CHAPTER 4

Review of
Basic Probability and Statistics

| Recommended sections for a first reading: 4.1 through 4.7

4.1
INTRODUCTION

The completion of a successful simulation study involves much more than con-
structing a flowchart of the system under study, translating the flowchart into a com-
puter “program,” and then making one or a few replications of each proposed
system configuration. The use of probability and statistics is such an integral part of
a simulation study that every simulation modeling team should include at least one
person who is thoroughly trained in such techniques. In particular, probability and
statistics are needed to understand how to model a probabilistic system (see
Sec. 4.7). validate the simulation model (Chap. 5), choose the input probability dis-
tributions (Chap. 6), generate random samples from these distributions (Chaps. 7
and 8), perform statistical analyses of the simulation output data (Chaps. 9 and 10),
and design the simulation experiments (Chaps. 11 and 12).

In this chapter we establish statistical notation used throughout the book and
review some basic probability and statistics particularly relevant to simulation. We
also point out the potential dangers of applying classical statistical techniques based
on independent observations to simulation output data, which are rarely, if ever,
independent.

4.2
RANDOM VARIABLES AND THEIR PROPERTIES

An experiment is a process whose outcome is not known with certainty. The set of
all possible outcomes of an experiment is called the sample space and is denoted by

S. The outcomes themselves are called the sample points in the sample space.
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EXAMPLE 4.1. If the experiment consists of flipping a coin, then
S={HT}

where the symbol { } means the “set consisting of,” and “H™ and “T " mean that the out-
come is a head and a tail, respectively.

EXAMPLE 4.2. If the experiment consists of tossing a die, then
S={1.2,....6}
where the outcome { means that { appeared on the die, i = 1,2, ...,6.

A random variable is a function (or rule) that assigns a real number (any num-
ber greater than —o¢ and less than ) to each point in the sample space S.

EXAMPLE 4.3. Consider the experiment of rolling a pair of dice. Then
S={1L1),.2),....(6 6}

where (I, /) means that / and j appeared on the first and second die, respectively. If X is
the random variable corresponding to the sum of the two dice, then X assigns the value
7 to the outcome (4, 3).

EXAMPLE 4.4. Consider the experiment of flipping two coins. If X is the random
variable corresponding to the number of heads that occur. then X assigns the value 1 to
either the outcome (H. T ) or the outcome (T, H).

In general, we denote random variables by capital letters such as X, Y, Z and the
values that random variables take on by lowercase letters such as x, v, z.

The distribution function (sometimes called the cumulative distribution function)
F(x) of the random variable X is defined for each real number x as follows:

Flx) = P(X = x) for —x < x < =

where P(X < x) means the probability associated with the event {X = x}. [See Ross
(2003, chap. 1) for a discussion of events and probabilities.] Thus, F(x) is the prob-
ability that, when the experiment is done, the random variable X will have taken on
a value no larger than the number x.

A distribution function F(x) has the following properties:

. 0= Fx) = 1forall x.
. F(x) is nondecreasing [i.e.. if v, < x,. then F(x)) = F(x,)].
. lim F(x) = land lim F(x) = 0 (since X takes on only finite values).

[

W b

A random vanable X is said 0 be disciere if it can take on at most a countable
number of values, say, v, x...... ("Countable™ means that the set of possible
values can be put in a one-to-one correspondence with the sct of positive integers.
An example of an uncountable set is all real numbers between O and 1.) Thus, a
random variable that takes on only a finite number of values x, x,. . . . . x, is dis-
crete. The probability that the discrete random variable X takes on the value v, is
given by .

plx) = P(X = x) fori = 1.2,.
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and we must have

Mh@b =1

i=1
where the summation means add together p(x,), p(x,), . ... All probability state-
ments about X can be computed (at least in principle) from p(x), which is called the
probability mass function for the discrete random variable X. If I = {a, b], where a
and b are real numbers such that a = b, then

PXel = > px)
a=x=h
where the symbol € means “contained in” and the summation means add together
plx) for all x; such that a = x; = b. The distribution function F(x) for the discrete
random variable X is given by

F(x) = M pix) forall —= < x <o

=
X=X

EXAMPLE 4.5. For the inventory example of Sec. 1.5, the size of the demand for the
product is a discrete random variable X that takes on the values 1, 2, 3, 4 with respective
probabilities +, M w w The probability mass function and the distribution function for X

are given in Figs. 4.1 and 4.2. Furthermore,

wifra

PR=X=3)=pR)+pB)=1+++=

EXAMPLE 4.6. A manufacturing system produces parts that then must be inspected
for quality. Suppose that 90 percent of the inspected parts are good (denoted by 1) and
10 percent are bad and must be scrapped (denoted by 0). If X denotes the outcome of in-
specting a part, then X is a discrete random variable with p(0) = 0.1 and p(1) = 0.9.
(See the discussion of the Bernoulli random variable in Sec. 6.2.3.)

We now consider random variables that can take on an uncountably infinite
number of different values (e.g., all nonnegative real numbers). A random variable
X is said to be conrinuous if there exists a nonnegative function f(x) such that for

plx)
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- FIGURE 4.1
! plx) for the demand-size ran-
0 1 2 3 4 * dom variable X.
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FIGURE 4.2
F(x) for the demand-size random variable X.

any set of real numbers B (e.g., B could be all real numbers between | and 2),
PXEB) = R f(x) dx and % fx)de =1
B =

[Thus, the total area under f(x) is 1. Also, if X is a nonnegative random variable,
as is often the case in simulation applications, the second range of integration is
from O to =.] All probability statements about X can (in principle) be computed
from f(x), which is called the probability density function for the continuous random
variable X.

