
Lecture Notes on Integer Linear Programming
Roel van den Broek

October 15, 2018

These notes supplement the material on (integer) linear programming
covered by the lectures in the course Algorithms for Decision Support.

History

26 October, 2017 First version

15 October, 2018 Added missing note on dictionaries

Linear Programming

In an optimization problem we typically have to select the best so-
lution from the set of all solutions, the solution space, that satisfy the
constraints of the problem. The evaluation of the quality of a solution
is based on an objective function that we have to either minimize or
maximize.

A simple example of an optimization problem is the “Healthy” Diet
problem. Bob is a Computer Science student who, surprisingly, is not
particularly fond of going to the gym. As Bob still wants to following
a somewhat healthy lifestyle, he decides to compose a diet that meets
the daily reference intake of vitamins with the minimal amount of
calories. Unfortunately for Bob, he can only get pizzas and burritos
near his place. The nutritional values of a slice of pizza and a burrito
are shown below, in Table 1.

A C D Calories
Pizza 225 100 200 600

Burrito 600 100 75 300

Intake 1800 550 600

Table 1: The nutritional values of a
slice of pizza and a burrito, as well as
the required daily intake of vitamins.
Please note that the numbers used in
this example are fictional.

In this example, a solution to the optimization problem is a meal
of pizzas and burritos. The variables of a diet are the number of
slices of pizza, xp ≥ 0, and the number of burritos, xb ≥ 0. As low-
calorie meals are preferred, the objective will be the minimization of
calories in the diet,

minimize 600xp + 300xb.

Based on this objective function, the optimal solution would be to
eat nothing at all. However, to achieve the daily reference intake, any

http://www.cs.uu.nl/docs/vakken/mads/

lecture notes on integer linear programming 2

meal has to respect the constraints on the amount of vitamins,

225xp + 600xb ≥ 1800 (A),

100xp + 100xb ≥ 550 (C),

200xp + 75xb ≥ 600 (D).

As not eating violates the vitamin constraints, the empty meal is
an infeasible solution. A feasible solution satisfies all constraints of
the optimization problem. Figure 1 shows the constraints as well
as the area containing feasible solutions, called the feasible region1.

1 The feasible region is empty if no
solution satisfies all constraints, in
which case the optimization problem
itself is infeasible.

Furthermore, we can see in Figure 1 that the optimal meal2 consists
2 Disclaimer you should not take this
“optimal” solution as sound dietary
advise. Any reliance you place on these
diets is strictly at your own risk.

of eating four burritos and one and a half slices of pizza each day, for
a total of 2100 calories.

ob
je

ct
iv

e

60
0x

p
+

30
0x

b

8100

0

xb

xp

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

225xp + 600xb ≥ 1800

100xp + 100xb ≥ 550

200xp + 75xb ≥ 600

Figure 1: The colored area contains the
feasible solution to the “Healthy” Diet
problem. The gradient shows the value
of the objective function in the solution
space.

The formulation of the “Healthy” Diet problem is an example of
Linear Programmaing (LP), also known as Linear Optimization. In linear
programming, a solution is represented of one or more variables,
which are called decision variables, and the domain of each variable
is an interval on the real line. Furthermore, both the objective and the
constraints are linear3 in the variables.

3 The linearity property of linear pro-
grams means that, with two variables
x and y, the objective and constraints
can contain expressions such as x + y
and y− x, but, for example, not x

y , x2

or x · y, as the latter three are non-linear
expressions.

The general linear programming formulation of a minimization4

4 Maximizing the objective function
f (x) is equivalent to minimizing − f (x).

lecture notes on integer linear programming 3

problem is

minimize
n

∑
i=1

cixi

subject to
n

∑
i=1

ai1xi ≤ b1

...
n

∑
i=1

aimxi ≤ bm

xi ≥ 0 ∀i ∈ {1, . . . , n} (domain),

(1)

where solutions are encoded by n decision variables, x1 to xn, with
associated costs c1 to cn, and the objective is to minimize the total
cost. The decision variables are subject to m constraints of the form5

5 Linear constraints such as ∑ aixi = b
or ∑ aixi ≥ b can be rewritten to this
form as well. Strict inequalities such
as ∑ aixi < b are — usually — not
allowed in a linear program, since the
optimal solution to the LP might not be
well-defined. For example, in the single
variable LP

max x

s.t. x < 1

x ≥ 0,

no solution is maximal.

∑n
i=1 aijxi ≤ bj, and n domain constraints, xi ≥ 0. An optimal solution

is any solution that satisfies the constraints and has minimal cost6.

6 An optimization problem is called
unbounded it is feasible and we can find
an arbitrarily good feasible solution,
i.e. the constraints in the problem do
not produce an upper bound on the
goodness of feasible solutions.

For many applications, it is easier to use the matrix form of an
LP instead of the sum formulation shown in (1). Denote vectors
x = (x1, . . . , xn), c = (c1, . . . , cn), b = (b1, . . . , bm) and let

A =


a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n
...

...
. . .

...
am,1 am,2 · · · am,n

 .

Then the linear program (1) can be written in matrix form7 as
7 The notation x ≥ 0 indicates that all
elements xi of x should be at least zero.minimize cTx

subject to

Ax ≤ b

x ≥ 0.

