
Answers ADS exam 2016-2017

Maxwell Hessey

October 2017

1 Simulation of an emergency department

(a) Validation

E.g. :

• Validate assumptions such as DN1 only works on patients of category A by setting sce-
narios to people from DN1 or their managers such as: ”What if a patient comes in with
a barely non-critical condition and you know they will have to wait for x minutes if you
do not treat them, would you (partially) treat them?”

• Input validation: Compare the generated patient treatment times with real life patient
treatment times. Do the distributions match?

• If such a department exists (or a similar one), do a simulation run and compare the results
to the real world situation in terms of distribution of waiting times for each category,
working hours of the staff, percentage of time the staff is busy etc. (Output validation)

(b) Generating treatment times. 1

First note that as 6 is an integer, Gamma(6,10) is a 6-Erlang(10) distribution. This means we
can generate outcomes using the sum of four exponential distributions with mean 10 (this is
called convolution):

6-Erlang(10) = E xp(10) + E xp(10) + E xp(10) + E xp(10) + E xp(10) + E xp(10) (1)

So far so good, but how do we sample from Exp(10)? To draw from an exponential distribution,

we use inverse transform sampling. The CDF of the exponential function is: 1 − e−
x
β ; in this

case β = 10. First we find the inverse:

FExp(x) = 1 − e−
x
β = y

−e−
x
β = y − 1

e−
x
β = 1 − y

− x
β
= ln(1 − y)

x = −β ln(1 − y) = F−1Exp(y)

Now we obtain the following algorithm:

1. For i = 1, 2, . . . , 6 generate a number ui from U[0, 1] by a linear congruential generator,
which applies z j+1 = az j mod p, p a large prime e.g. 231 − 1.

2. Define xi = −10 ln(1 − ui) for i = 1, 2, . . . , 6.

3. Return x = x1 + x2 + . . . x6.

1See the slides on RNG on: http://www.cs.uu.nl/docs/vakken/mads/lectureRNG.pdf

1

(c) Experimental setup This question is about step 7 from the steps in a sound simualtion study
discussed in the lecture Modelling and Simuation study.

The key here is that the emergency department works continuously. So we want to find
information about the steady state of the department, not about the warm-up phase.

A possible technique is separate runs. These should be very large to minimize the effect of
the warmup phase. Or if the warmup phase is known to last until time t0, then data can be
collected only after t0 and the runs can be shorter. To find t0 you should apply the moving
average method decribed in lecture on output (at the exam you should give the formules for
this).

After the prodcution runs you can do the following (this is part of step 9 of a sound simulation
study so strictly speaking not included in the question). Suppose we choose to do n runs. For
each run we obtain the maximum waiting time, let Wi be the maximum waiting time of run
i. To estimate the maximum waiting time we compute

W̄(n) =
∑n

i=1 Wi

n
.

Then we compute the sample variance S2(n) =
∑n

i=1(Wi−W̄ (n))2
n−1 . We can use this to compute a

confidence interval:

[W̄(n) − tn−1,1− α
2

√
S2(n)

n
; W̄(n) + tn−1,1− α

2

√
S2(n)

n
],

where tn−1,1− α
2

is from the student’s t-distribution with n − 1 degrees of freedom and can be
found in a statistical table. This means the maximum waiting time from the model is in this
interval with probability 1 − α.

2

2 Tutoring Lessons

(a) Each student takes one lesson

Decision variables: For each timeslot, X must decide which student to teach. So let xjt be 1
if X teaches student j at timeslot t and 0 otherwise.

Objective function: Maximize the profit X makes, which is the sum of all prices payed during
the slots he works in (2)

Constraints: Each student takes only one lesson (3). In each hour X can only do one tutoring
lesson (4). Integrality (5).

Let J denote the set of all available students. This leads to:

max
∑

j∈Jt∈T
pjt xjt (2)∑
t∈T

xjt ≤ 1 ∀ j ∈ J (3)∑
j∈J

xjt ≤ 1 ∀t ∈ T (4)

xjt ∈ {0, 1} ∀ j ∈ J, t ∈ T (5)

(6)

(b) TUM

Out of scope for the year 2017-2018

(c) Each student potentialy takes several lessons

X must make the same decisions as in question a, his objective also remains the same. Only
the constraints change. We add the constraint that a student can only be given a lesson if
they are available at that time (10). The constraint that each student can take at most one
lesson becomes the constraint that each student can take at most qj lessons (8).

