
3.8 Strong valid inequalities for structured IP problems

By studying the problem structure, we can derive strong valid inequalities which lead to
better approximations of the ideal formulation conv(X ) and hence to tighter bounds.

Consider a polyhedron P = {x ∈ Rn
+ : Ax ≤ b}.

Definition: Given two valid inequalities πtx ≤ π0 and µtx ≤ µ0 for P, πtx ≤ π0

dominates µtx ≤ µ0 if ∃ u > 0 such that uµ ≤ π and π0 ≤ uµ0 with (π, π0) 6= (uµ, uµ0).

Since uµtx ≤ πtx ≤ π0 ≤ uµ0, clearly {x ∈ Rn
+ : πtx ≤ π0} ⊆ {x ∈ Rn

+ : µtx ≤ µ0}.

Example: x1 + 3x2 ≤ 4 dominates 2x1 + 4x2 ≤ 9 since for (π, π0) = (1, 3, 4) and

(µ, µ0) = (2, 4, 9) we have 1
2
µ ≤ π and π0 ≤ 1

2
µ0.
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Definition: A valid inequality πtx ≤ π0 is redundant in the description of P

if there exist k ≥ 2 valid inequalities πix ≤ πi
0 for P with ui > 0, 1 ≤ i ≤ k, such that

(
k∑

i=1

uiπ
i )x ≤

k∑
i=1

uiπ
i
0 dominates πtx ≤ π0.

Example:

P = {(x1, x2) ∈ R2
+ : −x1 + 2x2 ≤ 4, −x1 − 2x2 ≤ −3, −x1 + x2 ≤ 5/3, 1 ≤ x1 ≤ 3}

−x1 + x2 ≤ 5/3 is redundant because it is dominated by −x1 + x2 ≤ 3/2, which is
implied by −x1 + 2x2 ≤ 4 and −x1 ≤ −1 (with u1 = u2 = 1

2
)

Observation: When P = conv(X ) is not known explicitly it can be very difficult to check
redundancy. In pratice, we should avoid inequalities that are dominated by others
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3.8.1 Faces and facets of polyhedra

Consider a polyhedron P = {x ∈ Rn : Ax ≤ b}

Definitions

The vectors x1, . . . , xk ∈ Rn are affinely independent if the k − 1 vectors
x2 − x1, . . . , xk − x1 ∈ Rn are linearly independent, or equivalently if the k vectors
(x1, 1), . . . , (xk , 1) ∈ Rn+1 are linearly independent.

The dimension of P, dim(P), is equal to the maximum number of affinely linearly
independent points of P minus 1.

P is full-dimensional if dim(P) = n, i.e., no equation atx = b is satisfied with
equality by all the points x ∈ P.

Illustrations:
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For the sake of simplicity, we assume that P is full dimensional

Theorem: If P is of full dimension, P admits a unique minimal description

P = {x ∈ Rn : at
i x ≤ bi , i = 1, . . . ,m}

where each inequality is unique within a positive multiple.

Each inequality is necessary: deleting anyone of them we obtain a polyhedron that differs
from P.

Moreover, each valid inequality for P which is not a positive multiple of one of the
at
i x ≤ bi is redundant (can be obtained as linear combination with nonnegative

coefficients of two or more valid inequalities).
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Alternative characterization of necessary valid inequalities

Definitions

Let F = {x ∈ P : πtx = π0} for any valid inequality πtx ≤ π0 for P. Then F is a
face of P and the inequality πtx ≤ π0 represents or defines F .

If F is a face of P and dim(F ) = dim(P)− 1, then F is a facet of P.

Illustrations:

Consequences: The faces of a polyhedron are polyhedra and a polyhedron has a finite
number of faces.

Theorem: If P is full dimensional, a valid inequality is necessary for the description of P
if and only if it defines a facet of P, i.e., if there exist n affinely independent points of P
satisfying it at equality.
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Example

Consider the polyhedron P ⊂ R2 described by:

x1 + 2x2 ≤ 4 (1)

−x1 − 2x2 ≤ −3 (2)

−x1 + x2 ≤
3

2
(3)

x1 ≤ 3 (4)

x1 ≥ 1 (5)

Verify that P is full dimensional (dim(P=2).

Which inequalities define facets of P or are redundant? All but (3) define facets.