(2)

Techniques to find the optimal solution of a linear program is
not covered in the lecture notes. Examples are shown on the lecture
slides and in the first two chapters of Chvatal8. 8 Vasek Chvatal. Linear Programming.

Macmillan, 1983

Modeling

Linear programming is a flexible technique that can be applied to
many real-world problems. A major advantage of modeling a prob-
lem as an LP is that linear programs are efficiently solvable. That
is, the computation time of an LP is polynomial9 in the number of 9 In complexity theory we would denote

this property as LP ∈ P . More on this
in a few lectures.

lecture notes on integer linear programming 4

variables and constraints. With the current state-of-the-art of com-
mercial and open-source solvers, it is rarely necessary or beneficial
to implement your own custom solver. The major challenge of linear
programming is in the problem modeling: how do we translate an
optimization problem to a linear program that can be processed ef-
ficiently by a solver? What decision variables will we use to encode
the solutions of the problem, and how can we rewrite the problem
constraints to linear equations? To further complicate matters, there
are problems for which we cannot formulate linear programs10. As 10 Fortunately, extensions to linear pro-

gramming allow us to model a much
broader class of optimization problems,
albeit at the cost of computation time in
solvers.

there are no algorithms available that decide how, and if, an opti-
mization problem can be modeled as an LP, modeling often has to be
done manually. In the next sections, we will look at several examples
of optimization problems, and show you how they can be modeled as
linear programs.

Assignment Problem

In the Assignment problem, we have n jobs that need to be per-
formed; each job takes T time to complete. As we obviously do not
want to do the work ourselves, we hire n workers to perform the
jobs. Each worker can be hired for at most T time units. The cost of
hiring a certain worker depends on both the employment duration
and the job he/she has to perform; if worker i spends a fraction a of
its time on job j, it will cost us a times Cij. The objective of the As-
signment problem is to assign the workers to jobs such that all jobs
are completed with the lowest total cost.

To model this problem as a linear program, we need to have de-
cision variables that encode all possible solutions, i.e. the different
assignments. A solution to the Assignment problem should state
for each worker the time11 it spends on each job. As the processing 11 Note that the problem description

does not limit a worker to a single job;
workers can switch between jobs.

time of a job equals the maximum hiring duration of a worker, this
is equivalent to stating the fraction of job j completed by worker i.
Therefore, we introduce for each worker-job pair (i, j) the variable
xij ∈ [0, 1] that indicates the fraction of job j that is performed by
worker i. The objective then becomes the minimization of the sum of
all variables xij multiplied by their cost Cij.

To ensure that each job j is completed, we have the constraint
that the sum of the fraction of work spend by all workers on job j
is precisely one. Similarly, the work load of each worker i, the total
fraction of their time allocated to all jobs, should be no more than
one. The LP formulation of this model is shown below, (3).

lecture notes on integer linear programming 5

min
n

∑
i=1

n

∑
j=1

Cijxij (3a)

s.t.
n

∑
i=1

xij ≤ 1 ∀j ∈ {1, . . . , n} (work load) (3b)

n

∑
j=1

xij = 1 ∀i ∈ {1, . . . , n} (job completion) (3c)

xij ∈ [0, 1] ∀i, j ∈ {1, . . . , n} (domain) (3d)

In the current problem statement, workers are allowed to be as-
signed to multiple jobs, the only requirement is that they should not
perform more than a single jobs worth of work. In practice, it might
be inefficient if a worker has to switch jobs. Therefore, the constraint
that each job is completed by a single worker is preferable. That is,
worker i performs job j either entirely or not at all. To model this
constraint we restrict the domain of the xij variables, constraint (3d),
to binary values,

xij ∈ {0, 1} ∀i, j ∈ {1, . . . , n} (binary domain). (3d′)

The meaning of the variables stays the same,

xij =

1 if worker i performs job j,

0 otherwise.

Integer Linear Programming

The program described by (3) with the additional constraints (3d′) is
an example of Integer Linear Programming, abbreviated as ILP or IP,
where each variable is restricted to integer values12. Integer linear 12 Models that contain both integer

and continuous variables are known
in literature as Mixed Integer (Linear)
Programs or MI(L)Ps.

programming is an important tool in combinatorial optimization,
as many problems feature discrete decisions that can be modeled in
an ILP. We will examine a few examples of such problems in these
lecture notes.

In our first example of an LP, the “Healty” Diet problem, suppose
that Bob wants to avoid meals that consist of partial burritos or pizza
slices, as he does not like to eat leftovers of the previous day. Similar
to the Assignment problem, Bob only has to set the domain of the
variables, xp and xb, to integers in his model to get the desired result:

lecture notes on integer linear programming 6

min 600xp + 300xb (4a)

s.t.

225xp + 600xb ≥ 1800 (A) (4b)

100xp + 100xb ≥ 550 (C) (4c)

200xp + 75xb ≥ 600 (D) (4d)

xp, xb ∈N0 (domain) (4e)

Figure 2 shows the resulting feasible region of the new integer
linear program. Note that each feasible solution to the ILP is also
feasible in the original LP, but not vice versa. In the ILP formulation,
we now have three optimal solutions (x∗p, x∗b), namely (2, 4), (1, 6)
and (0, 8), each worth 2400 calories.

ob
je

ct
iv

e

60
0x

p
+

30
0x

b

8100

0

xb

xp

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

Figure 2: The colored dots are the
feasible solution of the “Healthy” Diet
problem without partial meals, the
color of each dot shows the objective
value.

