6 BASIC SIMULATION MODELING

« Deterministic vs. Stochastic Simulation Models. 1f a simulation model does not
contain any probabilistic (i.e., random) components, it is called deterministic;
a complicated (and analytically intractable) system of differential equations de-
scribing a chemical reaction might be such a model. In deterministic models, the
output is “determined” once the set of input quantities and relationships in the
model have been specified, even though it might take a lot of computer time to
evaluate what it is. Many systems, however, must be modeled as having at least
some random input components, and these give rise to stochastic simulation mod-
els. (For an example of the danger of ignoring randomness in modeling a system,
see Sec. 4.7.) Most queueing and inventory systems are modeled stochastically.
Stochastic simulation models produce output that is itself random, and must
therefore be treated as only an estimate of the true characteristics of the maodel;
this is one of the main disadvantages of simulation (see Sec. 1.8) and is dealt with
in Chaps. 9 through 12 of this book.

« Continnous vs. Discrete Simulation Models. Loosely speaking, we define discrete
and contimeous simulation models analogously to the way discrete and continu-
ous systems were defined above. More precise definitions of discrete {event) sim-
ulation and continuous simulation are given in Secs. 1.3 and 13.3, respectively. It
should be mentioned that a discrete model is not always used to model a discrete
system, and vice versa. The decision whether to use a discrete or a continuous
model for a particular system depends on the specific objectives of the study. For
example, a model of traffic flow on a freeway would be discrete if the character-
istics and movement of individual cars are important. Alternatively, if the cars can
be treated “in the aggregate,” the flow of traffic can be described by differential
equations in a continuous model. More discussion on this issue can be found in
Sec. 5.2, and in particular in Example 5.2.

The simulation models we consider in the remainder of this book, except for
those in Chap. 13, will be discrete, dynamic, and stochastic and will henceforth be
called discrete-event sinndation models. (Since deterministic models are a special
case of stochastic models, the restriction to stochastic models involves no loss of
generality.)

1.3
DISCRETE-EVENT SIMULATION

Discrete-event sinulation concerns the modeling of a system as it evolves over time
by a representation in which the state variables change instantaneously at separate
points in time. (In more mathematical terms, we might say that the system can
change at only a countable number of points in time.} These points in time are the
ones at which an event occurs, where an event is defined as an instantaneous occur-
rence that may change the state of the system. Although discrete-event simulation
could conceptually be done by hand calculations, the amount of data that must be
stored and manipulated for most real-world systems dictates that discrete-event
simulations be done on a digital computer. (In Sec. |.4.2 we carry outa small hand
simulation, merely to illustrate the logic involved.)
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CHAPTER ONE 7

EXAMPLE 1.1. Consider a service facility with a single server—e.g., 2 onhe-operator
barbershop or an information desk at an airport—for which we would like to estimate the
(expected) average delay in queue (line) of arriving customers, where the delay in queuve
of a customer is the length of the time interval from the instant of his arrival at the facility
to the instant he begins being served. For the objective of estimating the average delay of
a customer, the state variables for a discrete-event simulation model of the facility would
be the status of the server, i.e., either idle or busy, the number of customers waiting in
queue to be served (if any), and the time of arrival of each person waiting in queue. The
status of the server is needed to delermine, upon a customer's arrival, whether the cus-
romer can be served immediately or must join the end of the queue, When the server
completes serving a customer, the number of customers in the queue is used to determine
whether the server will become idle or begin serving the first customer in the queue.
The time of arrival of a customer is needed to compute his delay in queue, which is
the time he begins being served (which will be known) minus his time of arrival. There
are two types of events for this system: the arrival of a customer and the compietion of
service for a customer, which results in the customer’s departure. An arrival is an event
since it causes the (state variable) server status to change from idle to busy or the (state
variable) number of customers in the queue to increase by 1. Comrespondingly, a depar-
ture is an event because it causes the server status to change from busy to idle or the
number of customers in the queue to decrease by 1. We show in detail how to build a
discrete-event simulation model of this single-server queucing system in Sec. 1.4,

In the above example both types of events actually changed the state of the
system, but in some discrete-event simulation models events are used for purposes
that do not actually effect such a change. For example, an event might be used to
schedule the end of a simulation run at a particular time (see Sec. 1.4.6) or to
schedule a decision about a system’s operation at a particular time (see Sec. 1.5)
and might not actually result in a change in the state of the system. This is why we
originally said that an event mmay change the state of a system.

1.3.1 Time-Advance Mechanisms

Because of the dynamic nature of discrete-event simulation models, we must keep
track of the current value of simulated time as the simulation proceeds, and we also
need a mechanism to advance simulated time from one value to another. We call the
variable in a simulation model that gives the current value of simulated time the
simulation clock. The unit of time for the simulation clock is never stated explicitly
when a model is written in a general-purpose language such as C, and it is assumed
10 be in the same units as the input parameters. Also, there is generally no relation-
ship between simulated time and the time needed to run a simulation on the
computer.

Historically, two principal approaches have been suggested for advancing the
simulation clock: next-event time advance and fived-increment time advance. Since
the first approach is used by all major simulation software and by most people pro-
gramming their model in a general-purpose language, and since the second is a
special case of the first, we shall use the nexi-event time-advance approach for all
discreie-event simulation models discussed in this book. A brief discussion of fixed-
increment time advance is given in App. 1A (at the end of this chapter).
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With the next-event time-advance approach, the simulation clock is initialized
to zero and the times of occurrence of future events are determined. The simulation
clock is then advanced to the time of occurrence of the most imminent (first} of these
future events, at which point the state of the system is updated to account for the fact
that an event has occurred, and our knowledge of the times of occurrence of future
events is also updated. Then the simulation clock is advanced to the time of the
(new) most imminent event, the state of the system is updated, and future event
times are determined, etc. This process of advancing the simulation clock from one
event time to another is continued until eventually some prespecified stopping con-
dition is satisfied. Since all state changes occur only at event times for a discrete-
event simulation model, periods of inactivity are skipped over by jumping the clock
from event time to event time. (Fixed-increment time advance does not skip over
these inactive periods, which can eat up a lot of computer time; see App. 1A.} It
should be noted that the successive jumps of the simulation clock are generally vari-
able (or unequal) in size.