For a discrete random variable X, p(x) is the actual probability associated with
the value x. However, f(x) is not the probability that a continuous random variable
X equals x. For any real number x,

P(X =)= PXE [v.x)) = | f(3)dy =0

Since the probability associated with each value x is zero, we now give an interpre-
tation to f(x). If x is any number and Ax > 0, then

‘; —Ax

PX € [x.x + Ax]) = (3 dv

Y
which is the area under f(r) hetween v and ¥ — Ax. as shown in Fig. 4.3 It follows
that a continuous random variable X is more likely to fall in an interval above which
fx)is “large” than in an interval of the same width above which f(x) is “small.”
The distribution function Fix) for a continuous random variable X is given by

iy

Flx) = PIXE (—x x}) = ‘ flvydy forall —= << x < =

Thus (under some mild technical assumptions), f(x) = F’(x) [the derivative
of F(x)]. Furthermore, if / = [a. b] for any real numbers a and b such that a << b,
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fx) F(x)
P(X € [x, x + Ax]) .
|
|
|
| |
1 o
“ | P(X € [x',x" + Ax]) FIGURE 4.5
| “ | i - F(x) for a uniform random
_ | “ 0 1 * variable on [0, 1].
| !
| | ” |
M v | n Finally, if 0 < x < x + Ax < 1, then
1
; LA g XAy
X x + Ax x x X PXE [x.x + Ax]) = % F(y) dy
FIGURE 4.3 B
Interpretation of the probability density function f(x). = Fix + Av) — F()
=(x+ Ax) — x
then
= Ax

b
PXED = | fly)dy = Fb) — Fla)

1t follows that a uniform random variable on [0, 1] is equally likely to fall in any

interval of length Ax between O and 1, which justifies the name “uniform.” The uniform

since F'(x) = f(x). random variable on _o., 1] is fundamental to simulation. since it is the basis for generat-
ing any random quantity on a computer (see Chaps. 7 and 8).

EXAMPLE 4.7. A uniform random variable on the interval [0, 1] has the following

where the last equality is an application of the fundamental theorem of calculus,

probability density function: EXAMPLE 4.8. .H: Chap. | Ew exponential E:,aoa.: variable was :mma. for EﬁS:ﬁ.a
and service times in the queueing example and for interdemand times in the inventory

fo) = A—_ if0 = X =1 example. The probability density function and distribution function for an exponential

v, o oﬁrmﬁi_mm E:ao_:<m1mEmE::Bmu:mmSmZm:m:_ﬂmm.a.@m:ab.u.

Furthermore, if 0 = x = 1. then So far in this chapter we have considered only one random variable at a time, but
B ‘ in a simulation one must usually deal with r (a positive integer) random variables
Foo = | foode= | 1av=x : \ . 1able
0 Y X, X5 . ... X, simultaneously. For example. in the queueing model of Sec. 1.4.
we were interested in the (input) service-time random variables S, S, ... S, and

[What is F(x) if ¥ << O orif x > 1?] Plots of f{x) and F(x) are given in Figs. 4.4 and 4.5. . 4 : .
the (output) delay random variables D,. D,. . ... D, In the discussion that follows,

respectively.

flx)

B e

0 1 X i FIGURE 4.6
) for an exponential
0 U random variable with mean (3.

FIGURE 4.4
f(x) for a uniform random variable on [0, 1].
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F(x)
1

FIGURE 4.7
F{x) for an exponential ran-
0 x  dom variable with mean 8.

we assume for expository convenience that n = 2 and that the two random vari-
ables in question are X and Y.
If X and Y are discrete random variables, then let

px,y) =PX=xY=y) forall x, y
where p(x, ) is called the joint probability mass function of X and Y. In this case, X
and Y are independent if
plx, ¥) = plpdy) forall x, y
where

px(®) = > plx. )

ally

py(») =D p(x.y)

all x
are the (marginal) probability mass functions of X and Y.

EXAMPLE 4.9. Suppose that X and Y are jointly discrete random variables with

Xy
- forx=12andy =234
plx, v) =427 :
4 otherwise
Then
Do NE X e
Pe(x) 25773 forx = 1,2
Sy oy -
Py = / = = = fory = 23,4
o =27 9 ’
Simce plas vy — 27 for all x. v, the random variables X and ¥ are
independent

EXAMPLE 4.10. Suppose that 2 cards are dealt from a deck of 52 without replace-
ment. Let the random variables X and Y be the number of aces and kings that occur, both
of which have possible values of 0, 1, 2. It can be shown that

4 48
2 (1 = p 1y = 2 )48
Pt = oyt TN\AM_V
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and

4\/4
.0 =3(5 )

BNEATEAIVEAV T
=25 )5+ 4 )

it follows that X and Y are not independent (see Prob, 4.5).

Since

The random variables X and Y are jointly continuous if there exists a nonnega-
tive function f(x, y), called the joint probability density function of X and Y, such
that for all sets of real numbers A and B,

wﬁkm\»,%mwvn%axﬁx,zv&x%
B “A

In this case, X and Y are independent if

Jey) = (00 forall x, y

where
Felo) = b fle vy dy
for =] fend

are the (marginal) probability density functions of X and Y, respectively.

EXAMPLE 4.11. Suppose that X and Y are jointly continuous random variables with

o, y) = ﬁmh.ﬁ_ forx=0,y=0.andx + v =]
J 0 otherwise
Then
ROt -
flo) = R 24xydy = 12007 = 12x(1 = x)? for0 = x = |
0 {
by R e )
Hv) = % 24xy dy = 12y = 12v(1 — y)* for0 € v =< |
o o
Since
R T
Mozl 07 a) Al

X and Y are not independent.

Intuitively., the random variables X and Y (whether discrete or continuous) are
independent if knowing the value that one random variable takes on tells us nothing
about the distribution of the other. Also, if X and Y are not independent, we say that
they are dependent.
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We now consider once again the case of n random variables X, X,, . . . , X, and
we discuss some characteristics of the single random variable X, and some measures
of the dependence that may exist between two random variables X; and X ;.

The mean or expected value of the random variable X, (wherei = 1,2, . .., n)
will be denoted by w; or E(X,) and is defined by

.M_ x; Py () if X, is discrete
=
=14
\‘ xfy (x) dx if X; is continuous

The mean is one measure of central tendency in the sense that it is the center of
gravity [see, for example, Billingsley et al. (1986, pp. 42-43)].