Knapsack

In the classical Knapsack problem we have n valuable items, and we
want to maximize our profit by selling some of them. However, the
carrying capacity B of our knapsack is limited, so we have to decide

lecture notes on integer linear programming 7

which items we will take with us. Item i has a value of ci and weighs
ai units. Breaking items into smaller parts makes them worthless, so
we are not allowed to take a fractional part of an item.

A solution to the Knapsack problem consists of a set of items. We
can encode the solutions by introducing a variable xi for every item i,
indicating whether we take the item or not,

xi =

1 if we put item i in the knapsack,

0 otherwise.

These variables are binary, hence we are creating an integer linear
program. Since an optimal solution should maximize the total profit
of the selected items, and the main constraint of the problem is the
capacity of knapsack, we can use the ILP model

max
n

∑
i=1

cixi

s.t.
n

∑
i=1

aixi ≤ B (capacity)

xi ∈ {0, 1} ∀i ∈ {1, . . . , n}.

(5)

Maximum Independent Set Problem

An example of an optimization problem on graphs is the Maximum

Independent Set problem. An independent set of a graph G =

(V, E) is a subset of vertices S ⊆ V with the property that no two
vertices in S are adjacent in graph G. The Maximum Independent Set
problem consists of finding a largest independent set in the graph.

Figure 3: The colored vertices form
an independent set of the graph, as
no neighboring vertices are colored.
Since this graph does not admit a larger
independent set, the colored vertices are
a maximum independent set.

Similar to the Knapsack problem, a natural solution represen-
tation is to associate a binary variable to each vertex in the graph,
modeling the decision on whether the vertex is included in the in-
dependent set or not. Suppose that graph G has n vertices, v1 to vn.
Then we associate a binary variable xi to each vertex, such that

xi =

1 if vi is in the independent set,

0 otherwise.

With this choice of variables, the objective simply becomes the
maximization of the sum of all n variables. To define the constraints,
we can observe that at most one vertex of each pair of neighboring
vertices in the graph can be included in the independent set. This
results in the following integer linear program,

lecture notes on integer linear programming 8

max
n

∑
i=1

xi (6a)

s.t.

xi + xj ≤ 1 ∀(vi, vj) ∈ E (non-adjacent) (6b)

xi ∈ {0, 1} ∀vi ∈ V (domain). (6c)

Although modeling the Maximum Independent Set problem
as an ILP is rather straightforward, finding the largest independent
set is still a difficult task. In contrast to linear programs, which are all
solvable to optimality in polynomial time (in the number of variables
and constraints), there is no polynomial bound on the computation
time known for many integer linear programs13. 13 For the Maximum Independent

Set problem, it is unlikely that such a
bound exists, as it is a known NP-hard
problem. For more information, see the
lectures on complexity theory.

Facility Location Problem

Another classical example in combinatorial optimization is the Ca-
pacitated Facility Location problem. A manufacturing com-
pany has to meet the demand of m customers, with the demand
of customer i ∈ {1, . . . , m} equal to Di ≥ 0. The company wants
to open a number of new production facilities, such that the costs
of transporting the manufactured commodity to the customers is
minimal. There are n possible building sites for the facilities, and
the cost of transporting of one unit of the commodity from location
j ∈ {1, . . . , n} to customer i is cij. Of course, constructing a facility
costs money as well, the fixed construction cost at location j being Fj.
Furthermore, the production capacity at location j is limited to Cj.

Figure 4: In the Facility Location

problem, there are n locations, shown
in as circles, available for the facili-
ties. These facilities have to serve m
customers, the black dots.

In this problem we have to make two types of decisions:

• where to open the facilities, and

• how customers obtain their goods.

In line with this distinction, we define two types of variables for
location j ∈ {1, . . . , n} and customer i ∈ {1, . . . , m}, namely the
location variable

yj =

1 if we open a facility at location j

0 otherwise,

and the transportation variable

qij = the quantity of goods transported from location j to i.

One way of modeling the problem is the mixed integer linear

lecture notes on integer linear programming 9

program (7):

min
n

∑
j=1

m

∑
i=1

cijqij +
n

∑
j=1

Fjyj (7a)

s.t.
n

∑
j=1

qij = Di ∀i ∈ {1, . . . , m} (demand) (7b)

n

∑
i=1

qij ≤ Cjyj ∀j ∈ {1, . . . , n} (capacity) (7c)

qij ≥ 0 ∀i ∈ {1, . . . , m}, j ∈ {1, . . . , n} (7d)

yj ∈ {0, 1} ∀j ∈ {1, . . . , n}. (7e)

Figure 5: A possible solution to the
Facility Location problem shown in
Figure ‘4. The locations with a facility
are colored. The arcs shown by which
facilities each customer is served. This
solution does not satisfy the constraint
that each customer should be supplied
by exactly one facility.

In this formulation, Equation (7b) ensures that each costumer is
served. Equation (7c) limits the total amount of commodity shipped
from a location to its capacity if a facility has been built, or 0 if there
is no facility at the location. The objective, Equation (7a), is to min-
imize the total cost of facility construction and transportation. The
domains of the variables are bounded by Equations (7d) and (7e).