EXAMPLE 1.2. We now illustrate in detail the next-event time-advance approach for
the single-server queueing system of Example 1.1, We need the following notation:

r, = time of arrival of the ith customer (1, = 0)
A, =1, — 1,_, = interarrival time between (i — 1)st and ith arrivals of customers
§, = time that server actually spends serving ith customer (exclusive of customer’s
delay in queue)
D, = delay in queue of ith customer
c; = t,+ D, + §; = time that ith customer complctes service and departs
e, = time of occurrence of ith event of any type (ith value the simulation clock

takes on, excluding the value ¢, = 0)

Each of these defined quantitics will generally be a random variable. Assume that the
probability distributions of the interarrival times A;, A,, . . . and the service times
8. 84, . . . are known and have cumulative distribution functions (see See. 4.2) denoted
by F, and Fy, respectively. (In general, F, and Fg would be determined by collecting
data from the system of interest and then specifying distributions consistent with these
data using the techniques of Chap. 6.) At time ¢, = 0 the status of the server is idle, and
the time ¢, of the first arrival is determined by generating A, from F, (techniques for
generating random observations from a specified distribution are discussed in Chap. 8)
and adding it to 0. The simulation clock is then advanced from e, to the time of the next
(first) event, e, = f,. (See Fig. 1.2, where the curved arrows represent advancing the
simulation clock.) Since the customer arriving at time /, finds the server idle, she im-
mediately enters service and has a delay in queue of D, = 0 and the status of the server
is changed from idle to busy. The time, ¢,, when the arriving customer will complete
service is computed by generating S, from Fg and adding it to 1, Finally, the time of the
second arrival, 1,, is computed as £, = 1, + A,, where A, is generated from F . If 1, < ¢,
as depicted in Fig. 1.2, the simulation clock is advanced from ¢, to the time of the next
event, ¢, = . (If ¢, were less than ,, the clock would be advanced from e, to ¢,.) Since
the customer arriving at time t, finds the server already busy, the number of customers
in the queue is increased from 0 1o 1 and the time of arrival of this customer is recorded;
however, his service time S, is not generated at this time. Also, the time of the third
arrival, ty, is computed as 1y = #; + A,. If ¢, < 15, a5 depicted in the figure, the simulation
clock is advanced from e, to the time of the next event, ¢; = c,, where the customer
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FIGURE 1.2
The next-event time-advance approach illustrated for the single-server queueing system.

completing service departs, the customer in the queue (i.e., the one who arrived at time £,)
begins service and his delay in queuve and service-completion time are computed as
D,=¢ — Land ¢, = ¢, + 5, (5, is now generated from Fg), and the number of custom-
ers in the queue is decreased from 1 to 0. I 73 < ¢4, the simulation clock is advanced
from e, to the time of the next event, e, = t,, etc. The simulation might eventvally be
terminated when, say, the number of customers whose delays have been observed
reaches some specified value.

1.3.2 Components and Organization of a Discrete-Event
Simulation Model

Although simulation has been applied to a great diversity of real-world systems,
discrete-event simulation models all share a number of common components and
there is a logical organization for these components that promotes the program-
ming, debugging, and future changing of a simulation model’s computer program.
In particular, the following components will be found in mosi discrete-event simula-
tion models using the next-event time-advance approach programmed in a general-
purpose language:

System state: The collection of state variables necessary to describe the system
at a particular time

Simulation clock: A variable giving the current value of simulated time

Event list: A list containing the next time when each type of event will occur

Statistical counters: Variables used for storing statistical information about
system performance

Initialization routine: A subprogram to initialize the simulation model at time 0

Timing rowtine: A subprogram that determines the next event from the event
list and then advances the simulation clock to the time when that event is
to occur

Event routine: A subprogram that updates the system state when a particular
type of event occurs (there is one event routine for each event type)

Library routines: A set of subprograms used to generate random observations
from probability distributions that were determined as part of the simulation
madel
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Report generator: A subprogram that computes estimates (from the statistical

counters) of the desired measures of performance and produces 2 report
when the simulation ends

Main program: A subprogram that invokes the timing routine to determine the
next event and then transfers control to the corresponding event routine (0
update the system state appropriately. The main program may also check for
termination and invoke the report generator when the simulation is over.

The logical relationships (flow of contro!) among these components are shown in
Fig. 1.3. The simulation begins at time 0 with the main program invoking the
initialization routine, where the simulation clock is set to zZero, the system siaie
and the statistical counters are initialized, and the event list is initialized. After
control has been returned to the main program, it invokes the timing routine to
determine which type of event is most imminent. If an event of type i is the next
to occur, the simulation clock is advanced to the time that event type i will occur

Initialization routine Main program J'T'lming routinge
1. Set simulation 0. lnvoke the initialization routine .
clock = 0 ] @ | 1. Determine the next
2. Initialize system stale event 1ype, SLyAT
and statistical 2. Advance the

1. lnvoke the timing routine

S Repentediy | f simulation clock
2. Invoke evenl routime { } I

counters
3. Initinlize event list

Event routing i l@

Library routines

1. Update system state
2. Update statistical counters Generuie random
3. Generate future evenis and add o variales

event list

Is
simulation
over?

Report gencrator Yes

1. Compule cstimates of interest
2. Write report
FIGURE 1.3

Flow of control for the next-event time-advance approach.
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and control is returned to the main program. Then the main program invokes
event routine i, where typically threeggypes of activities occur: (1) The system
state is updated to account for the fa that an event of type i has occurred;
(2) information about system performance is gathered by updating the statistical
counters; and (3) the times of occurrence of future events are generated, and this
information is added to the event list. Often it is necessary to generate random
observations from probability distributions in order to determine these future
event times; we will refer to such a generated observation as a random variate.
After all processing has been completed, either in event routine i or in the main
program, a check is typically made to determine (relative to some stopping con-
dition) if the simulation should now be terminated. If it is time to terminate the
simulation, the report generator is invoked from the main program to compute
estimates (from the statistical counters) of the desired measures of perfor-
mance and to produce a report. If it is not time for termination, control is passed
back to the main program and the main program—timing routine-main program-—
event routine-termination check cycle is repeated until the stopping condition is
eventually satisfied.

Before concluding this section, a few additional words about the system state
may be in order. As mentioned in Sec. 1.2, a system is a well-defined collection of
entities. Entities are characterized by data values called artributes, and these attri-
butes are part of the system state for a discrete-event simulation model. Further-
more, entities with some common property are often grouped together in /ists (or
files or sets). For each entity there is a record in the list consisting of the entity’s
attributes, and the order in which the records are placed in the list depends on some
specified rule. (See Chap. 2 fora discussion of efficient approaches for storing lists
of records.) For the single-server queueing facility of Examples 1.1 and 1.2, the enti-
ties are the server and the customers in the facility. The server has the attribute
“server status” (busy or idle), and the customers waiting in queue have the attribute
“time of arrival.” (The number of customers in the queue might also be considered
an attribute of the server.) Furthermore, as we shall see in Sec. 1.4, these customers
in queue will be grouped together in a list.

