
have to travel a distance of ten miles, and have one single-seat bicycle at their disposal, The
data are specified by the walking speed w; and the bicycling speed b, of each person j
(j = 1,2,...,n); the task is to minimize the arrival time of the last person. {(Can you solve
the case of n = 3 and w, = 4, w, = Wy =2, b =16, by = b; = 127) Show that the
optimal value of the LP problem

minimize t
subject to =X =Xj=y=y;= 0 (J=12...,n
n n
t =Y n=Yyz 0
I=1 =1

Wixy = wix; + by — by = 10 Gi=1,2...,n
2 by~ X byy< 10
=1 =1
XpXpypyi2z 0 (i=12,...,n)
provides a lower bound on the optimal value of the bicycle problem.




linees

is one of many possible programs.
Formulate as an LP problem (not

yele problem involves n people who
le-seat bicycle at their disposal. The
vicycling speed b of each person j
ie of the last person. (Can you solve
16, by = by = 127) Show that the

[j=012...,nm
=12...,n
U=12...,n

ycle problem.

How the
Simplex Method Works

If‘ this chapter, we shall learn to solve LP problems in the standard form by the
simplex method. A rigorous analysis of the details will be deferred to Chapter 3.

FIRST EXAMPLE

= |

We shall illustrate the simplex method on the fellowing example:
maximize 5x; + 4x, + 3x,
subject to 2%, + 3%, + x3<5
dx; + X3+ 2x3 < 11 2.1)
3x; +4x;, + 2x; 5 8

Xy, X3, %3 2 0.

I\ T . .
preliminary step of the method consists of introducing so-called slack variables.

13




14 2 How the Simplex Method Works

In order to motivate this concept, let us consider the first of our constraints,

2x, + 3x; + x3 <3 (2.2)
For every [feasible solution x;, x,, X3, the value of the lefti-hand side of (2.1) is
at most the value of the right-hand side; often, there may be a slack between the
two values. We shall denote the slack by x,. That is, we shall define x, = 5 — 2%, —
3x, — x5; with this notation, inequality (2.2) may now be written as x, = 0. In an
analogous way, the next two constraints give rise to variables x5 and x¢. Finally,
following a time-honored convention, we shall denote the objective function 5x, +
4x, + 3x; by z. To summarize: for every choice of numbers x,, X, and x3, we
shall define numbers x,, X5, X, and z by the formulas

Xy, = 5-=2% —3x; — X3

xs =11 —dx; — x; — 2x

5 1 2 3 2.3)

Xg = 8—3x|—4x2—-2x3

2 = 5x1 + 4x2 + 3x3.

With this notation, our problem may be restated as
maximize z subjectto X, X, Xa, Xq, X5, Xg = 0. (2.4)

The new variables x,, xs, x¢ defined by (2.3) are called slack variables; the old vari-
ables x,, X, X5 are usually referred to as the decision variables. It is crucial to note
that the equations in (2.3) spell out an equivalence between (2.1) and (2.4). More
precisely:
« Every feasible solution x;, x5, x3 of (2.1) can be extended, in the unique way
determined by (2.3), into a feasible solution xy, xz,. .., Xg of (2.4).
« Every feasible solution x,,x;,...,Xs Of (24) can be restricted, simply by
deleting the slack variables, into a feasible solution x,, x5, x3 of (2.1).

« This correspondence between feasible solutions of (2.1} and feasible solutions
of (2.4) carries optimal solutions of (2.1) onto optimal solutions of (2.4), and
vice versa.

The grand strategy of the simplex method is that of successive improvements:

having found some feasible solution x,, x5, .. ., g of (24), we shall try to proceed
to another feasible solution X,, X5, . . . , X, which is better in the sense that

Sfl -+ 4J-Cz + 3;—(—3 > le + 4x: + 3X3.

Repeating this process a finite number of times, we shall eventually arrive at an

optimal solution.
To begin with, we need some feasible solution x4, X, ..., Xs. Finding one in our
example presents no difficulty: setting the decision variables x,, x,, x5 at zero, we
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evaluate the slack variables x,, xs, x¢ from (2.3). Hence our initial solution,
X, = O, X = 0, Xy = 0, Xy = 5, X5 = 11, Xg = 8 (2.5)

yields z = 0.