In a real-world setting, it is usually preferable that customers re-
ceive receive their ordered goods from a single facility, as it simplifies
the shipping process. In that case, we are no longer interested in
what fraction of the demand we sent from a facility to a customer, as
this will always be either zero or the entire demand. We can model
this with the binary decision variables

xij =

1 if customer i receives its demand from location j,

0 otherwise.

Substituting the xij variables for the fractional transportation vari-
ables qij in model (7) — multiplying with Di where necessary —
yields the integer linear program (8):

min
n

∑
j=1

m

∑
i=1

cijDixij +
n

∑
j=1

Fjyj

s.t.
n

∑
j=1

xij = 1 ∀i ∈ {1, . . . , m} (demand)

n

∑
i=1

Dixij ≤ Cjyj ∀j ∈ {1, . . . , n} (capacity)

xij ∈ {0, 1} ∀i ∈ {1, . . . , m}, j ∈ {1, . . . , n}
yj ∈ {0, 1} ∀j ∈ {1, . . . , n}.

(8)

lecture notes on integer linear programming 10

Towards solving an ILP: LP-relaxation

In our example of the “Healty” Diet problem, we restricted the do-
main of the decision variables to integer values to find a meal with-
out leftovers. The solution space of the resulting integer linear pro-
gram was a subset of the set of feasible solutions of the original prob-
lem, with the integral optimum containing slightly more calories than
the best fractional solution. In general, restricting the domains of
the variables will never lead to a better solution. The converse also
holds: relaxing the domain of a variable from integers to a contin-
uous real interval — that encompasses the original integral values
— never results in a worse optimum. The linear program obtained
by relaxing the integrality constraints of an ILP is known as the LP-
relaxation of the original problem. As linear programs can be solved
more efficiently than integer linear programs, LP-relaxations provide
an efficient procedure to find a bound14 on the optimum of an ILP: 14 The LP-relaxation provides a lower

bound on the optimal objective value
for minimization problems, and an
upper bound in case of maximization.

1. Relax the integrality constraints.

2. Solve the resulting linear program.
The LP-relaxation of the integer linear

program

min cT x

s.t.

Ax ≤ b

x ∈N0

is the linear program

min cT x

s.t.

Ax ≤ b

x ≥ 0.

If the optimal solution to the LP-relaxation happens to be inte-
gral, then you do not even have to solve the ILP itself, because the
bound guarantees that it will not find a better solution. Even if the
LP-relaxation has a fractional optimal solution, the bound it provides
is crucial in solving the ILP, as we will see in a few sections.

In the example of the Capacitated Facility Location prob-
lem, we have seen that there can be multiple models of the same
problem, and the optimal objective value of these models should be
the same. However, the LP-relaxations of the different models do not
have not result in the same bound on the optimum, as their solutions
spaces can be different. Due to the importance of the LP-relaxation
bounds, we usually want to find a model with strong bound on the
ILP. In the next sections, we will see some examples of problems with
multiple models, for which we can prove that the LP-relaxation of
one model gives a better bound than the other.

Facility Location Problem (Revisited)

A common variant of the Facility Location problem is to remove
the capacity constraints of the facilities, i.e. each facility can produce
enough to supply all customers. Furthermore, in this Uncapaci-
tated Facility Location problem we require each customer to
be served by exactly one facility. We can model this problem with
a small modification to the ILP formulation shown in Equation (8).
The capacity constraint is no longer needed. However, we do have to

lecture notes on integer linear programming 11

ensure that customer i is only served from location j if we selected j
as the construction site for a facility. Using the notation dij = cijDi,
we get the ILP formulation

min
n

∑
j=1

m

∑
i=1

dijxij +
n

∑
j=1

Fjyj (9a)

s.t.
n

∑
j=1

xij = 1 ∀i ∈ {1, . . . , m} (9b)

xij ≤ yj ∀i ∈ {1, . . . , m}, j ∈ {1, . . . , n} (9c)

xij ∈ {0, 1} ∀i ∈ {1, . . . , m}, j ∈ {1, . . . , n} (9d)

yj ∈ {0, 1} ∀j ∈ {1, . . . , n}. (9e)

Equation (9c) creates nm constraints, one for each of transportation
variable, to prevent customers being served by non-existing facilities.
We can construct a more compact model by observing that if all
transportation variables x1j to xmj of location j are at most yj, then
the sum of the variables xij will not be more than myj. Therefore,
we can combine the nm separate transportation constraints into n
aggregated transportation constraints per location:

min
n

∑
j=1

m

∑
i=1

dijxij +
n

∑
j=1

Fjyj (10a)

s.t.
n

∑
j=1

xij = 1 ∀i ∈ {1, . . . , m} (10b)

m

∑
i=1

xij ≤ myj ∀j ∈ {1, . . . , n} (10c)

xij ∈ {0, 1} ∀i ∈ {1, . . . , m}, j ∈ {1, . . . , n} (10d)

yj ∈ {0, 1} ∀j ∈ {1, . . . , n}. (10e)

Both the separated model, (9), and the aggregated model, (10),
have the same optimal value, yet the latter ILP has fewer constraints,
suggesting that the compact formulation might be the preferred
model for this problem. However, a comparison of the LP-relaxations
of both models — obtained by replacing the domain constraints in
the ILPS with 0 ≤ xij ≤ 1 and 0 ≤ yj ≤ 1 — will show that the
separated model provides a stronger bound on the optimal solution
of the ILP.