The organization and action of a discrete-event simulation program using
the next-event time-advance mechanism as depicted above are fairly typical when
programming such simulations in a general-purpose programming language
such as C: it is called the event-scheduling approach o simulation modeling,
since the times of future events are explicitly coded into the model and are sched-
uled to occur in the simulated future. It should be mentioned here that there is
an alternative approach to simulation modeling, called the process approach,
that instead views the simulation in terms of the individual entities involved,
and the code written describes the “experience” of a “typical” entity as it “flows”
through the system; programming simulations modeled from the process point
of view usually requires the use of special-purpose simulation software, as dis-
cussed in Chap. 3. Even when taking the process approach, however, the simula-
tion is actually executed behind the scenes in the event-scheduling logic as
described above.
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1.4
SIMULATION OF A SINGLE-SERVER QUEUEING SYSTEM

This section shows in detail how to simulate a single-server queueing system such
as a one-operator barbershop. Although this system seems very simple compared with
those usually of real interest, how it is simulated is actually quite representative of
the operation of simulations of great complexity.

In Sec. 1.4.1 we describe the system of interest and state our objectives more
precisely. We explain intuitively how to simulate this system in Sec. |.4.2 by show-
ing a “snapshot” of the simulated system just after each event occurs. Section 1.4.3
describes the language-independent organization and logic of the C code given in
Sec. 1.4.4. The simulation’s results are discussed in Sec. 1.4.5, and Sec. 1.4.6 alters
the stopping rule to another common way 1o end simulations. Finally, Sec. 1.4.7
briefly describes a technique for identifying and simplifying the event and variable
structure of a simulation,

1.4.1 Problem Statement

Consider a single-server queueing system (see Fig. 1.4) for which the interarrival
times A,, A,, . . . are independent and identically distributed (11D) random variables.

O—

A departing customer

Server

Customer in service

Customers in queue

An arriving customer

FIGURE 1.4
A single-server queueing system.
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(“Identically distributed” means that the interarrival times have the same probability
distribution.) A customer who arrives and finds the server idle enters service imme-
diately, and the service times S, S, . . . of the successive customers are IID random
variables that are independent of the interarrival times. A customer who arrives and
finds the server busy joins the end of a single queue. Upon completing service fora
customer, the server chooses a customer from the queue (if any) in a first-in, first-
out (FIFO) manner. (For a discussion of other queue disciplines and queueing sys-
tems in general, see App. 1B.)

The simulation will begin in the “empty-and-idle” state; i.¢., no customers are
present and the server is idle. At time 0, we will begin waiting for the arrival of the
first customer, which will occur after the first interarrival time, A, rather than al
time O (which would be a possibly valid, but different, modeling assumption). We
wish to simulate this system until a fixed number (1) of customers have completed
their delays in queue; i.e., the simulation will stop when the nth customer enters
service. Note that the time the simulation ends is thus a random variable, depending
on the observed values for the interarrival and service-time random variables.

To measure the performance of this system, we will look at estimates of three
quantities. First, we will estimate the expected average delay in queue of the # cus-
tomers completing their delays during the simulation; we denote this quantity by
d(n). The word “expecied” in the definition of d(n) means this: On a given run of the
simulation (or, for that matter, on a given run of the actual system the simulation
model represents), the actual average delay observed of the it customers depends on
the interarrival and service-time random variable observations that happen to have
been obtained. On another run of the simulation (or on a different day for the real
system) there would probably be arrivals at different times, and the service times
required would also be different; this would give rise to a different value for the
average of the n delays. Thus, the average delay on a given run of the simulation is
properly regarded as a random variable itself. What we want to estimate, d(n), is the
expected value of this random variable. One interpretation of this is that d(n) is the
average of a large (actually, infinite) number of n-customer average delays. From a
single run of the simulation resulting in customer delays Dy, Do, ..., D,, an obvious
estimator of d(n) is

"
2. D,

cf(n) = —i-:r

which is just the average of the 1 D;s that were observed in the simulation [se that
d(n) could also be denoted by D(1)]. {Throughout this book, a hat (*) above a sym-
bol denotes an estimator.] It is important to note that by “delay” we do not exclude
the possibility that a customer could have a delay of zero in the case of an arrival
finding the system empty and idle (with this model, we know for sure that D, = 0},
delays with a value of 0 are counted in the average, since if many delays were zero this
would represent a system providing very good service, and our output measure should
reflect this. One reason for taking the average of the D;s, as opposed to just looking
at them individually, is that they will not have the same distribution (e.g., D =0,
but D, could be positive), and the average gives us a single composite measure of all
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the customers’ delays; in this sense, this is not the usual “average” taken in basic
statistics, as the individual terms are not independent random observations from
the same distribution. Note also that by itself, d(n) is an estimator based on a sample
of size 1, since we are making only one complete simulation run. From elementary
statistics, we know that a sample of size | is not worth much; we retum to this issue
in Chaps. 9 through 12.

While an estimate of d(n) gives information about system performance from
the customers’ point of view, the management of such a system may want different
information; indeed, since most real simulations are quite complex and may be
time-consuming to run, we usually collect many output measures of performance,
describing different aspects of system behavior. One such measure for our simple
model here is the expected average number of customers in the queue (but not being
served), denoted by g(n), where the n is necessary in the notation to indicate that
this average is taken over the time period needed to observe the n delays defining
our stopping rule. This is a different kind of “average” than the average delay in
queue, because it is taken over (continuous) time, rather than over customers (being
discrete). Thus, we need to define what is meant by this time-average number of
customers in queue. To do this, let O(f) denote the number of customers in queue at
time 1, for any real number ¢ = 0, and let 7(») be the time required to observe our
n delays in queue. Then for any time ¢ between 0 and T(n), Q(f) is a nonnegative
integer. Further, if we let p; be the expected proportion (which will be between 0 and 1)
of the time that Q(f) is equal to i, then a reasonable definition of g(n) would be

=

q(m = 3. ip,
=0
Thus, ¢(n) is a weighted average of the possible values i for the queue length Q(),
with the weights being the expected proportion of time the queue spends at each of
its possible lengths. To estimate g(n) from a simulation, we simply replace the p;’s
with estimates of them, and get
G(m) = Y ip; (1.1)

—

i=

where p, is the observed (rather than expected) proportion of the time during the
simulation that there were i customers in the queue. Computationally, however, it is
easier to rewrite §(n1) using some geometric considerations. If we let T; be the total
time during the simulation that the queue is of length i, then T(n) = 7, + T, +
T, + ---and p; = T,/T(n), so that we can rewrite Eq. (§.1) above as

> T,
. =0
L. 1.2
g(n) ) (1.2)
Figure 1.5 illustrates a possible time path, or realization, of Q(¢) for this system in
the case of nn = 6; ignore the shading for now. Arrivals occur at times 0.4, 1.6, 243
3.8, 4.0, 5.6, 5.8, and 7.2. Departures (service completions) occur at times 24,31,
3.3, 4.9, and 8.6, and the simulation ends at time 7(6) = 8.6. Remember in Jooking
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FIGURE 1.5

Q(), arrival times, and departure times for a realization of a single-server queueing system.