In the spirit of the grand strategy sketched above, we should now look for a feasible
solution that yields a higher value of z. Finding such a solution is not difficult. For
example, if we keep x, = x; = 0and increase the value of x,, we obtain z = 5x; > 0.
Thus, if we keep x, = x; = O and set x, = 1, we obtain z = 5(and x, = 3, x5 = 7,
xg = 5). Better yet, il we keep x, = x, = 0 and set x, = 2, we obtain z = 10 {(and
x, = 1, xs = 3, x; =2). However, if we keep x, = x5 = 0 and set x; = 3, we
cbtain z = 15 and x, = x5 = x, = —1; this won't do, since feasibility requires
x, = 0 for every i. The moral is that we cannot increase x, too much. The question
is: Just how much can we increase x, (keeping x, = x5 = 0 at the same time) and
still maintain feasibility (x4, x5, xg = 0)?

The condition x, = 5 — 2x, — 3x, — x; = 0 implies x, < 3; similarly, x5 = 0
implies x, < 4 and x, = 0 implies x; < §. Of these three bounds, the first is the
most stringent. Increasing x, up to that bound we obtain our next solution,

5

.7c1=E X2=0, 3 =0, x,=0, x5=1, x4 = (2.6)

(S

3

Note that this solution yields z = %%, which is indeed an improvement over z = 0.

Next, we should look for a feasible solution that is even better than (2.6). However,
this task seems a little more difficult. What made the first iteration so easy? We had
at our disposal not only the feasible solution (2.5), but also the system of linear
equations (2.3), which puided us in our quest for an improved feasible solution. If
we wish to continue in a similar way, we should manufacture a new system of linear
equations that relates to {2.6) much as system (2.3) relates to {2.5).

What properties should the new system have? Note that (2.3) expresses the vari-
iables that assume positive values in {2.5) in terms of the variables that assume zero
values in (2.5). Similarly, the new system should express those variables that assume
positive values in (2.6) in terms of the variables that assume zero values in (2.6):
in short, it should express x,, xs, x4 (as well as z) in terms of x,, x5, and x,. In par-
ticular, the variable x,, which just changed its value from zero to positive should
change its position from the right-hand side to the left-hand side of the system of
equations. Similarly, the variable x,, which just changed its value from positive to
2ero, should move from the left-hand side to the right-hand side.

To construct the new system, we shall begin with the newcomer to the lefi-hand
side, namely, the variable x,. The desired formula for x, in terms of x,, X3, X, is
obtained easily from the first equation in (2.3):

S 3 | |

¥ =37 2% T 3% 5N 2.7)




16 2 How the Simplex Method Works

Next, in order to express xs, x5, and z in terms of X3, X3, X4, We simply substitute
from (2.7} into the corresponding rows of (2.3):

5 3 1 1
x5= 11 -4(-5——x2——x3——x4)—x2-2):3

2 2 2
=1 + sz + 2JC4,
5 3 1 1
Xg = 8-3(§—§x2 —§x3—§x4)—4x2 - 2x,
- + ! lx +c-x
T3TR TR T 3%
5 3 1 1
=] 5(5 —_— ixz — -ix_-, - EX4) + 4):2 + 3X3
25 7 1 5
B 7] g ohci R
Hence our new system reads
5 3 1 1
xl =§_'2'x2 - ixs —‘2'X4
Xg = 1 + sz + 2x4
1 1 1 3
Xg = 5 + ‘2‘x2 - EXJ + 5.\:4 (2'8)

= E —ixz +§.X3 —EX4.

As we did in the first iteration, we shall now try to increase the value of z by in-
creasing the value of a suitably chosen right-hand side variable, while at the same
time keeping the remaining right-hand side variables fixed at zero. Note that increases
in the values of x, or x, would bring about decreases in the value of z, which is very
much against our intentions. Thus, we have no choice: the right-hand side variable
to increase its value is necessarily x,. How much can we increase %37 The answer
can be read directly from system (2.8): with X; = x4 = 0, the constraint x, > 0

implies x; < 5, the constraint x5 > 0 imposes no restriction at all, and the constraint
Xg = 0 implies x; < 1. Hence, x; = 1 is the best we can do; our new solution is

Xp=2 Xx3=0, x3=1, x,=0, x5 =1, xg = 0. (2.9)

(Note that the value of z just increased from 12.5 to 13)