Theorem 1. The lower bound on the optimum value of the Uncapac-
itated Facility Location problem obtained from the LP-relaxation

lecture notes on integer linear programming 12

of separated model, Equation (9), is at least as high as the bound of the LP-
relaxation of the aggregated model, Equation (10).

Proof. Let PILP, PLPS and PLPA be the sets of feasible solutions of re-
spectively the ILP model15, the LP-relaxation of the separated model 15 The solution space and optimal value

of models (9) and (10) is the same.(9) and the LP-relaxation of the aggregated model (10). Every feasi-
ble solution to the ILP is feasible for the two LP-relaxations as well,
hence

PILP ⊆ PLPS and

PILP ⊆ PLPA.

Recall our earlier observation that, for any j ∈ {1, . . . , n},

∀i ∈ {1, . . . , m} : xij ≤ yj =⇒
m

∑
i=1

xij ≤ myj.

Since the two models differ only in constraints (9c) respectively (10c),
each solution in PLPS is also a feasible solution to the aggregated
model:

PLPS ⊆ PLPA.

L1

y1 = 1
2

L2

y2 = 1
2

C1

C2

x11 = 1

x22 = 1

x12 = x21 = 0

Figure 6: A fractional solution to the
Uncapacitated Facility Location

problem with two locations and two
customers.

In contrast, not all feasible solutions to the LP-relaxation of the
aggregated model satisfy the constraints in (9c). Let’s consider the
following example of two customers, c1 and c2, and two locations,
l1 and l2. A possible solution to this problem is y1 = y2 = 1/2,
x11 = x22 = 1 and x12 = x21 = 0, as is shown in Figure 6. Each
customer is fully served in this solution and, since

x11 + x21 = 1 + 0 ≤ 2 ∗ 1
2
= 2 ∗ y1 and

x12 + x22 = 1 + 0 ≤ 2 ∗ 1
2
= 2 ∗ y2,

this solution is feasible for the LP-relaxation of the aggregated model
in Equation (10). However, the solution is not in PLPS, as it does not
satisfy all constraints in the LP-relaxation of the separated model:

x11 = 1 >
1
2
= y1.

Therefore, we have the following relation on the feasible solution sets:

PILP ⊆ PLPS ⊆ PLPA.

Let the optimal values of the three solution sets be ZILP, ZLPS and
ZLPA, then the relation above implies that

ZILP ≤ ZLPS ≤ ZLPA,

showing that the bound of the LP-relaxation of the separated model
is at least as good as the bound obtained from the aggregated model
of the Uncapacitated Facility Location problem.

lecture notes on integer linear programming 13

Minimum Spanning Tree

A common task when working on graphs is to find a minimum span-
ning tree. A tree T of a connected, undirected graph G = (V, E) is a
subset of the edges E that is both connected and without cycles. Tree
T is a spanning tree if it connects all n vertices V in G. Let ce be the
cost of including edge e ∈ E in the spanning tree, then a minimum
spanning tree is a spanning tree of minimum total cost of the included
edges. An example is shown in Figure 7.

A B

C

D

E

1

1 1

0

0

0

Figure 7: An undirected graph with
edge costs. The edges of a minimum
spanning tree are colored.

Minimum spanning trees are usually constructed with an opti-
mal, greedy algorithm, as it is much more efficient than known ILP
models. Nevertheless, formulating the Minimum Spanning Tree

problem as an integer linear program allows us to look at some use-
ful modeling patterns and provides another opportunity to compare
LP-relaxations.

We will formulate two different models of the Minimum Span-
ning Tree problem in this section. Both models use the same binary
variables, one for each edge e ∈ E in the graph:

xe =

1 if e is included in the spanning tree,

0 otherwise.

We use two basic properties of a spanning tree T to create the first
model:

1. |T| = |V| − 1, i.e. the size of the tree is precisely one less than the
number of vertices in the graph16. 16 The proof of this property is left as an

exercise to the reader. Have fun.
2. T has no cycles.

The first property can be formulated directly as a constraint. To
model the second property, we use the (equivalent) property that
any subset S ⊂ V connected by |S| or more edges contains a cycle.
Let

E(S) = {e = (v, w) ∈ E | v, w ∈ S},

be the set of edges between vertices in S ⊂ V, then the spanning
tree T has no cycle in the set of vertices S if the sum of all xe with
e ∈ E(S) is at most |S| − 1. This type of constraint is known as a
subtour elimination constraint. To ensure that the entire spanning tree
does not contain a cycle, we have to add such a constraint for every
subset S of V, as can be seen in the first ILP model in Equation (11),

lecture notes on integer linear programming 14

min ∑
e∈E

cexe (11a)

s.t.

∑
e∈E

xe = |V| − 1 (11b)

∑
e∈E(S)

xe ≤ |S| − 1 ∀S ⊂ V (subtour) (11c)

xe ∈ {0, 1} ∀e ∈ E. (11d)

Our second model does not translate the acyclicity property di-
rectly to a set of constraints. Instead of subtour elimination, it uses
the property that in any partition (S, V \ S)17 of the graph G = (V, E) 17 A partition (S, V \ S) of a graph G =

(V, E) splits the graph into two sets,
S ⊆ V and V \ S, removing all edges
that do not connect a vertex in S to a
vertex in V \ S. That is, the partition
(S, V \ S) is the graph G′ = (V, E′) with

E′ = {e = (v, w) ∈ E | v ∈ S, w ∈ V \ S}.

the spanning tree has at least one edge from S to V \ S. Let the cut set
δ(S) of S ⊂ V be the set of edges connecting S to V \ S,

δ(S) = {e = (v, w) ∈ E | v ∈ S, w ∈ V \ S},

then the cut set model is

min ∑
e∈E

cexe (12a)

s.t.