at Fig. 1.5 that Q(f) does not count the customer in service (if any), so between times
0.4 and 1.6 there is one customer in the system being served, even though the queve
is empty [Q(#) = 0]; the same is true between times 3.1 and 3.3, between times 3.8
and 4.0, and between times 4.9 and 5.6. Between times 3.3 and 3.8, however, the
system is emply of customers and the server is idle, as is obviously the case between
times 0 and 0.4. To compute g(n), we must first compute the 7;’s, which can be read
off Fig. 1.5 as the (sometimes separated) intervals over which Q(r} is equal te 0, 1, 2,
and so on:

T, = (1.6 — 0.0) + (40 — 3.1) + (5.6 — 4.9) = 3.2
T, =(2.1~=16)+ (3.1 —24) + (49— 4.0) + (58 - 56) = 2.3
L,=0Q4-21)+(72-58)=17
T,= (8.6 —72) = 1.4
(T, = 0 for i = 4, since the queue never grew to those lengths in this realization.)
The numerator in Eq. (1.2} is thus

e

SiT=(0x32)+(1X23)+2X 1T+ 3%X14)=99 (L3}

r={

and so our estimate of the time-average number in queue from this particular simu-
lation run is §(6) = 9.9/8.6 = 1.15. Now, note that each of the nonzero terms on
the right-hand side of Eqg. (1.3) corresponds to one of the shaded areas in Fig. 1.5
I X% 2.3 is the diagonally shaded area (in four pieces), 2 X 1.7 is the cross-hatched
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area (in two pieces), and 3 X 1.4 is the screened area (in a single piece). In other
words, the summation in the numerator of Eq. (1.2) is just the area under the Q)
curve between the beginning and the end of the simulation. Remembering that “area
under a curve” is an integral, we can thus write

ST, = [n")Q(:) di

i=0 )

and the estimator of g(n) can then be expressed as

Tin
f Q(t) dt

Py 0

g{n) Ton (1.4)
While Egs. (1.4) and (1.2) are equivalent expressions for g(n), Eq. (1.4) is pre-
ferable since the integral in this equation can be accumulated as simple areas of
rectangles as the simulation progresses through time. It is less convenient (o carry
out the computations to get the summation in Eq. (1.2) explicitly. Moreover, the
appearance of Eq. (1.4) suggests a continuous average of Q(1), since in a rough
sense, an integral can be regarded as a continuous summation.

The third and final output measure of performance for this system is a measure
of how busy the server is. The expected utilization of the server is the expecied pro-
portion of time during the simulation (from time 0 to time 7)) that the server is
busy (i.e., not idle), and is thus a number between 0 and |; denote it by u(n). From
a single simulation, then, our estimate of (n) is fi(n) = the observed proportion of
time during the simulation that the server is busy. Now ii(n) could be computed
directly from the simulation by noting the times at which the server changes status
(idle 1o busy or vice versa) and then doing the appropriate subtractions and division.
However, it is easier to look at this quantity as a continuous-time average, similar to
the average queue length, by defining the “busy function”

B(r) = {I if the server is busy at time ¢
0 if the server is idle at time ¢

and so #(n1) could be expressed as the proportion of time that B(s) is equal w 1.
Figure 1.6 plots B(r) for the same simulation realization as used in Fig. 1.5 for Q(f).
In this case, we get

. (33-04)+ (86 —38)y 717

= =—=0.90 1.5

() 56 Y (1.5)
indicating that the server was busy about 90 percent of the time during this simula-
tion. Again, however, the numerator in Eq. (1.5) can be viewed as the area under the
B(1) function over the course of the simulation, since the height of B(s) is always
either 0 or 1. Thus,

| "By di

iwn) = —u-m-— (1.6)
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B(1}, arrival times, and departure times for a realization of a single-server queueing system
(same realization as in Fig. 1.5).

and we see again that {i(n) is the continuous average of the B(z} function, corre-
sponding to our notion of utilization. As was the case for g(n), the reason for writ-
ing fi(n) in the integral form of Eq. (1.6) is that computationally, as the simulation
progresses, the integral of B(r) can easily be accumulated by adding up areas of
rectangles. For many simulations involving “servers” of some sort, utilization statis-
tics are quite informative in identifying bottlenecks (utilizations near 100 percent,
coupled with heavy congestion measures for the queue leading in) or excess capac-
ity (low utilizations); this is particularly true if the “servers” are expensive items
such as robots in a manufacturing system or large mainframe computers in a data-
processing operation.

_ To recap, the three measures of performance are the average delay in queue
d(n), the time-average number of customers in queue g{(n), and the proportion of
time the server is busy &i(n). The average delay in queue is an example of a discrete-
time statistic, since it is defined relative to the collection of random variables {D;} that
have a discrete “time” index, i = 1, 2, .. .. The time-average number in queue and
the proportion of time the server is busy are examples of continuous-time statistics,
since they are defined on the collection of random variables {Q(r)} and {B(1}], re-
spectively, each of which is indexed on the continuous time parameter f € [0, @),
{The symbol € means “contained in.” Thus, in this case, ¢ can be any nonnegative
real number.) Both discrete-time and continuous-time statistics are common in sim-
ulation, and they furthermore can be other than averages. For example, we might be
interested in the maximum of all the delays in queue observed (a discrete-time sta-
tistic), or the proportion of time during the simulation that the queue contained at
least five customers (a continuous-time statistic).

The events for this system are the arrival of a customer and the departure of a
customer (after a service completion); the state variables necessary to estimate d(m),
g(n), and u(n) are the status of the server (O for idle and 1 for busy), the number of
customers in the queue, the time of arrival of each customer currently in the queue
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(represented as a list), and the time of the last (i.e., most recent) event. The time of
the last event, defined tobe g, if ¢, S = ¢ (where 1 is the current time in the
simulation), is needed to compute the width of the rectangles for the area accumula-
tions in the estimates of g(n) and u(n).

1.4.2 Intuitive Explanation

We begin our explanation of how to simulate a single-server queueing system by
showing how its simulation model would be represented inside the computer at time
eq = 0 and the imes ey, €3, . .- » €13 at which the 13 successive events occur that are
needed 1o observe the desired number, n = 6, of delays in queuve. For expository
convenience, we assume that the interarrival and service times of customers are

A, =044, =12,A,= 05,4, = 17,4, =02,
A, = 16,4, = 02, Ag = 14, A= 19,

=20,5,=07,5,=02,8,= 11,5 =37.5,=06....

Thus, between time 0 and the time of the first arrival there is 0.4 time unit, between
the arrivals of the first and second customers there are 1.2 time units, eic., and the
service time required for the first customer is 2.0 time units, etc. Note that it is not
necessary to declare what the time units are (minutes, hours, etc.), but only to be
sure that all time quantities are expressed in the same units. In an actual simulation
(see Sec. 1.4.4), the A;’s and the s would be generated from their corresponding
probability distributions, as needed, during the course of the simulation. The nu-
merical values for the A;'s and the S;'s given above have been artificially chosen so
as to generate the same simulation realization as depicted in Figs. 1.5 and 1.6 illus-
trating the O(r) and B(1) processes.