EXAMPLE 4.12. For the demand-size random variable in Example 4.5, the mean is
given by
IH_M +Nw +ﬁw +Aw Hm
6 3 3 6 2

EXAMPLE 4.13. For the uniform random variable in Example 4.7, the mean is given
by

m= b xflx) dx = % xdy =

0

B | —

Let ¢ or ¢, denote a constant (real number). Then the following are important
properties of means:

1. E(cX) = cEX).
2. BT ¢, X) = 2, ¢, E(X;) even if the X's are dependent.

i=

The median x, ; of the random variable X;. which is an alternative measure of
central tendency, is defined to be the smallest value of x such that Fy (x) = 0.5. If X,
is a continuous random variable, then Fy(x,5) = 0.5, as shown in Fig. 4.8. The
median may be a better measure of central tendency than the mean when X, can take
on very large or very small values, since extreme values can greatly affect the mean
even if they are very unlikely to occur; such is not the case with the median.

EXAMPLE 4.14. Consider a discrete random variable X that takes on each of the val-
ues. 1.2, 3.4, and 5 with probability 0.2. Clearly, the mean and median of X are 3. Con-
sider now a random variable Y that takes on each of the values 1. 2. 3. 4, and 100 with
probability 0.2. The mean and median of Y are 22 and 3, respectively. Note that the
median is insensitive to this change in the distribution.

The mode m of a continuous (discrete) random variable X, which is another
alternative measure of central tendency, is defined to be that value of x that maxi-
mizes fy (X)[py ()] (sec Fig. 4.8). Note that thc mode may not be unique for some
distributions.

The variance of the random variable X; will be denoted by Q.u or Var(X,) and is
defined by

o = ElX, — )l = EX) —
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Shaded area = 0.5

5 e e ———

FIGURE 4.8
The median x, s and mode m for a continuous random variable.

The variance is a measure of the dispersion of a random variable about its mean, as
seen in Fig. 4.9. The larger the variance, the more likely the random variable is to
take on values far from its mean.

EXAMPLE 4.15. For the demand-size random variable in Example 4.5, the variance
is computed as follows:

pxt = (1) e o) ) l) - 2
o) " 2151 5 g =
Var(X) = BX%) — pt = 2~ (2f = 1
o AT IR OY BT
|
R
small
M u
FIGURE 4.9
Density functions for continuous random variables with large and small
variances.
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EXAMPLE 4.16. For the uniform random variable on [0, 1] in Example 4.7, the vari-
ance is computed as follows:

1 1
E(X) b PF() dx = h 2y =

Var(X) = E(X?) — u? =

il

The variance has the following properties:

1. Var(X) = 0.

2. Var(cX) = ¢2 Var(X).

3. Var(Z_, X)) = Z_, Var(X)) if the X,’s are independent (or uncorrelated, as dis-
cussed below).

The standard deviation of the random variable X, is defined to be Q.~.H<,,,o._~.

The standard deviation can be given the most definitive interpretation when X, has
anormal distribution (see Sec. 6.2.2). In particular, suppose that X, has a normal dis-
tribution with mean w; and standard deviation o,. In this case, for example, the
probability that X; is between w, — 1.960; and , + 1.960, is 0.95.

We now consider measures of dependence between two random variables. The
covariance between the random variables X, and X (wherei=1,2,... ,nmj=
1,2, ..., n), which is a measure of their (linear) dependence, will be denoted by C;,
or Cov(X,, X} and is defined by

Cy = EIX, = m)(X, — )] = EXX) = (4.1)

Note that covariances are symmetric, that s, Cy = C;. and that if / = j, then C, =
2
C,=o.
EXAMPLE 4.17. For the jointly continuous random variables X and ¥ in Exam-
ple 4.11, the covariance is computed as

EXY) = | | ofte v dy d
Mt
U SR .
= g X \ 24y dv | dx
§ htl /
= ‘. — v dy
s
¥ i ~ 5 2
FiX) = \ Hfgody = | 128300 - gy = S
Y “ Al
M - . i B
Ey = | vfndv = | 12050 = o v = =
oo Jo ’ ’ 5
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Therefore,

Cov(X, Y) = E(XY) — E(X)E(Y)

-6

75

If C; = 0O, the random variables X, and X; are said to be uncorrelated. It is easy to
show that if X; and X; are independent random variabley, then C; = 0 (see
Prob. 4.8). In general, though, the converse is not true (see Prob. 4.9). However, if
X; and X; are jointly normally distributed random variables with C; = 0, then they
are also independent (see Prob. 4.10).

We now give two definitions that will shed some light on the significance of
the covariance Cy;. If C; > 0, then X, and X; are said to be positively correlated. In
this case, X; > u,; and X; > w; tend to occur together, and X; < and X; < p,
also tend to occur together [see Eq. (4.1)]. Thus, for positively correlated random
variables, if one is large, the other is likely to be large also. If C; <0, then X, and
X; are said to be negatively correlated. In this case, X, > u,; and X, <, tend to
occur together, and X; < u, and X; > u; also tend to occur together. Thus, for neg-
atively correlated random variables, if one is large, the other is likely to be small.
We give examples of positively and negatively correlated random variables in the
next section.

If X, X,, ..., X, are simulation output data (for example, X, might be the
delay D, for the queueing example of Sec. 1.4), we shall often need to know not
only the mean u, and variance QW fori =1,2,..., n, but also a measure of the
dependence between X, and X, for i # j. However, the difficulty with using C;as
a measure of dependence between X, and X, is that it is not dimensionless, which

J

makes it interpretation troublesome. (If X; and X, are in units of minutes, say,

then C; is in units of minutes squared.) As a result, we use the correlation p
defined by

Q,u

Cy i=1,2 ]
= T Ll 42
Py \Qwﬂu J= L2, n (4.2)

as our primary measure of the (linear) dependence (see Prob. 4.11) between X, and
X,. [We shall also denote the correlation between X and X by Cor(X,, N\.Z Since the
denominator in Eq. (4.2) is positive, it is clear that p,, has the same sign as C,,. Fur-
thermore, it can be shown that — [ < p; = 1 forall i and j (see Prob. 4.12). If pyis
close to ++1, then X, and X, are highly positively correlated. On the other hand, if Pi;
1s close to —1, then X, and X are highly negatively correlated.