Edoardo Amaldi (PoliMI) Optimization Academic year 2016-17 6 / 21

akker103
Pencil



How to show that a valid inequality is facet defining

Consider X ⊂ Z n
+ and a valid inequality πtx ≤ π0 for X

Assumption: conv(X ) is bounded and full dimensional

Two simple approaches to show that πtx ≤ π0 defines a facet of P = conv(X ):

1) Apply the definition: Find n points x1, . . . , xn ∈ X that satisfy the inequality
with equality (πtx = π0) and are affinely independent.

2) Indirect approach:

(i) Select t points x1, . . . , x t ∈ X , with t ≥ n, that satisfy πt x = π0. Suppose that
they all belong to a generic hyperplane µtx = µ0.

(ii) Solve the linear system

n∑
j=1

µjx
k
j = µ0 for k = 1, . . . , t

in the n + 1 unknowns µ0, µ1, . . . , µn.

(iii) If the only solution is (µ, µ0) = λ(π, π0) with λ 6= 0, then the inequality πt x ≤ π0

defines a facet of conv(X ).
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Example:

Consider X = {(x , y) ∈ Rm × {0, 1} :
∑m

i=1 xi ≤ my , 0 ≤ xi ≤ 1 ∀i}

i) Verify that dim(conv(X )) = m + 1. (0, 0), (0, 1) and (e i , 1), with 1 ≤ i ≤ m, are
m + 2 affinely independent points of conv(X ).

ii) Show with indirect approach that for each i the valid inequality xi ≤ y defines a facet
of conv(X ).

Consider the 2m points (0, 0), (e i , 1) and (e i + e i′ , 1) for i ′ 6= i , which are feasible and
satisfy xi = y .

Since (0, 0) belongs to the hyperplane defined by
∑m

j=1 µjxj + µm+1y = µ0, then µ0 = 0.

Since (e i , 1) belongs to the hyperplane defined by
∑m

j=1 µjxj + µm+1y = µ0 = 0, then
µi = −µm+1.

Since (e i + e i′ , 1) belongs to the hyperplane defined by
∑m

j=1 µjxj − µiy = µ0 = 0, then

µi′ = 0 for i ′ 6= i .

Thus the hyperplane is µixi − µiy = 0 and hence xi ≤ y defines a facet of conv(X ).
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3.8.2 Cover inequalities for the binary knapsack problem

Consider X = {x ∈ {0, 1}n :
∑n

j=1 ajxj ≤ b} with b > 0 and N = {1, . . . , n}.

Assumptions: For each j with 1 ≤ j ≤ n, aj > 0 (if aj < 0 set x ′j = 1− xj) and aj ≤ b.

Definitions: A subset C ⊆ N is a cover for X if
∑

j∈C aj > b.

A cover is minimal if, for each j ∈ C , C \ {j} is not a cover.

Example: For X = {x ∈ {0, 1}7 : 11x1 + 6x2 + 6x3 + 5x4 + 5x5 + 4x6 + x7 ≤ 19}
{1, 2, 3} is a minimal cover and {3, 4, 5, 6, 7} is a non-minimal cover

Proposition: If C ⊆ N is a cover for X , the inequality∑
j∈C

xj ≤ |C | − 1

is valid for X , and is called a cover inequality.

Example cont.: for above covers x1 + x2 + x3 ≤ 2 and x3 + x4 + x5 + x6 + x7 ≤ 3
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Proposition: Let C ⊆ N be a cover for X . The cover inequality associated to C∑
j∈C

xj ≤ |C | − 1

defines a facet of PC := conv(X ) ∩ {x ∈ Rn : xj = 0, j ∈ N \ C} if and only if C is a
minimal cover.
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Separation of cover inequalities

Separation problem: Given a fractional solution x∗ with 0 ≤ x∗j ≤ 1, 1 ≤ j ≤ n,

decide whether x∗ satisfies all the cover inequalities or determine one violated by x∗.

Since
∑

j∈C xj ≤ |C | − 1 can be written as
∑

j∈C (1− xj) ≥ 1, this amounts to answer
the question:

Does there exist a subset C ⊆ N such that
∑

j∈C aj > b and
∑

j∈C (1− x∗j ) < 1?

If z ∈ {0, 1}n is the incidence vector (binary characteristic vector) of the subset C ⊆ N,
it is equivalent to the question:

ζ∗ = min{
∑

j∈N(1− x∗j )zj :
∑

j∈N ajzj > b, z ∈ {0, 1}n} < 1?

Proposition:

(i) If ζ∗ ≥ 1, x∗ satisfies all the cover inequalities.