Figure 1.7 gives a snapshot of the system itself and of a computer representa-
tion of the system at each of the times ¢, = 0,e,=04,....5% 8.6. In the “sys-
tem” pictures, the square represents the server, and circles represent customers, the
numbers inside the customer circles are the times of their arrivals. In the “computer
representation” pictures, the values of the variables shown are after all processing
has been completed at that event. Our discussion will focus on how the computer
representation changes at the event times.

=0 Initialization. The simulation begins with the main program invoking
the initialization routine. Our modeling assumption was that initially
the system is empty of customers and the server is idle, as depicted in the
“system” picture of Fig. 1.7a. The model state variables are initialized
to represent this: Server status is 0 [we use O to represent an idle server
and | to represent a busy Server, similar to the definition of the B(f)
function], and the number of customers in the queue is 0. ‘There is a
one-dimensional array to store the times of arrival of customers
currently in the gueue; this array is initially empty, and as the simula-
tion progresses, its length will grow and shrink. The time of the last
(most recent) event is initialized to 0, so that at the time of the first
event (when it is used), it will have its correct value. The simulation
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Snapshots of the system and of its computer representation at time 0 and at each of the
13 succeeding event times.
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clock is set to 0, and the event list, giving the times of the next occur-
rence of each of the event types, is initialized as follows. The time of the
first arrival is 0 + A, = 0.4, and is denoted by “A” nextto the event list.
Since there is no customer in service, it does not even make sense 10
talk about the time of the next departure (“D” by the event list), and we
know that the first event will be the initial customer arrival at time 0.4.
However, the simulation progresses in general by looking at the event
list and picking the smallest value from it to determine what the next
event will be, so by scheduling the next departure to occur at time % (or
a very large number in 2 computer program), we effectively eliminate
the departure event from consideration and force the next event to be
an arrival. Finally, the four statistical counters are initialized to 0.
When all initialization is done, control is returned to the main pro-
gram, which then calls the timing routine to delermine the next event.
Since 0.4 < o, the next event will be an arrival at time 0.4, and the
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=04

timing routine advances the clock to this time, then passes control
back to the main program with the information that the next event is (o
be an arrival.
Arrival of customer 1. Altime 0.4, the main program passes control 10
{he arrival routine to process the arrival of the first customer. Figure 1.70
shows the system and its computer representation after all changes
have been made to process this arrival. Since this customer arrived to
find the server idle (status equal to 0), he begins service immediately
and has a delay in queuc of D, = 0 (which does count as a delay). The
server status is set to | to represent that the server is now busy, but
the queue itself is still empty. The clock has been advanced to the cur-
rent time, 0.4, and the event list is updated to reflect this customer’s
arrival: The next arrival will be A, = 1.2 time units from now, at time
0.4 + 1.2 = 1.6, and the next departure (the service completion of
the customer now arriving) will be §, = 2.0time units from now, at time
0.4 + 2.0 = 2.4, The number delayed is incremented to | (when this
reaches 11 = 6, the simulation will end), and D, = 0 is added into the
total delay (sti!l at zero). The area under O(f) is updated by adding in
the product of the previous value (i.e., the level it had between the last
event and now) of Q(1) (0 in this case) times the width of the interval
of time from the last event to now, f — (time of last event) = 04 —=0in
this case. Note that the time of the lust event used here is its ofd value O,
before it is updated to its new value (0.4) in this event routine. Similarly,
the area under B(7) is updated by adding in the product of its previous
value (0) times the width of the interval of time since the last event.
[Look back at Figs. 1.5 and 1.6 to trace the accumulation of the areas
under Q(r) and B(1).} Finally, the time of the last event is brought up to
the current time, 0.4, and control i$ passed back to the main program. It
invokes the timing routine, which scans the event list for the smallest value,
and determines that the next event will be another arrival at time 1.6;
it updates the clock to this value and passes control back to the main
program with the information that the next event is an arrival.
Arrival of customer 2. At this time we again enter the arrival routine,
and Fig. 1.7c shows the system and its computer representation after all
changes have been made Lo process this event. Since this customer
arrives to find the server busy (status equal to 1 upon her arrival), she
must queue up in the first location in the queue, her time of arrival is
stored in the first location in the array, and the number-in-queue vari-
able rises to 1. The time of the next arrival in the event list is updated
to A, = 0.5 time unit from now, 1.6 + 0.5 = 2.1; the time of the next
departure is not changed, since its value of 2.4 is the departure time of
customer 1, who is still in service at this time. Since we are not ob-
serving the end of anyone’s delay in queue, the number-delayed and
total-delay variables are unchanged. The area under Q(1) is increased
by O {the previous value of Q(n)] times the time since the last event,
1.6 — 0.4 = 1.2. The area under B(1) is increased by 1 {the previous
value of B(1)] times this same interval of time, 1.2. After updating the
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time of the last event to now, control is passed back to the main pro-
gram and then to the timing routine, which determines that the next
event will be an arrival at time 2.1.

Arrival of customer 3. Once again the arrival routine is invoked, as
depicted in Fig. 1.7d. The server stays busy, and the queue grows by
one customer, whose time of arrival is stored in the queue array’s
second location. The next arrival is updated to s + A, = 2.1 + 1.7 = 3.8,
and the next departure is still the same, as we are still waiting for the
service completion of customer 1. The delay counters are unchanged,
since this is not the end of anyone’s delay in queue, and the two area
accumulators are updated by adding in 1 [the previous values of both
Q(1) and B(r)] times the time since the Jast event, 2.1 — 1.6 = 0.5.
After bringing the time of the last event up to the present, we go back
to the main program and invoke the timing routine, which looks at the
event list to determine that the next event will be a departure at time 2.4,
and updates the clock to that time.

Departure of customer 1. Now the main program invokes the depar-
ture routine, and Fig. 1.7¢ shows the system and its representation after
this occurs. The server will maintain its busy status, since customer 2
moves out of the first place in queue and into service. The queue
shrinks by 1, and the time-of-arrival array is moved up one place, lo
represent that customer 3 is now first in line. Customer 2, now entering
service, will require S, = 0.7 time unit, so the time of the next depar-
ture (that of customer 2) in the event list is updated to S, time units
from now, or to time 2.4 + 0.7 = 3.1; the time of the next arrival (that
of customer 4) is unchanged, since this was scheduled earlier at the
time of customer 3’s arrival, and we are still waiting at this time for
customer 4 to arrive. The delay statistics are updated, since at this time
customer 2 is entering service and is completing her delay in queue.
Here we make use of the time-of-arrival array, and compute the second
delay as the current time minus the second customer’s time of arrival,
orD, = 2.4 — 1.6 = 0.8. (Note that the value of 1.6 was stored in the
first location in the time-of-arrival array before it was changed, so
this delay computation would have to be done before advancing the
times of arrival in the array.) The area statistics are updated by adding
in 2 % (2.4 — 2.1) for Q(r) [note that the previous value of Q(r) was
used], and 1 % (2.4 = 2.1) for B(1). The time of the {ast event is updated,
we return to the main program, and the timing routine determines that
the next event is a departure at time 3.1.