EXAMPLE 4.18. For the random variables in Example 4.11, it can be shown that

Var(X') = Var(Y) = w Therefore,
, Cov(X, Y) - 2
ConX, ¥V) = ————ee——e = — =
VVar(X) Var(Y) 35 3
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4.3
SIMULATION OUTPUT DATA
AND STOCHASTIC PROCESSES

Since most simulation models use random variables as input, the simulation output
data are themselves random, and care must be taken in drawing conclusions about
the model’s true characteristics, e.g., the (expected) average delay in the queueing
example of Sec. 1.4. In this and the next three sections we lay the groundwork for a
careful treatment of output data analysis in Chaps. 9 and 10.

A stochastic process is a collection of “similar” random variables ordered over
time, which are all defined on a common sample space. The set of all possible val-
ues that these random variables can take on is called the state space. If the collec-
tionis X,, X,, . . ., then we have a discrete-time stochastic process. If the collection
is {X(1), r = 0}, then we have a continuous-time stochastic process.

EXAMPLE 4.19. Consider a single-server queueing system, e.g., the M/M/1 queue,
with [ID interarrival times A, A,, . .. . IID service times S|, S5, . . ., and customers served
in a FIFO manner. Relative to the experiment of generating the random variates A,
A,,...and S|. S,, ..., one can define the discrete-time stochastic process of delays in
queue D,. D,. ... as follows (see Prob. 4.14):

D, =0
D, =max{D + S — A, .0} fori=1.2....

i
Thus, the simulation maps the input random variables (i.e., the A;’s and the S;’s) into the
output stochastic process D, D,, . .. of interest. Here, the state space is the set of non-
negative real numbers. Note that D, and D, _, are positively correlated. (Why?)

EXAMPLE 4.20. For the queueing system of Example 4.19, let (1) be the number of
customers in the queue at time r. Then {Q(s). r = 0} is a continuous-time stochastic
process with state space {0, 1,2, ... }.

EXAMPLE 4.21. For the inventory system of Sec. 1.5, let C, be the total cost (i.e.. the
sum of the ordering. holding. and shortage costs) in month /. Then C,. C.... . is a
discrete-time stochastic process with state space the nonnegative real numbers.

To draw inferences about an underlying stochastic process from a set of simula-
tion output data, one must sometimes make assumptions about the stochastic
process that may not be strictly true in practice. (Without such assumptions. how-
ever, statistical analysis of the output data may not be possible.) An example of this
1s to assume that a stochastic process is covariance-stationary. a property that we
now define. A discrete-time stochastic process X X is said to be covarianee

stationary if
meo= i fori = [.2. . . and —= << yu << =

2 5

gT o= fori =1

m:amﬁwt\Hﬂoﬁk:XiL?:&wnmzaoaoﬁ.:‘oiHh.u.....
Thus. for a covariance-stationary process. the mean and variance are stationary

over time (the common mean and variance are denoted by u and o, respectively).
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and the covariance between two observations X, and X, ; depends only on the sepa-
ration j (sometimes called the lag) and not on the actual time values i and i + j. (It
is also possible to define a covariance-stationary continuous-time stochastic process
{X(», t = 0} in an analogous way.)

For a covariance-stationary process, we denote the covariance and correlation
between X; and X, ,; by C; and p,, respectively, where

Co _G_C

p; = =—Z= forj=0,1,2,...

EXAMPLE 4.22. Consider the output process D, D,, . . . for a covariance-stationary
(see App. 4A for a discussion of this technical detail) M/M/1 queue withp = A /w < 1
(recall that A is the arrival rate and w is the service rate). From results in Daley (1968),
one can compute p;, which we plot in Fig. 4.10 for p = 0.5 and 0.9. (Do not confuse p,
and p.) Note that the correlations p; are positive and monotonically decrease to zero as j
increases. In particular, p; = 0.99 for p = 0.9 and p, = 0.78 for p = 0.5. Furthermore,
the convergence of p; to zero is considerably slower for p = 0.9; in fact, py, is (amaz-
ingly) 0.69. (In general, our experience indicates that output processes for queueing
systems are positively correlated.)

EXAMPLE 4.23. Consider the simple (s, §) inventory system of Example 1.6. From
results in Wagner (1969, p. A19), one can compute p; for the output process C;, C,, . .
which we plot in Fig. 4.11. (See App. 4A for discussion of a technical detail.) Note that
P, 1s positive, since for this particular system one tends to order every other month, in-
curring a large cost each time. On the other hand, p, is negative, because if one orders
in a particular month (large cost), then it is likely that no order will be placed the next
month (smali cost).

If X,, X,, .. . is a stochastic process beginning at time 0 in a simulation, then it
is quite likely not to be covariance-stationary (see App. 4A). However, for some

Pi
Lor OI‘I'IIIIIIOIOI.
0.9

p=09

i

08
0.7
0.6 -
05
04 F

=
o
T

0.1+
0 I ;
0 1
FIGURE 4.10
Correlation function p; of the process D), D,, . . . for the M/M/1 queue.
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—009 - Correlation function p; of the

~10+ process C, C,, ... foran (s, §
:~<05H0ﬂv\ system.

simulations X, .. X, -. . . . will be approximately covariance-stationary if k is large

enough, where £ is the length of the warmup period (see Sec. 9.5.1).