(ii) If ζ∗ < 1 with optimal solution z∗, then
∑

j∈C xj ≤ |C | − 1 with

C = {j : z∗j = 1, 1 ≤ j ≤ n} cuts (is violated by) x∗ by a quantity 1− ζ∗.
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Example:

Consider
max z = 5x1 + 2x2 + x3 + 8x4
s.t. 4x1 + 2x2 + 2x3 + 3x4 ≤ 4

x1, x2, x3, x4 ∈ {0, 1}

Optimal solution of the LP relaxation x∗LP = (1/4, 0, 0, 1) with z∗LP = 9.25.

The separation problem amounts to the following binary knapsack problem:

ζ∗ = min 3
4
z1 + z2 + z3

s.t. 4z1 + 2z2 + 2z3 + 3z4 > 4
z1, z2, z3, z4 ∈ {0, 1}

where the > constraint can be replaced with 4z1 + 2z2 + 2z3 + 3z4 ≥ 5.

Optimal solution z = (1, 0, 0, 1) with ζ∗ = 3
4
.

Thus the cover inequality
x1 + x4 ≤ 1

cuts away the current LP optimal solution x∗LP by 1− ζ∗ = 1
4
.
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Can such cover inequalities be strengthened?

Proposition: If C ⊆ N is a cover for X , the extended cover inequality∑
j∈E(C)

xj ≤ |C | − 1

is valid for X , where E(C) = C ∪ {j ∈ N : aj ≥ ai for all i ∈ C}.

Example cont.: For X = {x ∈ {0, 1}7 : 11x1 + 6x2 + 6x3 + 5x4 + 5x5 + 4x6 + x7 ≤ 19},
the extended cover inequality for C = {3, 4, 5, 6} is

x1 + x2 + x3 + x4 + x5 + x6 ≤ 3

which clearly dominates
x3 + x4 + x5 + x6 ≤ 3. (6)

Observation: Since a1 = 11, ai ≥ 5 for i ∈ {3, 4, 5}, a6 = 4 and b = 19, if x1 = 1 at
most one of the other variables in (6) can take value 1 and the inequality

2x1 + x3 + x4 + x5 + x6 ≤ 3

is valid and in turn dominates (6).
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How can we systematically strengthen a cover inequality
∑

j∈C xj ≤ |C | − 1 to obtain a
facet defining one?

Lifting procedure:

Let j1, . . . , jr be the indices of N \ C .

Iteration 1: Determine the maximum value of αj1 such that

αj1xj1 +
∑
j∈C

xj ≤ |C | − 1

is valid for X by solving the (binary knapsack) problem

σ1 = max
∑

j∈C xj
s.t.

∑
j∈C ajxj ≤ b − aj1

x ∈ {0, 1}|C |

and by setting αj1 = |C | − 1− σ1.

σ1 = maximum amount of ”space” used up by the variables of indices in C when xj1 = 1.
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Iteration 2: Determine the maximum value of αj2 such that

αj2xj2 + αj1xj1 +
∑
j∈C

xj ≤ |C | − 1

is valid for X by solving the (binary knapsack) problem

σ2 = max αj1xj1 +
∑

j∈C xj
s.t. aj1xj1 +

∑
j∈C ajxj ≤ b − aj2

x ∈ {0, 1}|C |+1

and by setting αj2 = |C | − 1− σ2.

Iteration 3: ...

Example cont.:

For X = {x ∈ {0, 1}7 : 11x1 + 6x2 + 6x3 + 5x4 + 5x5 + 4x6 + x7 ≤ 19},
applying the lifting procedure to

x3 + x4 + x5 + x6 ≤ 3

considering in the order x1, x2 and x7, we obtain the valid inequality

2x1 + x2 + x3 + x4 + x5 + x6 ≤ 3.
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Lifting procedure for cover inequalities

Let j1, . . . , jr be the indices of N \ C and set t = 1.

Let
∑t−1

i=1 αji xji +
∑

j∈C xj ≤ |C | − 1 be the inequality obtained at iteration t − 1.

Iteration t: Determine the maximum value of αjt such that

αjt xjt +
t−1∑
i=1

αji xji +
∑
j∈C

xj ≤ |C | − 1

is valid for X by solving the (binary knapsack) problem

σt = max
∑t−1

i=1 αji xji +
∑

j∈C xj
s.t.

∑t−1
i=1 aji xji +

∑
j∈C ajxj ≤ b − ajt

x ∈ {0, 1}|C |+t−1

and by setting αt = |C | − 1− σt .

Terminate when t = r .

Note: σt = maximum amount of ”space” used up by the variables of indices in
C ∪ {j1, . . . , jt−1} when xjt = 1.
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Proposition: If C ⊆ N is a minimal cover and aj ≤ b for all j ∈ N, the lifting procedure
is guaranteed to yield a facet defining inequality of conv(X ).