As we have learned, getting just the improved solution isn’t good enough; we also
want a system of linear equations to go with (2.9). In this system, the positive-valued
variables x,, x5, x5 will appear on the left, whereas the zero-valued variables x,, x,, X4
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will appear on the right. To construct the system, we begin again with the newcomer
to the left-hand side, namely, the variable x,. From the third equation in (2.8), we have
x3 = 1 + x, + 3x; — 2x4; substituting for x, into the remaining equations in (2.8),
we obtain

X3= 14+ x4 3xg — 2xg

Xp= 2 — 2%, — 2x4 + Xg

x5 = 14+ 5x; + 2x,4 (2.10)

z =l3—3x2— X4 — Xg-

Now it’s time for the third iteration. First of all, from the right-hand side of (2.10)
we have to choose a variable whose increase brings about an increase of the objective
function. However, there is no such variable: indeed, if we increase any of the right-
hand side variables x,, x,, x5, we will make the value of z decrease. Thus, it seems
that we have come to a standstill. In fact, the very presence of this standstill indicates

that vf'c are done; we have solved our problem; the solution described by the last
table is optimal. Why? The answer lies hidden in the last row of (2.10):

= 13 " 3x2 - x‘_ - xE. (2.11)

Our last solution {2.9) yields z = 13; proving that this solution is optimal amounts
to proving that every feasible solution satisfies the inequality z < 13, Since every
feasible solution x,, x,,..., x, satisfies, among other relations, the inequalities
xy 2 0,x; = 0,and x; = 0, thedesired inequality z < 13 follows directly from (2.11).

DICTIONARIES
In general, given a problem
maximize i CjX;
=1

Z auXJ < bi
j=1

subject to (i=12,...,m) (2.12)

x; 20 (j=12...,m

we ﬁl:st introduce tlTe slack variables x,,, X,42, ..., X,+. and denote the objective
function by z. That is, we define

xn+n=b;~1): agx;  (i=1,2...,m)
-

(2.13)

n
23N = T (53
i=1
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In the framework of the simplex method, each feasible solution x,,.x,,..., x, of
(2.12) is represented by n + m hennegative numbers x,, x,, ..., X, ,,, with Xpt 15
Xn+2y -5 Xp4p defined by (2.13). In each iteration, the simplex method moves from
some feasible solution x,, x,, . . ., Xa+m t0 another feasible solution %,, %,, .

i) En+m1
which is better than the previous one in the sense that

n m
¥ x> Y cpx;.
i=1 i=1

(Actually, the last statement is not quite correct: the inequality is not always strict.
This point and other subtieties will be discussed in Chapter 3.)

As we have seen, it is convenient to associate a system of linear equations with
each of the feasible solutions: such systems make it easier to find the improved
feasible solutions. They do so by translating any choice of values of the right-hand side
variables into the corresponding values of the left-hand side variables and of the
objective function. Following J. E. Strum (1972), we shall refer to these systems as
dictionaries. Thus, every dictionary associated with (2.12) will be a system of linear
equations in the variables x,, x,, . . ., Xn+mand z. However, not every system of linear
equations in these variables constitutes a dictionary. To begin with, we have defined
Xntts Xni2y ooy Xpymand zintermsof x,, x,, . . ., Xpandsothen + m + 1 variables
are heavily interdependent. This interdependence must be captured by every dic-

tionary associated with (2.12): the translations must be correct, More precisely, we
shall insist that;

Every solution of the set of equations comprising a dictionary must be also
. . (2.14)
a solution of (2.13), and vice versa.

For example, for every choice of numbers Xy, Xz, .

-+ Xg and z, the following three
statements are equivalent:

® Xy, X3,..., Xg, Z constitute a solution of {2.3),
® Xy, X3, ..., Xg, Z cONstitute a solution of (2.8),
® Xy X3,..., Xg, z constitute a solution of (2.10),

In that sense, the three dictionaries (2.3),(2.8), and (2.10) contain the same information
concerning the interdependence among the seven variables. Nevertheless, each of
the three dictionaries presents this information in its very own way. The form of
(2.3) suggests that we are free to choose the numerical values of x,, x,, and X, at
will, whereupon the values of X3, X5, Xg, and z are determined: in this dictionary,
the decision variables x,, x,, X3 act as independent variables, while = and the slack
variables x,, x, x¢ are dependent on them. Dictionary (2.8) presents X3, X3, X, 8S
independent and Xy, X5, Xg, = a5 dependent. In dictionary (2.10), the independent
variables are x,, x,, x5 and the dependent ones are x,, Xy, Xs,7. In general:

The equations of every dictionary must express m of the variables x,,
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X3,..., Xy4+, and the objective function = in terms of the remaining n  (2.15)
variables.