4.4
ESTIMATION OF MEANS,
VARIANCES, AND CORRELATIONS

Suppose that X, X,, . . ., X, are IID random variables (observations) with finite
population mean y and finite population variance ¢ and that our primary objec-
tive is to estimate y; the estimation of ¢ is of secondary interest. Then the sample
mean
n
DX
X = “— (4.3)
1 :
18 an unbiased (point) estimator of w: that is, E[X(n)] = u (see Prob. 4.16), [Tntu-
itively, X(n) being an unbiased estimator of u means that if we perform a very large
number of independent experiments, each resulting in an X(n). the ave erage of the
X(n)'s will be . Similarly, the sample variance

i=1

Sy = &
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Density function forX(n)

First observation SH N Second observation
of X(n) of X(n)

FIGURE 4.12 _
Two observations of the random variable X(n).

is an unbiased estimator of o, since E[S*(n)] = o* (see F,oc 4.16). Note that the
estimators X(n) and S*(n) are sometimes denoted by 4 and 62, respectively.

The difficulty with using X(n) as an estimator of u without any additional in-
formation is that we have no way of assessing how close X(n)is to 0 u. Because X(n)
is a random variable with variance Var[X(n)], on one experiment X(n) may be close
to w while on another X(n) may differ from u by a large amount. (See Fig. 4.12,
where the X;’s are assumed to be continuous random variables.) The usual way to
assess the precision of X(n) as an estimator of M 18 to construct a confidence inter-
val for u, which we discuss in the next section. However, the first step in construct-
ing a confidence interval is to estimate Var[X(n)]. Since

Var(X(m)] = Var (- M i

n iz /

“e( )

I &
= — > Var(X,) (because the X/'s are independent)
ne =

1 :
= —no° = T (4.5)

n- n
it is clear that, in general, the bigger the sample size n. the closer X(n) should be to
w isee Fig 4.13). Furthermore. an unbiased estimator of VarlX(n)] is obtained by
replacing o~ in Eq. (4.5) by S*(n). resulting in

s >X - Xof

FAST I ) =

Var[X(n)] = - = a1

Observe that the expression for @C\Q:: has both an # and an n — | in the

denominator when it is rewritten in terms of the X;’s and X(n).
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FIGURE4.13
Distributions of X(n) for small and large .

Finally, note that if the X.’s are independent, they are uncorrelated, and thus
p,=0forj=12...,n— 1

It has been our experience that simulation output data are almost always cor-
related. Thus, the above discussion about IID observations is not directly applicable
to analyzing simulation output data. To understand the dangers of treating simula-
tion output data as if they were independent, we shall use the covariance-stationary
model discussed in the last section. In particular, assume that the random variables
X;. X,,. ... X, are from a covariance-stationary stochastic process. Then it is still
true that the sample mean X(n) is an unbiased estimator of w; however, the sample
variance S*(n) is no longer an unbiased estimator of o>, In fact, it can be shown [see
Anderson (1994, p. 448)] that

n=1
> (1= j/mp,

EIS* ] = o1 = 25— (4.6)
Thus. if p, > 0 (positive mo:mrio:f as Is very often the case in practice, S*(n) will
have a negative bias: m_m (m)] < . This is important because several simulation-
software products use S*(n) to estimate the variance of a set of simulation output
data, which can lead to serious errors in analysis.

Let us now consider the problem of estimating the variance of the sample mean
Var[X(n)] (which will be used to construct a confidence interval for A in the next
section) when X,, X,. .. ... X, are from a covariance-stationary process. It can he
shown (see Prob. 4.17) that

f =1

P25 (1 = ‘:S;ﬁ

<E,_W::_ = . . - (4.7)

Thus. if one estimates Var[X(n)] from S°()/n (the correct expression in the 11D
case). which has often been done historically, there are two sources of error: the bias
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in §%(n) as an estimator of ¢ and the negligence of the correlation terms in Eq. (4.7).
As a matter of fact, if we combine Eq. (4.6) and Eq. (4.7), we get

S[S°0] _ [n/atm) -

n n—1

! Var[X(n)] 4.8)

where a(n) denotes the quantity in square brackets in Eq. (4.7). If p; > 0, then
a(n) > 1 and E[S%(n)/n] < Var[X(n)].

EXAMPLE 4.24. Suppose that we have the data D|, D,, . . ., D), from the process of
delays D, D,, . . . for a covariance-stationary M/M/1 queue with p = 0.9. Then, substi-
tuting the true correlations p;(where j = 1,2,....9) into Eqgs. (4.6) and (4.8), we get
E[S%(10)] = 0.0328¢"
(10 —
and mﬁﬂ%g = 0.0034 Var[D(10)]
where
10 10 _
b, > 1D, = DAY’
o= Var(D). DO ==—  and  $%10) ==

10 9

Thus, on average $%(10)/101isa gross underestimate of Var[D(10)], and we are likely to
be overly optimistic about the closeness of D(10) to u = E(D,).

Sometimes one is interested in estimating the 3 's (or C/’s) from the data
X, X,,..., X,. {For example, estimates of the p; ’s might vo substituted into

nt

Eqg. (4.7) to obtain a better estimate of Var[X(n)]; see Sec. 9.5.3 for an application. }
If this is the case, p; (forj = 1,2,.. ., n — 1) can be estimated as follows:

n-f . B
m,\. I\M (X, = X(][X,,; — X(n)]
) n—j 4.9

>
©
ﬁ;

b&.HM

[Other estimators of p, are also used. For example, one could replace the n — j
in the denominator of C; by n.] The difficulty with the estimator p; (or any other
estimator of p) is that it'is biased, it has a large variance unless n is very large, and
it is correlated with other correlation estimators, that is, Cov{p;, p,) # 0. {In partic-
ular, p,_, will be a poor estimator of p, , since it is based on the single product
[X, — MA:EN: — X(n)].} Thus, in general, “good” estimates of the p,’'s will be dif-
ficult to obtain unless » is very large and j is smalli relative to n.

EXAMPLE 4.25. Suppose we have the data D,. D, from the process con-

sidered in Example 4.24. In Fig. 4.14 we plot p, {as computed from Eq. (4.9)] and n; for

Jj = 1.2....,10. Note the poor quality of the correlation estimates.