Thus we have:

max
∑

j∈Jt∈T
pjt xjt (7)∑
t∈T

xjt ≤ qj ∀ j ∈ J (8)∑
j∈J

xjt ≤ 1 ∀t ∈ T (9)

xjt ≤ ajt ∀ j ∈ J∀t ∈ T (10)

xjt ∈ {0, 1} ∀ j ∈ J, t ∈ T (11)

(d) Crash Courses

Now all lessons must be in consecutive hours. Note 01.00-02.00 and 10.00-11.00 are consecutive
hours, so all T of X’s hours are consecutive. That is, we do not need to consider time of day
and we can stick to numbering the numbering of timeslots we used before (1, 2, · · · ,T).

This means we only have to decide which slot we start teaching student j at. Let yjt be 1

if X starts teaching j a crash course at time t. The profit Pjt of yjt now equals
∑t+qj−1

s=t pjs

Obviously we can only start teaching a set of lessons once (14). Moreover, X can teach only
one student at the same time (15). We add the constraint that a student can only be given
lessons if they are available at that time (15). As always, X wants to maximize his profit, so
we have:

3

max
∑

j∈Jt∈T
Pjt yjt (12)∑
t∈T

yjt ≤ 1 ∀ j ∈ J (13)

n∑
j=1

t∑
s=t−qj+1

yjs ≤ 1 ∀t ∈ T (14)

yjt ≤ bjt ∀ j ∈ J∀t ∈ T (15)

yjt ∈ {0, 1} ∀ j ∈ J, t ∈ T (16)

4

3 Distribution network

1. Showing UCF is NP-Complete

Recall that to show a problem P is NP-Complete we need to show it is in NP and that there
is a polynomial time reduction from a known NP-Complete problem to P.

First we show UCF is in NP : Any yes solution y can be stored in polynomial space with
respect to the input x. A solution can be stored as xi j = 1 if customer j is supplied from
depot i and 0 otherwise, with yi = 1 if depot i is open and 0 otherwise. Clearly this is
polynomial w.r.t. the space needed to define the cost functions ci j and Fi.

Any yes solution can be checked in polynomial time with respect to (x,y). Checking a
solution may be done by looping once over all customers to check they are being supplied.
During this loop, we can build a list of depots these customers are being supplied from and
maintain the total cost required so far. Next we loop over the list of depots and check all
these are open and maintain the total cost required (only counting each depot once). Finally
we compare the total cost with Q. All this is done in O(nm), which is polynomial w.r.t the
input size.

Next we show UCF is NP -hard by a reduction from Vertex Cover (VC).

Let (G(V, E), k) be any instance of Vertex Cover. Define an instance of UCF as follows:

• For every edge e ∈ E define a customer.

• For every vertex v ∈ V define a depot dv.

• Let the cost of supplying a customer from a depot equal 0 if in G,the vertex corre-
sponding to the depot is incident to the edge corresponding to the customer and Q + 1
otherwise (basically, be impossibly large otherwise)

• Let the cost of opening any depots be 1.

• Let Q = k

Clearly this is a polynomial time transformation.

Consider any Yes instance of Vertex Cover. We show that the above transformation creates
a Yes instance of UCF: Since we have a yes instance, there exists a vertex cover VC of size at
most k. We will show that opening the depots corresponding to the VC is a feasible solution
to UCF with cost at most Q. By construction, every customer corresponds to some edge e
in G. Because VC is a Vertex Cover, there exists a vertex v ∈ VC such that v is incident to
e. Therefore there is an open depot (corresponding to v) from which e can be supplied with
cost 0. The cost of opening all depots is equal to the size of the vertex cover, which is at
most k. So the total cost for this solution is at most k.

Conversely, consider any Yes instance of UCF resulting from the above transformation. We
show that the instance transformed from must be a Yes instance of VC. A yes instance of
UCF implies we have a feasible solution of cost at most Q. First we observe that to be a
feasible solution with cost at most Q, no customer corresponding to edge e can be supplied
from a depot corresponding to a vertex that is not incident to e (because the costs for this
alone are Q+1 by construction). So the total costs of supplying customers from depots must
be 0. Furthermore, since the cost of opening a depot is 1, the total number of openened
depots must be at most Q = k. These at most k depots must supply all customers, so the
corresponding at most k vertices must be incident to all edges in E. So the corresponding
vertices are a vertex cover of size at most k.