Example cont.:

For X = {x ∈ {0, 1}7 : 11x1 + 6x2 + 6x3 + 5x4 + 5x5 + 4x6 + x7 ≤ 19},
the valid inequality

2x1 + x2 + x3 + x4 + x5 + x6 ≤ 3

defines a facet of conv(X ).

Clearly, the resulting facet defining inequality depends on the order in which the variables
of N \ C are considered, that is, on the lifting sequence.
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3.8.3 Facets of the traveling salesman problem

STSP: Given an undirected graph G = (V ,E) with n = |V | nodes and a cost ce for
every edge e = {i , j} ∈ E , determine a Hamiltonian cycle of G of minimal total cost.

min
∑

e∈E cexe
s.t.

∑
e∈δ(i) xe = 2 i ∈ V∑

e∈E(S) xe ≤ |S | − 1 S ⊂ V , S 6= ∅
xe ∈ {0, 1} e ∈ E .

Let X denote the set of all incidence vectors x ∈ {0, 1}|E | of Hamiltonian cycles.

Proposition: For every S ⊆ V with 2 ≤ |S | ≤ n/2 and n ≥ 4,∑
e∈E(S)

xe ≤ |S | − 1 (7)

defines a facet of the STSP polytope conv(X ).

The STSP polytope conv(X ) has a very complicated structure. Many classes of facet
defining inequalities are known but its complete description is unknown.
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3.8.4 Equivalence between separation and optimization

Consider a family of LPs min{ c tx : x ∈ Po} with o ∈ O, where
Po = { x ∈ Rno : Aox ≥ bo } polytope with rational (integer) coefficients and a very
large (e.g., exponential) number of constraints.

Examples:

1) Linear relaxation of asymmetric TSP with cut-set inequalities (O set of all graphs)

2) Maximum Matching problem: For each G = (V ,E), the matching polytope

conv({x ∈ {0, 1}|E | :
∑
e∈δ(i)

xe ≤ 1, ∀i ∈ V })

coincides (Edmonds) with

{x ∈ R|E |+ :
∑
e∈δ(i)

xe ≤ 1, ∀i ∈ V ,
∑

e∈E(S)

xe ≤
|S | − 1

2
, ∀S ⊆ V with |S | ≥ 3 odd}

Consider a cutting plane approach where constraints are only generated if needed.

Assumption: Even though the number of constraints mo of Po is exponential in no

(e.g., O(2no )), Ao and bo are specified in a concise way (as a function of a polynomial
number of parameters w.r.t. no).
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Optimization problem: Given a rational polytope P ⊆ Rn and a rational objective
vector c ∈ Rn, find a x∗ ∈ P minimizing c tx over x ∈ P or establish that P is empty.

N.B.: we assume that P is bounded (polytope) just to avoid unbounded problems.

Separation problem: Given a rational polytope P ⊆ Rn and a rational vector x ′ ∈ Rn,
establish that x ′ ∈ P or determine a cut that separates x ′ from P (a rational vector
π ∈ Rn such that πx < πx ′ for each x ∈ P)

Theorem: (consequence of Grötschel, Lovász, Schriver 1988 theorem)

The separation problem for a family of polyhedra can be solved in polynomial time in n
and log U if and only if the optimization for that family can be solved in polynomial time
in n and log U, where U is an upper bound on all aij and bi .

Proof based on Ellipsoid method, first polynomial algorithm for LP (Khachiyan 1979).

For now it is a theoretical tool: the resulting algorithm is not efficient but the
equivalence may guide the search for more practical polynomial-time algorithms.

Corollary: The linear relaxation of the ILP formulation for ATSP with cut-set inequalities
can be solved in polynomial time in spite of the exponential number of constraints.
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3.8.5 Remarks on cutting plane methods

Consider a generic discrete optimization problem

min{ c tx : x ∈ X ⊆ Rn
+}

with rational coefficients ci .

When designing a cutting plane method, be aware that:

It can be difficult to describe one or more families of strong (possibly facet defining)
valid inequalities for conv(X ).

The separation problem for a given family F may require a considerable
computational effort (if NP-hard devise heuristics).

Even when finite convergence is guaranteed (e.g., with Gomory cuts), pure cutting
plane methods tend to be very slow.

The subfield of Discrete Optimization studying the polyhedral structure of the ideal
formulations (conv(X )) is known as Polyhedral Combinatorics.
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