Note that correlation estimates will not necessarily be zero when the X’s are in-
dependent, since the estimator ; is a random variable.

We have seen that simulation output data are correlated, and thus formulas
from classical startistics based on IID observations cannot be used directly for
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FIGURE 4.14
p;and p; of the process D, D,. . .. for the M/M/1 queue with p = 0.9.

estimating variances. However, we shall see in Chap. 9 that it is often possible to
group simulation output data into new “observations” to which the formulas based
on IID observations can be applied. Thus, the formulas in this and the next two
sections based on IID observations are indirectly applicable to analyzing simula-
tion output data.

4.5
CONFIDENCE INTERVALS AND HYPOTHESIS
TESTS FOR THE MEAN

Let X,. X5, . .. . X, be IID random variables with finite mean u and finite variance
o, (Also assume that ¢* > 0, so that the X,’s are not degenerate random variables.)
In this section we discuss how to construct a confidence interval for u and also the
complementary problem of testing the hypothesis that . = p,,.

We begin with a statement of the most important result in probability theory, the
classical central limit theorem. Let Z, be the random variable [X(n) — ul/Vo/n.
and let F,(z) be the distribution function of Z, for a sample size of n: that is, F (2) =
P(Z, = 2. [Note that w and /1 are the mean and variance of X(n), respectively. |
Then the central limit theorent is as tollows [see Chung (1974, p. 169) tor a proot |.

THEOREM 4.1. F, () - P(:y as # — . where ®(2). the distribution function of

normal random variable with g = 0 and ¢~ = 1 (henceforth called a standard normal
randont variable: see Sec. 6.2.21. is given by
1 : s . )
Do) = ——= e T dy for —» < 2 < =
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The theorem says, in effect, that if  is “sufficiently large,” the random variable Z,
will be approximately distributed as a standard normal random variable, regardless
of the underlying distribution of the X;’s. It can also be shown for large n that the
sample mean X(n) is approximately distributed as a normal random variable with
mean u and variance o?/n.

The difficulty with using the above results in practice is that the variance ¢ is
generally unknown. However, since the sample variance S%(n) converges to o2 as n
gets large, it can be shown that Theorem 4.1 remains true if we replace o? by §%(n)
in the expression for Z,. With this change the theorem says that if n is sufficiently
large, the random variable 7, = [X(n) — w]/V.S$%(n)/n is approximately distributed
as a standard normal random variable. It follows for large » that

X(n) — n

<<

P |N~ID\N - &.NQ@\\_ = N_IQ\M

2 2
= P M‘A:vlq M@MFMWQ@.TNT S*(n)

<l-af2 < n -aj2 /,; "

~1-a (4.10)

where the symbol = means “approximately equal” and z,_,,, (for 0 < o < 1) is
the upper 1 ~ /2 critical point for a standard normal random variable (see
Fig. 4.15 and the last line of Table T.1 of the Appendix at the back of the book).
Therefore, if n is sufficiently large, an approximate 100(1 — «) percent confidence

interval for u is given by
P

Is20n

NN\P\M {,,

X(n) = (4.11)

n
. the lower confidence-interval endpoint
In, &) = X(n) — 2. VS8¥n)/n and the upper confidence-interval endpoint

uln, @) = X(n)y + qub<ww§<m are just numbers (actually, specific realizations
of random variables) and the confidence interval [I(n, «), u(n, a)] either contains y

For a given set of data X, X,...., X

Jx)

Shaded area = 1 — «
e

/

0 o A

FIGURE 4.15
Density function for the standard normal distribution.




234 REVIEW OF BASIC PROBABILITY AND STATISTICS

or does not contain u. Thus, there is nothing probabilistic about the single confi-
dence interval [I(n, @), u(n, «)] after the data have been obtained and the interval’s
endpoints have been given numerical values. The correct interpretation to give to
the confidence interval (4.11) is as follows [see (4.10)]: If one constructs a very
large number of independent 100(1 — «) percent confidence intervals, each based
on n observations, where n is sufficiently large, the proportion of these confidence
intervals that contain (cover) w should be I — «. We call this proportion the cover-
age for the confidence interval.

The difficulty in using (4.11) to construct a confidence interval for u is in
knowing what “n sufficiently large” means. It turns out that the more skewed (i.e.,
nonsymmetric) the underlying distribution of the X/’s, the larger the value of n
needed for the distribution of 1, to be closely approximated by ®(z). (See the
discussion later in this section.) If n is chosen too small, the actual coverage of a
desired 100(1 — «) percent confidence interval will generally be less than 1 — a.
This is why the confidence interval given by (4.11) is stated to be only approximate.

In light of the above discussion, we now develop an alternative confidence-
interval expression. If the X.’s are normal random variables, the random variable
1, = [X(n) — pl/VS*n)/n has at distribution with n — 1 degrees of freedom (df)
[see, for example, Hogg and Craig (1995, pp. 181-182)], and an exact (for any
n = 2) 100(1 — «) percent confidence interval for w is given by

i

X(n) = 1 (4.12)

i :Eu{ "
where s, | _, is the upper I — /2 critical point for the ¢ distribution with n — 1 df.
These critical points are given in Table T.1 of the Appendix at the back of the book.
Plots of the density functions for the  distribution with 4 df and for the standard nor-
mal distribution are given in Fig. 4.16. Note that the 7 distribution is less peaked and
has longer tails than the normal distribution, so, for any finite n. 1, @ Ty o
We call (4.12) the 1 confidence interval.

The quantity that we add to and subtract from MAS in (4.12) to construct the
confidence interval is called the half-length of the confidence interval. It is a mea-
sure of how precisely we know w. It can be shown that if we increase the sample

fixp

\ Standard normal distribution
t distribution with 4 df

FIGURE 4.16
Density functions tor the ¢ distribution with 4 df and for the standard
normal distribution.
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size from n to 4n in (4.12), then the half-length is decreased by a factor of approxi-
mately 2 (see Prob. 4.20).