QED.

2. Showing DT is NP-Complete

As before, we show DT ∈NP an then a polynomial time reduction from a known NP-Complete
problem (in this case HP).

5

DT ∈ NP :

Any yes solution y can be stored in polynomial space with respect to the input x. Store the
solution as an ordered list of locations. Every location l is visited at most once because it
needs to be, and at most once for every other time a location l ′ needs to be visited (it might
be that the shortest route to l ′ goes via l). We visit at most O(n) locations because we need
to, so at most O(n2) locations in total. So the list is at most O(n2) long, which is polynomial
in the input parameter n.

Any yes solution can be checked in polynomial time with respect to (x,y). Make a list L of all
locations that are yet to be visited . Follow the locations in order of the solution, whenever
a location is visited, check if it is in the list and if so remove it (in O(n)). Keep track of the
total cost. When the solution list has been exhausted, check L = ∅. And check the total
cost is at most W . Total running time is O(n3), so polynomial w.r.t. input parameter n.

DT is NP -hard by reduction from Hamilton Path (HP). Let G = (V, E), be any instance of
the HP. Define an instance of DT as follows:

• For each vertex v in V create a pickup location pv and delivery location dv
• Define the distance function w(u, v) as follows:

– 0 between pv and dv ∀v ∈ V
– |V | + 2 between pv and du ∀u ∈ V , v

– 1 between du and pv ∀(u, v) ∈ E
– |V | + 2 between du and pv iff (u, v) < E
– 1 between s and pv ∀v ∈ V
– 1 between dv and s ∀v ∈ V

• Let W = |V | + 1

Clearly this is a polynomial time transformation.

Now assume we have a YES instance of HP, we show that the above transformation results
in a YES instance of DT. Because we have a YES instance of HP, there exists a path in G
that visits each vertex exactly once. Number the vertices in order of visiting in the path
(v1, v2, · · · , vW). Consider the route that follows this path: s, pv1, dv1, pv2, dv2, · · · , pvW , dvW , s.

The cost of s to pv1 is 1 by construction. The cost of going from pvi to dvi is 0 by construction.
There must be an edge in G between vi and vi+1 (otherwise they could never be subsequent
vertices in the HP), so the cost of going from dvi to pvi+1 is 1 by construction.

Thus the total cost is 1 + the length of the path + 1, or 1 + (|V | − 1) + 1 = |V | + 1

Now assume we have a YES instance of DT, we will show that we have a YES instance of
HP. Because we have a YES instance of DT, there must exist a route, visiting all locations
then returning to the depot with total length at most W . Because each location is visited at
least once; there are W locations; the total route length is at most W , it must hold that each
location is visited exactly once. Since W = |V |+1 < |V |+2, by definition of our distance func-
tion w, it is not possible that we go from du to pv unless (u, v) ∈ E. Now name the locations
in order of their position in the route s, pv1, dv1, pv2, dv2, · · · , pvW , dvW , s. Each edge (vi, vi+1)
must exist in E. Consider the corresponding path in G: (v1, v2), (v2, v3), · · · , (vW−1, vW). This
is a path in G (because all the edges exist) and visits each vertex once (because each corre-
sponding location is visited exactly once). So we have a YES instance of HP.

QED.

3. Construction Heuristics for DT Note the following relation with TSP: Build a graph as
follows: Start with the bipartite graph with vertices of pickup locations and delivery location.
Add vertex s and s′. Add arcs from s to all pickup locations, from all delivery locations to
s′ and from s′ to s. Use the distance function w on the arcs, and give s′ to s the distance 0.

6

For non-existing arcs we can add arcs with infinite cost. Now we are looking for the cheapest
TSP tour on this graph. So any of the TSP construction heuristics will work. See the slides
2 for a complete list.

For example: Nearest Neighbour: from di go to the nearest unvisited pickup location. Repeat
until all locations have been visitied.

Farthest insertion heuristic: Create a trivial (single vertex) cycle. Until all vertices are in
the cycle, repeat: Add the vertex to the cycle that is furthest away.

4 Bayesian Networks

Out of scope for the year 2017-2018

2http://www.cs.uu.nl/docs/vakken/mads/lecture tsp.pdf

7