The properties (2.14) and (2.15) are the defining properties of dictionaries.
In addition to these two properties, dictionaries (2.3), (2.8), and (2.10) have the
following property:

Setting the right-hand side variables at zero and evaluating the left-hand side
variables, we arrive at a feasible solution.

Dictionaries with this additional property will be called feasible dictionaries. Hence,
every feasible dictionary describes a feasible solution. However, not every [easible
solution s described by a feasible dictionary; for instance, no dictionary describes
the feasible solution x, = 1,x; = 0,xy = I, x, = 2,x; = 5,x4 = 3 of(2.1). Feasible
solutions that can be described by dictionaries are called basic. The characteristic
feature of the simplex method is the fact that it works exclusively with basic feasible
solutions and ignores all other feasible solutions.

SECOND EXAMPLE

We shall complete our preview of the simplex method by applying it to another
LP problem:
maximize 5xy + 5x; + 3x4
subject to Xy +3x; 4+ %33
—X; +3x, <2
2x, — x3+2x3<4
26 4+ 3x; — x3 52
Xy, X3, %3 2 0.
In this case, the initial feasible dictionary reads

x4=3— x1—3x2— X3

X5 = 2 + Xy - 3x_-§
xﬁ = 4 o= 2x1 + Xy — 2X3 (2']6)
Xe =2 — 2x; — 3x; + X
z = 5x; + 5x; + 3x,.

{Even though the order of the equations in a dictionary is quite irrelevant, we shall
make a habit of writing the formula for z last and separating it from the rest of the
table by a solid line. Of course, that does not mean that the last equation is the sum
of the previous ones.) This leasible dictionary describes the feasible solution

xl'= 0, x: = 0, x3 = 0, X4 = 3, x5 = 2’ xﬁ = 47 x7 = 2'
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However, there is no need to write this solution down, as we just did: the solution
is implicit in the dictionary.
In the first iteration, we shall attempt to increase the value of z by making one
of the right-hand side variables positive. At this moment, any of the three variables
X, X3, X3 would do. In small examples, it is common practice to choose the variable
that, in the formula for z, has the largest coefficient: the increase in that variable
will make z increase at the fastest rate (but not necessarily to the highest level). In
our case, this rule leaves us a choice between x, and x,; choosing arbitrarily, we
decide to make x, positive. As the value of x, increases, so does the value of x;.
However, the values of x,, x4, and x, decrease, and none of them is allowed to
become negative. Of the three constraints x, = 0, x; = 0, x; = 0 that impose upper
bounds on the increment of x,, the last constraint x, > 0 is the most stringent:
it implies x, < 1. In the improved feasible solution, we shall have x, = 1 and
x, = 0. Without writing the new solution down, we shall now construct the new
dictionary. All we need to know is that x, just made its way from the right-hand
! side to the left, whereas x, went in the opposite direction. From the fourth equation
in (2.16), we have

3 1 1
Xy = 1 - —2‘x2 -+ ‘2‘X3 - 'ix-,- (2.17)
Substituting from (2.17) into the remaining equations of (2.16), we arrive at the
desired dictionary

3 1
x,=1-—§x2+

3 3 1

x4=2—5x2—

3
X5 =3 —2x; -

2
x6=2+4X2 -

X3 = X9

2

3x3 + x4

T T
z = 2 EX3 3

2
The construction of (2.18) completes the first iteration of the simplex method.

Xq.

Digression on Terminology
The variables x; that appear on the left-hand side of a dictionary are called basic;
the variables x; that appear on the right-hand side are nonbasic. The basic variables
are said to constitute a basis. Of course, the basis changes with each iteration: for
example, in the first iteration, x, entered the basis whereas x,, left it. In each iteration,
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we first choose the nonbasic variable that is to enter the basis and then we find out
which basic variable must leave the basis. The choice of the entering variable is
motivated by our desire to increase the value of z; the determination of the leaving
variable is based on the requirement that all variables must assume nonnegative
values. The leaving variable is that basic variable whose nonnegativity imposes the
most stringent upper bound on the increment of the entering variable. The formula
for the leaving variable appears in the pivot row of the dictionary; the computational
process of constructing the new dictionary is referred to as pivoting.