In practice, the distribution of the X,’s will rarely be normal, and the confidence
interval given by (4.12) will also be approximate in terms of coverage. Since
Lioti-as2 = Z1—qs2 the confidence interval given by (4.12) will be larger than
the one given by (4.11) and will generally have coverage closer to the desired level
1 — «. For this reason, we recommend using (4.12) to construct a confidence inter-
val for pu. Note that ¢, » — 2)-q/2 88 1 —> o} In particular, £, 5 differs from
Zpgs DYy less than 3 percent. However, in most of our applications of (4.12) in
Chaps. 9, 10, and 12, n will be small enough for the difference between (4.1 1) and
(4.12) to be appreciable.

EXAMPLE 4.26. Suppose that the 10 observations 1.20, 1.50, 1.68, 1.89, 0.95, 1.49,
1.58, 1.55, 0.50, and 1.09 are from a normal distribution with unknown mean p and that
our objective is to construct a 90 percent confidence interval for w. From these data we get

X(10) =134 and  $%10) = 0.17
which results in the following confidence interval for w:

S%(10) 0.17
[t TU.

] =134+183 =L =134 +004
v 10 V10

Note that (4.12) was used to construct the confidence interval and that Iy95 Was taken
from Table T.1. Therefore, subject to the interpretation stated above, we claim with 90
percent confidence that g is in the interval [1.10, 1.58].

X(10) = 1545

We now discuss how the coverage of the confidence interval given by (4.12) is
affected by the distribution of the X’s. In Table 4.1 we give estimated coverages for
90 percent confidence intervals based on 500 independent experiments for each of
the sample sizes n = 5, 10, 20, and 40 and each of the distributions normal, €Xpo-
nential, chi square with 1 df (a standard normal random variable squared; see the
discussion of the gamma distribution in Sec. 6.2.2), lognormal (e?, where Y is a
standard normal random variable; see Sec. 6.2.2), and hyperexponential whose dis-
tribution function is given by

Fx) = 09F () + 0.1 Fy(x)

where F'|(x) and F,(x) are the distribution functions of exponential random variables
with means 0.5 and 5.5, respectively. For example, the table entry for the exponential
distribution and n = 10 was obtained as follows. Ten observations were generated

TABLF 4.1
Estimated coverages based on 500 experiments

Distribution Skewness v n=35 n =10 n =20 n =40
Normal 0.00 0910 0.902 0.898 0.900
Exponential 2.00 0.854 0.878 0.870 0.890
Chi square 2.83 0.810 0.830 0.848 0.890
Lognormal 6.18 0.758 0.768 0.842 0.f
Hyperexponential 6.43 0.584 0.586 0.682 -
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from an exponential distribution with a known mean u. a 90 percent confidence in-
terval was constructed using (4.12), and it was determined whether the interval con-
tained w. (This constituted one experiment.) Then the whole procedure was repeated
500 times, and 0.878 is the proportion of the 500 confidence intervals that contained
w. Note that the coverage for the normal distribution and n = 10 is 0.902 rather than
the expected 0.900, since the table is based on 500 rather than an infinite number of
experiments.

Observe from the table that for a particular distribution, coverage generally gets
closer to 0.90 as n gets larger, which follows from the central limit theorem (see
Prob. 4.22). (The results for the exponential distribution would also probably follow
this behavior if the number of experiments were larger.) Notice also that for a par-
ticular n, coverage decreases as the skewness of the distribution gets larger, where
skewness is defined by

Y- (0, Sl B
(@)
The skewness. which is a measure of symmetry, is equal to 0 for a symmetric dis-
tribution such as the normal. We conclude from the table that the larger the skew-
ness of the distribution in question, the larger the sample size needed to obtain sat-
isfactory (close to 0.90) coverage.

Assume that X, X,, . . . , X, are normally distributed (or are approximately so)
and that we would like to test the null hypothesis H, that u = p, where u, is a
fixed, hypothesized value for u. Intuitively, we would expect that if | X(n) — polis
large [recall that X(#n) is the point estimator for ], Hg is not likely to be true. How-
ever, to develop a test with known statistical properties, we need a statistic (a func-
tion of the X,’s) whose distribution is known when H, is true. It follows from the
above discussion that if H, is true, the statistic 7, = (X(n) — wol/V §%(n)/n will
have a 7 distribution with # — 1 df. Therefore, consistent with our intuitive discus-
sion above. the form of our (two-tailed) hypothesis test for 0 = g 1s

If J WMVN‘N\_._‘Q‘N ﬁ&@g Io
R = SRS “accept” Hy

Vi -l

(4.13)

The portion of the real line that corresponds to rejection of Hy, namely, the set of all
vsuch that | x| > 1, | ... is called the crirical region for the test, and the proba-
bility that the statistic 1, falls in the critical region given that Hy is true, which is
clearly equal to a. is called the Jevel (or size) of the test. Typically. an experimenter
will choose the level equal to 0.05 or 0.10. We call the hypothesis test given by
(4.13) the t test.

When one performs a hypothesis test, two types of errors can be made. If one
rejects Hy, when in fact it is true. this is called a Tvpe I error. The probability of a
Type [ error is equal to the level o and 1s thus under the experimenter’s control. It
one accepts H, when it is false. this is called a Type 1l error. For a fixed level « and
sample size 7. the probability of a Type I error, which we denote by 8. depends on
what is actually true (as compared to H} and may be unknown. Wecalié = 1 — 8
the power of the test, and it is equal to the probability of rejecting H, when it is false.
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(Clearly, a test with high power is desirable.) If a is fixed, the power of a test can bx
increased only by increasing n. Since the power of a test may be low and unknow1
to us, we shall henceforth say that we “fail to reject H,” (instead of “accept Hy”
when the statistic 7, does not lie in the critical region. (When Hy is not rejected, wi
generally do not know with any certainty whether H, is true or whether H,, is false
since our test might not be powerful enough to detect any difference between H
and what is actually true.)