Departure of customer 2. The changes at this departure are similar to
those at the departure of customer | at time 2.4 just discussed. Note
that we observe another delay in queue, and that after this event is
processed the queue is again empty, but the server is still busy.
Departure of customer 3. Again, the changes are similar to those in
the above two departure events, with one important exception: Since the
gueue is now empty, the server becomes idle and we must set the next
departure time in the event list to %, since the system now looks the
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same as it did at time 0 and we want to force the next event to be the
arrival of customer 4.

t=38: Arrival of customer 4. Since this customer arrives to find the server
idle, he has a delay of 0 (i.e., D, = 0) and goes right into service. Thus,
the changes here are very similar to those at the arrival ol the first
customer at time ¢ = 0.4.

The remaining six event times are depicted in Fig. 1.7/ through 1.7n, and readers
should work through these to be sure they understand why the variables and ar-
rays are as they appear; it may be helpful to follow along in the plots of Q(1) and
B(n) in Figs. 1.5 and 1.6. With the departure of customer 5 at time t = 8.6, cus-
tomer 6 leaves the queue and enters service, at which time the number delayed
reaches 6 (the specified value of n) and the simulation ends. At this point, the
main program invokes the report generator (o compute the final output measures
[d(6) = 5.7/6 = 0.95, §(6) = 9.9/8.6 = 1.15, and a(6) = 7.7/8.6 = 0.90] and
write them out.

A few specific comments about the above example illustrating the logic of a
simulation should be made:

» Perhaps the key element in the dynamics of a simulation is the interaction be-
tween the simulation clock and the event list. The event list is maintained, and the
clock jumps to the next event, as determined by scanning the event list at the end
of each event’s processing for the smallest (i.e., next) event time. This is how the
simulation progresses through time.

» While processing an event, no “simulated” time passes. However, even though
time is standing still for the model, care must be taken to process updates of the
state variables and statistical counters in the appropriate order. For example, it would
be incorrect to update the number in queue before updating the area-under-Q(1)
counter, since the height of the rectangle to be used is the previoits value of Q(n)
[before the effect of the current event on Q(1) has been implemented]. Similarly,
it would be incorrect to update the time of the last event before updating the area
accumulators. Yet another type of error would result if the queue list were changed
at a departure before the delay of the first customer in queue were compuied,
since his time of arrival to the system would be lost.

» 1t is sometimes easy to overlook contingencies that seem out of the ordinary but
that nevertheless must be accommodated. For example, it would be easy (o forget
that a departing customer could leave behind an empty queue, necessitating that the
server be idled and the departure event again be eliminated from consideration.
Also, termination conditions are often more involved than they might seem at
first sight; in the above example, the simulation stopped in what seems to be the
“usual” way, after a departure of one customer, allowing another to enter service
and contribute the last delay needed, but the simulation could actually have ended
instead with an arrival event—how?

In some simulations it can happen that two (or more}) entries in the event list are tied

for smallest, and a decision rule must be incorporated to break such tine ties (this

happens with the inventory simulation considered later in Sec. 1.5). The tie-breaking
rule can affect the results of the simulation, so must be chosen in accordance with
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how the system is (o be modeled. In many simulations, however, we can ignore the
possibility of ties, since the use of continuous random variables may make their
occurrence an event with probability 0. In the above model, for example, if the
interarrival-time or service-time distribution is continuous, then a time tie in the
event list is a probability-zero event (though it could still happen during the com-
puter simulation due to finite accuracy in representation of real numbers).

The above exercise is intended to illustrate the changes and data structures
involved in carrying out a discrete-event simulation from the event-scheduling point
of view, and contains most of the important ideas needed for more complex simula-
tions of this type. The interarrival and service times used could have been drawn
from a random-number table of some sort, constructed to reflect the desired proba-
bility distributions; this would result in what might be called a hand sinulation,
which in principle could be carried out to any length. The tedium of doing this
should now be clear, so we will next turn to the use of computers {which are not
easily bored) to carry out the arithmetic and bookkeeping involved in longer or more
complex simulations.

1.4.3 Program Organization and Logic

in this section we set up the necessary ingredients for the C program to simulaie the

single-server queueing system, which is given in Sec. 1.4.4.

There are several reasons for choosing a general-purpose language such as C,
rather than more powerful high-level simulation software, for introducing computer
simulation at this point:

» By learning to simulate in a general-purpose language, in which one must pay
attention to every detail, there will be a greater understanding of how simulations
actually operate, and thus less chance of conceptual errors il a switch is later
made to high-level simulation software.

+ Despite the fact that there is now very good and powerful simulation software
available (see Chap. 3), it is sometimes necessary to write at least parts of com-
plex simulations in a general-purpose language if the specific, detailed logic of
complex systems is to be represented faithfully.

» General-purpose languages are widely available, and entire simulalions are some-
times still written in this way.

It is not our purpose in this book to teach any particular simulation software in
detail, although we survey several packages in Chap. 3. With the understanding
promoled by our more general approach and by going through our simulations
in this and the next chapter, the reader should find it easier to learn a specialized
simulation-software product.

The single-server queueing model that we will simulate in the following section
differs in two respects from the model used in the previous section:

* The simulation will end when 1 = 1000 delays in queue have been completed,
rather than i = 6, in order to collect more data (and maybe to impress the reader
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we have just slugged it out by hand in the
1t is important to note that this change in
the stopping rule changes the model itself, in that the output measures dare defined
relative to the stopping rule; hence the presence of the “a” in the notation for the
quantities d(n), g(n), and u(n) being estimated.
« The interarrival and service times will now be modeled as independent random
variables from exponential distributions with mean | minute for the interarrival
times and mean 0.5 minute for the service times. The exponential distribution
with mean B (any positive real number) is continuous, with probability density

function

with the patience of computers, since
n = 6 case in the preceding section).

flx) = —I'e il forx=0
B
(See Chaps. 4 and 6 for more information on density functions in general, and on
the exponential distribution in particular.) We make this change here since it is
much more common 1o generate input guantities (which drive the simulation)
such as interarrival and service times from specified distributions than 1o assume
that they are “known” as we did in the preceding section. The choice of the
exponential distribution with the above particular values of B is essentially arbi-
trary, and is made primarily because it is casy 10 generate exponential random
variates on a computer. (Actually, the assumption of exponential interarrival
times is often quite realistic; assuming exponential service times, however, is
less plausible.) Chapter 6 addresses in detail the important issue of how one
chooses distribution forms and parameters for modeling simulation input ran-
dom variables.
The single-server queue with exponential interarrival and service times is com-
monly called the M/M/1 queue, as discussed in App. 1B.