Back to the Second Example

In our example, the variable to enter the basis during the second iteration is quite
unequivocally x,. This is the only nonbasic variable in (2.18) whose coefficient in
the last row is positive. Of the four basic variables, x, imposes the most stringent
upper bound on the increase of x,, and, therefore, has to leave the basis. Pivoting,
we arrive at our third dictionary,

2 4 1 1
Xy = 5 §x2+§x']-_ §x6
- 4 Sx lx " lx
SuT 3T g2 3T gt
7 1
x,= 1= 5x + 5% (2.19)
i 4 29 fx + Ex
xs_ 3 6x2 3 7 6 6
- _2_6+29 2 11
=) 6x2 33‘7 6x6-

In the third iteration, the entering variable is x, and the leaving variable is x;.
Pivoting yields the dictionary

8 5
xz—z_g—ﬁx-; -i-ﬁxé —i'-g-xs
B0, 1 3 8
37257 2977 T 3g% T 39%s
pemial 3 _ 9 5 (2.20)
1799 T 29%7 T 3g%e 59 %s

28 3 21

h=§+@%—ﬁ%+ﬁ&

=—=1810"'= 2x7— Xg — X
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At this point, no nonbasic variable can enter the basis without making the value of =
decrease. Hence, the last dictionary describes an optimal solution of our example.
That solution is

32 o8 30
29 72 2

and it yields = = 10.

X, =

FURTHER REMARKS 7 ‘
The reader may have noticed that, having first carefully laid down the definition of a
dictionary, we then proceeded to refer to (2.18), (2.19), and (2.20) as dictionaries,
without bothering to verify that they do indeed have property (2.14). Such careless-
ness can be easily justified. Take, for example, system (2.18). Since (2.18) arises from
{2.16} by arithmetical operations (namely, pivoting with x, entering and x- leaving),
every solution of (2.16) must be also a solution of (2.18). The converse is also true,
since (2.16) can be obtained from (2.18) by pivoting with x, entering and x, leaving.
Hence, every solution of (2.18) is a solution of (2.16), and vice versa. Similar arguments
show that every solution of (2.19) is a solution of (2.18), and vice versa; and that every
solution of (2.20) is a solution of (2.19), and vice versa.

Another point of concern is the question of the uniqueness, as opposed 1o the existence, of
optimal solutions. This question will be of no great interest to us; nevertheless, it is easy to deal
with and so we will get it out of the way now. Note that in each of our two examples, we not only
found an optimal solution, but we also collected the evidence to prove that there is only one
optimal solution. For instance, the final dictionary for our first problem reads

Xy= 14+ x5+ 3x, — 2x,

Xp = 2=2x; — 2x, + X4
1+ 5x2 + ZX4
2 =13 -3x - x,— x,

X3

The last row shows that every feasible solution with z = 13 satisfies X; = x, = xg = 0; the
rest of the dictionary shows that every such solution satisfies x3 = 1, x, = 2, x¢ = |; therefore,
there is just one optimal solution. A similar argument applies to the second problem.

Of course, there are LP problems with more than just one optimal solution; having solved
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such problems by the simplex method, we can effectively describe all the optimal solutions. For
example, consider the following dictionary:
x4=3+ x2—2x5+7x3
x, =1 — 5x, + 6x5 — Bx,
x6=4+9x2+2x5— X3
z =8 - X
The last row shows that every optimal solution satisfies x; = 0 (but not necessarily x, = U or
x5 = 0). For such solutions, the rest of the dictionary implies
Xy =34 x;3 - 2x4
x, = 1 = 5x; + 6x; (2.21)
x6=4+9x2+2x5.
We conclude that every optimal solution arises by the substitution formulas (2.21) from some
x, and x such that
—x; + 2xy <3
5x; —6xs £ 1
—9x2 Ko sz S 4
Xy, x5 2 0
(In fact, the inequality —9x, — 2xs < 4 is clearly redundant; its validity is forced by x; = 0

and x; 2 0.)
There are a few other rough spots we deliberately failed to point out in our overview of the

simplex method. We shall discuss them in Chapter 3.