EXAMPLE 4.27. For the data of Example 4.26, suppose that we would like to test th
null hypothesis H that u = [ atlevel & = 0.10. Since

o Xaw -1 o034

7 /82(10)/10  V0.17/10

= 265> 183 = 15495

we reject H.

EXAMPLE 4.28. For the null hypothesis H, that & = 1 in Example 4.27, we can est
mate the power of the test when, in fact, the X,’s have a normal distribution with mea
w = 1.5 and standard deviation o = 1. We randomly generated 1000 independent ot
servations of the statistic ¢, = [X(10) — 11/V§%(10)/10 under the assumption th
u = 1.5and o = 1 (the X's were, of course, normal). For 447 out of the 1000 observ:
tions, | #,, | > 1.83 and, therefore, the estimated power is8 = 0.447. Thus, if u = 1
and o = 1, we will only reject the null hypothesis u = 1 approximately 45 percent «
the time for a test at level @ = 0.10. To see what effect the standard deviation ¢ has ¢
the power of the test, we generated 1000 observations of f,,whenpu = 1.5and o = 0.7
and also 1000 observations of r,, when p = 1.5 and o = 0.5 (all X;’s were normal). Tl
estimated powers were § = 0.619 and & = 0.900, respectively. It is not surprising th
the power is apparently a decreasing function of o, since we would expect to distingui:
better between the true mean 1.5 and the hypothesized mean 1 when o is small. [No
that in the case of normal sampling, as in this example, the power of the test can act
ally be computed exactly, obviating the need for simulation as done here; see advanc
texts on statistics such as Bickel and Doksum (2000) with reference to the noncentra
distribution. ]

It should be mentioned that there is an intimate relationship between the con
dence interval given by (4.12) and the hypothesis test given by (4. 13). In particul:
rejection of the null hypothesis H, that g = u, Is equivalent to p, not beii
contained in the confidence interval for u, assuming the same value of « for bo
the hypothesis test and the confidence interval.

4.6
THE STRONG LAW OF LARGE NUMBERS

The second most important result in probability theory (after the central limit the
rem) is arguably the strong law of large numbers. Let X,. X,. . . . . X, be [ID randc
variables with finite mean w. Then the srrong law of large numbers is as follo
fsee Chung (1974, p. 126) for a proof}.

THEOREM 4.2. M:Q 5 ww.p. lasn —
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X(n) for various values of n when the X/'s are normal random variables with 0 = |

and o> = 0.01.

The theorem says, in effect, that if one performs an infinite number of experiments,
each resulting in an X(n). and n is sufficiently large. then X(n) will be arbitrarily
close to w for almost all the experiments.

EXAMPLE 4.29. Suppose that X,. X,. . .. are IID normal random variables with o = |
and o> = 0.01. Figure 4.17 plots the values of X(n) for various n that resulted from
sampling from this distribution. Note that X() differed from w by less than | percent
tor n = 28.

4.7
THE DANGER OF REPLACING A PROBABILITY
DISTRIBUTION BY ITS MEAN

Simulation analysts have sometimes replaced an input probability distribution by its
mean in their simulation models This practice may be caused by a tack of under-
standing on the part of the analyst or by lack of information on the actual form of
the distribution {e.g.. only an estimate of the mean of the distribution 1s available).
The tollowing example illustrates the danger of this practice.

EXAMPILE 4.30. Consider a manufacturing system consisting of a single machine
tool. Suppose that “raw ™™ parts arrive to the machine with exponential interarrival times
having a mean of 1 minute and that processing times at the machine are exponentialty
distributed with & mean ot 0.99 minute. Thus. this system is an M/M/1 queve with uti-
lization factor p = 0.99. Furthermore. it can be shown that the average delay in queue
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of a part in the long run is 98.01 minutes {see App. 1B or Gross and Harris (1998, p. 67)].
On the other hand, if we replace each distribution by its corresponding mean (i.e., if cus-
tomers arrive at times 1 minute, 2 minutes, . . . and if each part has a processing time of
exactly 0.99 minute), then no part is ever delayed in the queue. In general, the variances
as well as the means of the input distributions affect the output measures for queueing-
type systems, as noted at the end of App. 1B.

APPENDIX 4A
COMMENTS ON COVARIANCE-STATIONARY PROCESSES

Consider the process {D,, i = 1} for the M/M/1 queue when no customers are pres-
ent at time 0. Clearly, D, = 0, but P(D, > 0) > 0 for i = 2, 3, . . . . Therefore,
ED) = 0and E(D}) > 0 fori=2,3,..., which implies that {D, i = 1} is not
covariance-stationary. However, if p <C 1, it can be shown for all x = 0 that

PD,=x)— (1 —p)+p(l —e M)  asi—x (4.14)

It follows from (4.14) and the equation for D, in Example 4.19 that if we delete
the first k observations from D, D,, . . . and k is sufficiently large, then the process
Dyiy» Disss - . will be (approximately) covariance-stationary. Therefore, when we
say “consider the process {D, i = 1} for the covariance-stationary M/M/1 queue,”
we mean that we let the M/M/1 queue “warm up” for some amount of time before
observing the first delay.

Consider the process {C, i = 1} for the inventory system of Example 4.23
when I, = S. Since P(; = §) # Lfori = 2,3.. .. itfollows that {C, i = 1}isnot
covariance-stationary. However, it can be shown that P(C, < x) converges to a lim-
iting distribution function as {— % [see Wagner (1969, p. A48)]. Thus.
C..» Ciiyy ... will be (approximately) covariance-stationary for & large. Further-
more. the correlations plotted in Fig. 4.11 are for an inventory system warmed up
for some amount of time before the first cost is observed.

PROBLEMS

4.1. Suppose that X is a discrete randoms variable with probability mass function given by

puiy = Py = ey - Py — duid i

() Plot ptxy

thy Compute and plot Fiv,
(¢) Compute P(1.4 = X = 4.2, E(X). and VartX)

4.2. Suppose that X is a continuous random variable with probability density function
given by

fly =x + x+ for0=xv=c