To simulate this model, we need a way 10 generate random variales from an
exponential distribution. First, a random-number generator {discussed in detail in
Chap. 7) is invoked to generate & variate U that is distributed (continuously) uni-
formly between 0 and 1: this distribution will henceforth be referred to as U0, 1)
and has probability density function

) = {1 ifosx=<|

0 otherwise

It is easy to show that the probability that a U(0, 1) random variable falls in any
subinterval [x, x + Ax] contained in the interval [0, 1] is (uniformly) Ax (see
Sec., 6.2.2). The U0, 1) distribution is fundamental to simulation modeling be-

dom variate from any distribution can be

cause, as we shall see in Chap. 8, a ran
generated by first generating one or more U(0, 1) random variates and then perform-

ing some Kind of ransformation. After obtaining U, we shall take the natural loga-
rithm of it, multiply the result by 8, and finally change the sign to return what we
will show to be an exponential random variate with mean 8, that is, =8 In U.

To see why this algorithm works, recall that the (crmulative) distribution
function of a random variable X is defined, for any real x, 10 be F(x) = P(X = %)




e

P~y e S

CHAPTER ONE 29

(Chap. 4 contains a review of basic probability theory). If X is exponential with
mean f3, then

] ;
F(x) = [ —e 1Bt
) y B ‘

for any real x = 0, since the probability density function of the exponential distribu-
tion at the argument 1 = 0 is (1/B)e 8B To show that our method is correct, we can
try to verify that the value it returns will be less than or equal to x (any nonnegative
real number), with probability F(x) given above:

P(-BInU =) = P(ln U= -é)

= PW = e
=PleP=U=1)
=1]=-¢

The first line in the above is obtained by dividing through by — 8 (recall that 8 > 0,
s0 —B < 0and the inequality reverses), the second line is obtained by exponentiat-
ing both sides (the exponential function is monotone increasing, so the inequality is
preserved), the third line is just rewriting, together with knowing that U is in [0, 1]
anyway, and the last line follows since U is U0, 1), and the interval [e P, 1] is
contained within the interval [0, 1]. Since the last line is F(x) for the exponential
distribution, we have verified that our algorithm is correct. Chapter 8 discusses how
to generate random variates and processes in general.

In our program, we will use a particular method for random-number generation
to obtain the variate U described above, as expressed in the C code of Figs. 7.5 and
7.6 in App. 7A of Chap. 7. While most compilers do have some Kind of built-in
random-number generator, many of these are of extremely poor quality and should
not be used; this issue is discussed fully in Chap. 7.

It is convenient (if not the most computationally efficient) to modularize the
programs into several subprograms to clarify the logic and interactions, as discussed
in general in Sec. 1.3.2. In addition to a main program, the simulation program
includes routines for initialization, timing, report generation, and generating expo-
nential random variates, as in Fig. 1.3, Italso simplifies matters if we write i separale
routine to update the continuous-time statistics, being the accumulated areas under
the Q(r) and B(r) curves. The most important action, however, takes place in the
routines for the events, which we number as follows:

Llam.al i ons =

o — S N T i T T —— R — T — i T T T

Event description Event type

Arrival of a customer to the system
Departure of a customer from the sysiem after completing service

[

_Figure 1.8 contains a flowchart for the arrival event, First, the time of the next
arrival in the future is generated and placed in the event list. Then a check is made
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FIGURE 1.8

Flowchart for arrival routine, queueing model.

to determine whether the server is busy. If so, the number of customers in the queue
is incremented by 1, and we ask whether the storage space allocated to hold the
queuc is already full (see the code in Sec. 1.4.4). If the queue is already full, an error
message is produced and the simulation is stopped; if there is still room in the
queue, the arriving customer’s time of arrival is put at the (new) end of the queue.
(This queve-full check could be eliminated if using dynamic storage allocation in a
programming language that supports this.) On the other hand, if the arriving cus-
tomer finds the server idle, then this customer has a delay of 0, which is counted as
a delay, and the number of customer delays completed is incremented by 1. The
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FIGURE L9

Flowchart for departure froutine, queucing model.

server must be made busy, and the time of departure from service of the arriving
customer is scheduled into the event list.

The departure event’s logic is depicted in the flowchart of Fig. 1.9. Recall that
this routine is invoked when a service completion (and subsequent departure) occurs.
If the departing customer leaves no other customers behind in queue, the server i$
idied and the departure event is eliminated from consideration, since the nexl event
must be an arrival. On the other hand, if one or more customers are left behind by
the departing customer, the first customer in queue will leave the queue and enter
service, so the queue length is reduced by 1, and the delay in queue of this cus-
tomer is computed and registered in the appropriate statistical counter. The number
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delayed is increased by 1, and a departure event for the customer now entering
service is scheduled. Finally, the rest of the queue (if any) is advanced one place.
Our implementation of the list for the queue will be very simple in this chapter, and
is certainly not the most efficient; Chap. 2 discusses better ways of handling lists to
model such things as queucs.

In the next section we give an example of how the above setup can be used to
write a program in C. The results are discussed in Sec. | 4.5, This program is neither
the simplest nor the most efficient possible, but was instead designed to illustrate
how one might organize a program for more complex simulations.

1.4.4 C Program

This section presents a C program for the M/M/1 queue simulation. We use the
ANSI-standard version of the language, as defined by Kernighan and Ritchie (1988),
and in particular use function prototyping. We have also taken advantage of C’s
facility to give variables and functions fairly long names, which thus should be self-
explanatory. (For instance, the current value of simulated time is in a variable called
sim_time.) We have run our C program on several different computers and compil-
ers. The numerical results differed in some cases due to inaccuracies in floating-
point operations. This can matter if, e.g., at some point in the simulation two events
are scheduled very close together in time, and roundoff error results in a different
sequencing of the event’s occurrences. The C math library must be linked, which
might require setting an option depending on the compiler. Al code is available at
www.mhhe.com/law.

The external definitions are given in Fig. 1.10. The header file lcgrand.h (listed
in Fig. 7.6) is included to declare the functions for the random-number generator.