∑
e∈E

xe = |V| − 1 (12b)

∑
e∈δ(S)

xe ≥ 1 ∀S ⊂ V (cut set) (12c)

xe ∈ {0, 1} ∀e ∈ E. (12d)

Unfortunately, the number of constraints in the two models grows
exponentially with the size of the graph due to Equation (11b)
and (12c). Although this makes both models impractical for large
graphs, we can prove that the LP-relaxation of the subtour model
gives a stronger lower bound on the optimum.

Theorem 2. The lower bound on the optimal value of the Minimum

Spanning Tree problem obtained from the LP-relaxation of the subtour
model, Equation (11), is as least as high as the bound of the LP-relaxation of
the cut set model, Equation (12) .

Proof. Let PLPS and PLPC be the feasible regions of the LP-relaxations
of respectively the subtour model and the cut set model. We start
by showing that each feasible solution to relaxed subtour model is
feasible for the relaxed cut set models as well.

First note that, for any subset S of V, we have that

E(S) ∪ δ(S) ∪ E(V \ S) = E, (13)

lecture notes on integer linear programming 15

as each edge e ∈ E connects either two vertices in S, two vertices in
V \ S or a vertex in S to a vertex in V \ S.

Let x = {xe | e ∈ E} ∈ PLPS, i.e. a feasible solution to the LP-
relaxation of the subtour model, then for any vertex set S ⊂ V

|V| − 1 = ∑
e∈E

xe by Equation (11b)

= ∑
e∈E(S)

xe + ∑
e∈δ(S)

xe + ∑
e∈E(V\S)

xe by Equation (13)

≤ |S| − 1 + ∑
e∈δ(S)

xe + |V| − |S| − 1 by Equation (11c)

= |V| − 2 + ∑
e∈δ(S)

xe,

which we can rewrite to

∑
e∈δ(S)

xe ≥ 1. (14)

A B

C

D

E

1/2

1/2 1/2

1

1/2

1

Figure 8: A fractional, feasible solution
to the LP-relaxation of the cut set
model, Equation (12), with the values of
variables xe on the edges. The total cost
of this solution is 3/2. The colored edges
do not satisfy the subtour constraint in
Equation (11c).

As this holds for every subset of vertices in V, any feasible solu-
tion to the LP-relaxation of model (11) satisfies the cut set constraints
in Equation (12c); hence, x belongs to PLPC, the feasible region of the
LP-relaxation of the cut set model.

The example in Figure 8 shows that converse does not hold,
as some solutions in PLPC are not feasible with respect to the LP-
relaxation of the subtour model. We conclude that

PLPS ⊂ PLPC,

and, analogue to the proof of Theorem 1, that the lower bound of
subtour model is at least as good as the lower bound of the cut set
model.

Modeling the Minimum Spanning Tree problem as an ILP
might seem like a pointless exercise, as both models contain an ex-
ponential number of constraints, and faster algorithms are available
for this problem. However, the two constraint types shown in this
section are applicable to other, more difficult problems as well. For
example, a solution to the classical Travelling Sales Person

problem, where we have to find a shortest tour that visits all vertices
in a graph, should not contain any cycles smaller than the number of
vertices in the graph. An ILP model with subtour constraints is much
more interesting18 for such a computationally hard problem, than it

18 We still have the “minor” problem
of the exponential number of subtour
constraints. However, it turns out
that, in practice, you rarely need all
of them to find a solution without
subtours. A common strategy is to start
without (many) subtour constraints,
and iteratively solve the model, adding
new constraints for any subtours in
the resulting solution, until a solution
without subtours is found.

is for the Minimum Spanning Tree problem.

Solving an ILP: branch-and-bound

We have seen examples of modeling optimization problems as integer
linear programs, and showed that we can get a bound on the optimal

lecture notes on integer linear programming 16

objective value by relaxing the integrality constraints. However, this
does not provide us with an algorithm to actually solve the ILP mod-
els. We might be fortunate enough to obtain an integral solution from
the LP-relaxation, but this will not happen for all problem types and
instances.

The standard framework used to solve an ILP is branch-and-bound,
where we repeatedly divide the problem in smaller subproblems.
This framework creates a tree structure, with at the root the orig-
inal problem. Each parent node in the tree splits, or branches, into
multiple child nodes by creating copies of the parent problem with
additional constraints, such that the child solution spaces partition
the parent solution space.

If we would only branch, then the leaves of the tree would cor-
respond to subproblems that either are infeasible or have all their
variables fixed. By constructing the entire tree, we enumerate all fea-
sible solutions to the original problem, and are thus guaranteed to
find the optimum. However, as the size of the tree tends to grow ex-
ponentially with the number of variables in the model, it will take a
long time to actually find the optimal solution.