TABLEAU FORMAT

The simpiex method is often introduced in a format differing from ours. To outline the more
popular tableau format, we shall return to the first example of this chapter. To begin, let us write
down the equations of the first dictionary in a slightly modified form:

2x, + 3% 4+ X3 + x, = 5
4x, + x; + 2x, + X =11
3x, + 4x; + 2x,4 +x,= 8
~2 + 5x, + 4x; + 3x; = 0

li;ording just the coefficients at the x;’s, together with the right-hand sides, we obtain our first
tadiequ:

231100 5
RS2 0000100 11
4855000 | 8
543000 0.
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In a similar way, the equations of the second dictionary,

3 1 | 5

X, + §x2 + Ex;g -+ £X4 = 5

- 5x-_, - Zx.«; + Xy = 1

1 1

—§x2+§x3—2-x4 +x5= 5

| 25
-0 i EXZ + EXJ - 5.V4 = —3

give rise to a second tableau:

31 1 5

33 300 3

0 =5 0 =210 1

11 3 1

0 =53 301 3

| 71 5 25
i ¢ =33 300 -3

i It is a routine matter to translate the pivoting rules, previously derived in terms of dictionaries,
into the language of tableaus. The following steps describe the procedure: the reader should
have no trouble verifying its correctness, (At any rate, the procedure is not important for our
exposition since we do not use the tableau format.)

Step 1. Examine all numbers in the last row (except the one farthest right, which equals the
current value of —z). If all of them are negative or zero, stop: the tableau describes an optimal
solution. Otherwise find the largest of these numbers; the column in which it appears is called
the pivot column and corresponds Lo the entering variable.

For example, the pivot column in our first tableau is the first one:

5
11
3
0

LA S B
Do e

W B W
E - ]
cio-—o
ol— o o

Step 2. For each row whose entry r in the pivot column is positive, look up the entry s in

. o .5, .
the rightmost column. The row with the smallest ratio = is called the pivot row and corresponds
r

to the leaving variable, (If all the entries in the pivot column are negative or zero, then the
problem is unbounded; more on that in Chapter 3.)

. . -
In our example, the pivot row is the first row (w:th = 2)
r
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4,1 201011
4 2 001

43000 O

Step 3. Divide every entry in the pivot row by the pivot number, found in the intersection of
the pivot row with the pivot column:

11 5

i M 0 =
! 2 22 0 2
4 1 20¢101
342001 8
543000 0O

Step 4. From every remaining row, subtract & suitable multiple of the new pivot row. This
operation is designed to make every entry in the pivot column (except for the pivot number)
become zero; hence, the “suitable multiple” results when the new pivot row is multiplied by
the entry appearing in the pivot column and in the row in question. (In our example, step 4
results in the second tableauw.)

A tableau is nothing but a cryptic recording of a dictionary with all the variables collected on
the left-hand side and the symbols for these variables omitted. We shall continue to use dictio-
naries instead, since they are more explicit. (Of course, nothing prevents the reader tired of
writing the same symbols x,, X, .. . over and over again from using the tableau shorthand.) 0

derived in terms of dictionaries,
1e procedure; the reader should
cedure is not important for our

e farthest right, which equals the A WAREI-NG

the tableau describes an optimal

umn in which it appears is called There is often more than one way of describing a particular algorithm; descriptions
aimed at clarifying underlying concepts are often quite different from those that

irst one: suggest efficient computer implementations. The simplex method is no exception.

Dictionaries may provide a convenient tool for explaining its basic principles. How-
ever, in implementing the method for computer solutions of large problems, consider-
ations of computational efficiency and numerical accuracy overshadow such didactic
niceties, We shall begin to study efficient implementations of the simplex method in
Chapters 7 and 8.
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PROBLEMS

£42.1 Solve the following problems by the simplex method:
4. maximize Ix; + 2x; + dx;
subject to X+ X;4+2xy<4
2x, +3x, 25
2x, + X, + 3X'_3 <7
X, X3, %320
b. maximize 5x, + 6x; + 9%y + 8x,
subject to X+ 22X+ 33+ x5
Xy + Xz 4+ 2343, 53
Xpy Xz, X3, Xg 2 0
c. maximize 2x, + X3
subject to ¢+ 3x; 53
< + 5x1 < 1
2x1 + X3 < 4
4x| -+ xz =< 5
X, X2 2 0.

22 Use the simplex method to describe all the optimal solutions of the following problem:
maximize 2xp + 3xy + 5xy + 4x,

subject to Xp+2x 4+ 3x; 4+ x, <5
X; 4+ X34+ 2x;+3x, <3
Xyy Xgy X3, Xy 2 0.
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