/* External definitions for aingle-server queueing system. */

g#include «<stdio.h>
#include <math.h>
#include "lcgrand.h" /* Header file for random-number generator. */

#define Q_LIMIT 100 /* Limit on gqueue length. */
#define BUSY 1 /* Mnemonics for server's being busy */
#define IDLE 0 /* and idle. */

int next_aevent_type, num_custas_delaved, num_delays_required, num events,
nump_in_q, server_status;

float area_num_in g, area_server_status, mean_interarrival, mean service,
sim_time, time_arrival [Q_LIMIT + 1], time_last_event, time next_event[3],
total _of_delays;

PILE *infile, *outfile;

void initialize{void);

void timingivoid);

void arrive(void):

void depart{void);

void report{void):

void update_time_avg_stats({void};
float expon(float mean};

FIGURE LI0
C code for the external definitions, queueing model,
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might leave a customer with hair partially cut. In such a case, we might want 0
close the door of the barbershop after 8 hours but continue to run the simulation
until all customers present when the door closes (if any) have been served. The
reader is asked in Prob. 1.10 to supply the program changes necessary to implement
this stopping rule (see also Sec. 2.6).

1.4.7 Determining the Events and Variables

We defined an event in Sec. 1.3 as an instantaneous occurrence that may change
the system state, and in the simple single-server queue of Sec. 1.4.1 it was not oo
hard to identify the events. However, the question sometimes arises, especially for
complex systems, of how one determines the number and definition of events in
general for a model. It may also be difficult to specify the state variables needed
to keep the simulation running in the correct event sequence and (o obtain the
desired output measures. There is no completely general way to answer these
questions, and different people may come up with different ways of representing
a model in terms of events and variables, all of which may be correct. But there
are some principles and techniques to help simplify the model’s structure and to avoid
logical errors,

Schruben (1983b) presented an evenr-graph method, which was subsequently
refined and extended by Sargent (1988) and Som and Sargent (1989). In this ap-
proach proposed events, each represented by a node, are connected by direcred arcs
(arrows) depicting how events may be scheduled from other events and from them-
selves. For example, in the queueing simulation of Sec. 1.4.3, the arrival event
schedules another future occurrence of itself and (possibly) a departure event, and
the departure event may schedule another future occurrence of itself; in addition,
the arrival event must be initially scheduled in order to get the simulation going.
Event graphs connect the proposed set of events (nodes) by arcs indicating the type
of event scheduling that can occur. In Fig. 1.25 we show the event graph for our
single-server queueing system, where the heavy, smooth arrows indicate that an
event at the end of the arrow may be scheduled from the event at the beginning of
the arrow in a (possibly) nonzero amount of time, and the thin jagged arrow indicates
that the event at its end is scheduled initially. Thus, the arrival event reschedules
itsell’ and may schedule a departure (in the case of an arrival who finds the server
idle), and the departure event may reschedule itself (if a departure leaves behind
someone else in queue).

A A

FIGURE 1.25
Event graph, queueing model.
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)

FIGURE 1.26
Event graph, queucing model with separate “enter-service” event.

For this model, it could be asked why we did not explicilly account for the act
of a customer’s entering service (either from the queue or upon arrival) as a scparate
event. This certainly can happen, and it could cause the state to change (i.c., the
queue length to fall by 1). In fact, this could have been put in as a separale cvent
without making the simulation incorrect, and would give rise to the event diagram

in Fig. 1.26. The two thin smooth arrows each represent an event at the beginning of

an arrow potentially scheduling an cvent at the end of the arrow without any inter-
vening time, i.c., immediately: in this case the straight thin smooth arrow refers to a
customer who arrives to an emply sysicm and whose “enter-service”™ event is thus
scheduled to oceur immediately. and the curved thin smooth arrow represents i
customer departing with a queuc left behind, and so the first customer in the queuc
would be scheduled 1o enter service immediately. The number of events has now
increased by 1, and so we have a somewhat more complicated representation of our
model. One of the uses of event gruphs is to simplify a simulation’s event structure
by climinating unnccessary events. There are several “rules™ that allow for simplifi-
cation, and one of them is that if an event node has incoming arcs that are all thin
and smooth (i.c., the only way this event is scheduled is by other events and without
any intervening time), then this event can be eliminated from the model and
its action built into the events that schedule it in zero time. Here, the “enter-service”
event could be eliminated, and its action put partly into the arrival cvent {when a
customer arrives to an idle server and begins service immediately) and partly into
the departure event (when a customer finishes service and there is a queue from
which the next customer is taken lo enter service); this takes us back 10 the simpler
event graph in Fig. 1.25. Basically, “events” that can happen only in conjunction
with other events do not need to be in the model. Reducing the number of events not
only simplifics model conceplualization, but may also speed its execution. Care
must be taken, however, when “collapsing” events in this way 1o handle priorities
and time ties appropriately.

Another rule has to do with initialization. The event graph is decomposed into
strongly connected components, within cach of which it is possible to “travel” from
every node 1o every other node by foliowing the arcs in their indicated directions.
The graph in Fig. 1.25 decomposes into two strongly connected components (with
a single node in each), and that in Fig. 1.26 has two strongly connected components
(one of which is the arrival node by itsell. and the other of which consists ol the
enter-service and departure nodes). The initialization rule states that in any strongly

-
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f A

FIGURE 1.27
Event graph, queueing model with fixed run length.

connected component of nodes that has no incoming arcs from other event nodes
outside the component, there must be at least one node that is initially scheduled; if
this rule were violated, it would never be possible to execute any of the events in the
component. In Figs. 1.25 and 1.26, the arrival node is such a strongly connected com-
ponent since it has no incoming arcs from other nodes, and so it must be initialized.
Figure 1.27 shows the event graph for the queueing model of Sec. 1.4.6 with the
fixed run length, for which we introduced the dummy “and-simulation” event. Note
that this event is itself a strongly connected component without any arcs coming in,
and so it must be initialized; i.e., the end of the simulation is scheduled as part of
the initialization. Failure to do s0 would result in efroneous termination of the
simulation.

We have presented only a partial and simplified account of the event-graph
technique. There are several other features, including event-canceling relations,
ways to combine similar events into one, refining the eveni-scheduling arcs to include
conditional scheduling, and incorporating the state variables needed; see the origi-
nal paper by Schruben (1983b). Sargent (1988) and Som and Sargent (1989) extend
and refine the technique, giving comprehensive illustrations involving a flexible
manufacturing system and computer network models. Event graphs can also be
used to test whether two apparently different models might in fact be equivalent
[Yiicesan and Schruben (1992)], as well as to forecast how computationally inten-
sive a model will be when it is executed [Yiicesan and Schruben (1998)]. Schruben
and Schruben (www.sigmawiki.com) developed a software package, SIGMA, for
interactive event-graph modeling that runs a model and generates source code. A
general event-graph review and tutorial are given by Buss (1996), and advanced
applications of event graphs are described in Schruben et al. (2003).

In modeling a system, the event-graph technigue can be used to simplify the
structure and to detect certain kinds of errors, and is especially useful in complex
models involving a large number of interrelated events. Other considerations should
also be kept in mind, such as continually asking why a particular state vanable is
needed; see Prob. 1.4.
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