To avoid complete enumeration of solution space, we bring the
bounding part of branch-and-bound into play. It uses the LP-relaxation
of the integer linear program of the problem at each node to ob-
tain a lower bound — in case of a minimization problem19 — and 19 In a maximization problem, the LP-

relaxation gives the upper bound and
the construction heuristic the lower
bound.

a heuristic that produces an upper bound on the optimal value by
constructing a good, integral solution20. Instead of simply branching

20 Many heuristics can be used to find
feasible, but not necessarily optimal,
solutions to the ILP. A simple example
is to round a fractional solution of the
LP-relaxation to feasible integer values.

at each possible node, we use the bounds on the optimal value of the
subproblems to eliminate or bound unpromising branches early.

There are then four different outcomes at each node:

1. The subproblem of the branch is infeasible. In this case, we do not
split the subproblem in smaller parts. This node becomes a leaf.

2. The solution of the LP-relaxation is integral. We have found the
optimal solution of this node, so further branching on this sub-
problem will not result in a better solution. This node becomes a
leaf. We update the best solution seen so far if necessary.

3. The lower bound on the current subproblem is at least as high
as the objective value of the best solution found so far. Since we
have already discovered a solution that is better than the best this
branch has to offer, we gain nothing by exploring it any further.
This node becomes a leaf.

4. The lower bound on the current subproblem is lower than the ob-
jective value of the best solution found so far. If we have a heuris-
tic available, we will compute an upper bound on this subproblem,

lecture notes on integer linear programming 17

and update the best solution seen so far if needed. We continue
branching on this node.

As this procedure only prunes unpromising branches, we get
a tremendous speed up of the search process without losing the
optimal solution. However, branch-and-bound does not provide
any guarantees on the computation time, and is heavily affected by
the implementation. As mentioned earlier, branch-and-bound is a
framework, meaning that many parts have to be filled in by the user:

• Model Clearly, the model has a large influence on the search pro-
cess. It determines the variables on which we can branch as well
as the bound of the LP-relaxation. The better the bound of the LP-
relaxation, the more likely it is that we can eliminate bad branches
early.

• Integer heuristic Similar to the LP-relaxation bound, a good
heuristic for integral solutions allows early pruning of unpromis-
ing branches, reducing the solution space.

• Search strategy Since we are essentially constructing a tree node
by node during branch-and-bound, we need to decide during the
search, when the tree is not yet constructed fully, which node of
the tree we wish to evaluate and branch on. Possible approaches
are depth-first, breadth-first or selection strategies that expand the
most “promising” node.

• Branching strategy In addition to selecting a node to branch on,
we need to decide how we will branch. That is, how will we split
the solution space of the selected node. A common approach when
branching on decision variables is to split its domain into two
parts. For example, if we have a binary decision variable xi ∈
{0, 1}, we can branch into xi = 0 and xi = 1. In case of an integral
decision variable xj ≥ 0, we might create two21 branches, splitting 21 Similar to a binary decision variable,

if an integral decision variable has an
upper bound of k, with k not too large,
we branch into k child nodes, one for
each possible value of the variable.

the domain in 0 ≤ xj ≤ 4 and xj ≥ 5. If the subproblem contains
more than one decision variable on which we can branch, we need
to select one of them. For example, a simple strategy for decision
variables is to select the variable with the most fractional22 value. 22 The rationale behind this strategy is

that fixing a highly fractional — close
to 1/2 — binary variable is likely to have
a big impact on the overall solution,
which hopefully allows us to prune the
branch with “wrong” decision early in
the search.

Branching on other aspects, such as xi + xj ≤ 6 and xi + xj ≥ 7,
is possible as well, as long as at least one of the branches preserves
the optimal solution of the parent node in the branch-and-bound
tree.

Knapsack (Revisited)

To illustrate the branch-and-bound framework, let us consider the
following example of the Knapsack problem. Our knapsack has a

lecture notes on integer linear programming 18

capacity B of 15, and we have five items that we could carry in the
backpack. The values ci and weights ai are shown in Table 2. Using
these data as input for ILP formulation (5) of the Knapsack problem
gives us model (15):

i 1 2 3 4 5
ci 8 12 7 15 12
ai 4 8 3 6 5

ci/ai 2 11/2 21/3 21/2 22/5

Table 2: The values ci , weights ai and
value-to-weight ratios of the five items
in Knapsack problem.

max 8x1 + 12x2 + 7x3 + 15x4 + 12x5

s.t. 4x1 + 8x2 + 3x3 + 6x4 + 5x5 ≤ 15

x1, x2, x3, x4, x5 ∈ {0, 1}.

(15)

To use the branch-and-bound framework, we need to specify the
search and branching strategies. The simple breadth-first-search strat-
egy is used to explore the branch-and-bound tree, evaluating the
nodes level by level. We base our branching strategy on the intuition
that items with a large value-to-weight ratio are more favorable to
put in the knapsack than low value, high weight items in the Knap-
sack problem. Therefore, it is likely that the exclusion of an item
with a high value-to-weight ratio will lead to a bad solution, allowing
us to cut off the corresponding branch in the tree early in the search
process. The branching strategy that exploits this idea is to branch on
the binary decision variables in non-increasing value-to-weight ratio:
x5 → x4 → x3 → x1 → x2.

Lower bounds can be obtained at each node by rounding down the
fractional part of the optimal solution23 to the LP-relaxation. Figure 9

23 An optimal solution to the LP-
relaxation can be constructed efficiently
by greedily selecting items with the
highest value-to-weight ration until the
knapsack is full.

shows the branch-and-bound tree of our example.
The exploration order of the nodes of the branch-and bound tree is

shown below:

N0. The root node corresponding to the original ILP model shown
in(15). The lower bound heuristic constructs an initial solution; the
global lower bound becomes 34. We branch on decision variable
x5.

N1. The upper bound on the optimal value of this node is less than the
current best solution. We eliminate this branch.

N2. The optimal solution to the LP-relaxation is equal to the solution at
the root. We branch on x4.

N3. The upper bound of this node is less than the current best solu-
tion. We eliminate this branch.

N4. The optimal solution of the LP-relaxation is equal to the solution at
the root. We branch on x3.

N5. The optimal solution of the LP-relaxation is integral, and is better
than the current best solution; the global lower bound becomes 35.
As the solution to the LP-relaxation is optimal for the ILP as well,
we do not branch on this node.

lecture notes on integer linear programming 19

1/4, 0, 1, 1, 1

34 36
N0

1, 1/4, 1, 1, 0

27 33
N1

x5 = 0

1/4, 0, 1, 1, 1

34 36
N2

1, 3/8, 1, 0, 1

30 311/2
N3

x4 = 0

1/4, 0, 1, 1, 1

34 36
N4

1, 0, 0, 1, 1

35 35
N5

x3 = 0

1/4, 0, 1, 1, 1

34 36
N6

0, 1/8, 1, 1, 1

34 351/2
N7

0, 0, 1, 1, 1

34 34
N9

x2 = 0

0, 1, 1, 1, 1

infeasible
N10

x2 = 1

x1 = 0

1, 0, 1, 1, 1

infeasible
N8

x1 = 1

x3 = 1

x4 = 1

x5 = 1

Figure 9: A branch-and-bound tree for
the instance of Knapsack shown in
Table 2. Each node shows at the top an
optimal solution to the LP-relaxation
of the subproblem, and at the bottom
right the corresponding objective value.
This is an upper bound on the optimal
solution to the ILP. A lower bound,
obtained by rounding down fractional
decision variables in the LP solution,
can be found in the bottom left of
a node. The labels at the arcs show
branching choices. A lower bound is
underlined if it improves the current
best lower bound. Bold values in the
solution indicate variables that are fixed
by branching. The branch-and-bound
tree shows that 35 is the optimal value
of this Knapsack instance.

lecture notes on integer linear programming 20

N6. Th optimal solution of the LP-relaxation is equal to the solution at
the root. We branch on x1.

N7. We branch on x2.

N8. The node is infeasible, because the total weight of the fixed items,
18, exceed the maximum capacity of the knapsack. We do not
branch on this node.

N9. The upper bound of this node is less than the current best solu-
tion. We eliminate this branch.

N10. The node is infeasible, because the total weight of the fixed items,
22, exceed the maximum capacity of the knapsack. We do not
branch on this node.

The optimal solution is then the best solution that we have seen over
all nodes. In this case, the solution consists of items 1, 4 and 5, with a
total value of 35.

Valid Inequalities

Branch-and-bound relies heavily on a strong LP-relaxation bound on
the optimum of each node in the search tree. In previous sections we
have seen that modeling choices in the ILP affect the strength of the
bound. However, a good model is not always sufficient to find the
integral optimum in reasonable time. In that case, we can strengthen
the LP-relaxation by introducing additional constraints, called valid
inequalities or cutting planes. These constraints cut off part of the LP
solution space to tighten the bound on the integral optimum, without
removing integral solutions. By preserving the ILP space, we ensure
that the strengthened model remains valid with regard to the original
integer linear program. Enhancing branch-and-bound by adding the
valid inequalities at each node to cut off fractional solutions is known
as branch-and-cut.

Gomory’s cuts

Suppose that we have an integer linear program with decision vari-
ables x1, . . . , xn ≥ 0, and a constraint of the form

∑
i

aixi = b.

Then, for any integral solution that satisfies this constraint, the in-
equality obtained by rounding down the constant and the coefficients
in the constraint,

∑
i
baicxi ≤ bbc,

lecture notes on integer linear programming 21

holds as well, since the decision variables are all non-negative. As the
inequality does not cut off integral solutions, it is valid for the ILP
model. This type of valid inequality is known as Gomory’s cut.

One of the advantages of Gomory cuts is that we can generate
new cutting planes efficiently from the final dictionary24 of the LP- 24 The dictionary format of a solution to

a linear program expresses all non-zero
decision variables (after introducing
slack variables) in the remaining zero-
valued decision variables. See the first
two chapters of Chvatal for more on
this topic.

relaxation. Consider the following example ILP,

max 2x1 + x2

s.t.

x1 − x2 ≤ 1

2x1 + 2x2 ≤ 7

x1, x2 ∈N0,

(16)

depicted in Figure 10.

ob
je

ct
iv

e

2x
1
+

x 2

12

0
x1

x2

0 1 2 3 4

0

1

2

3

4

x1 − x2 ≤ 1

2x1 + 2x2 ≤ 7

Figure 10: The feasible region of the
LP-relaxation of model (16).

We turn an inequality constraints to an equality with a slack vari-
able, modeling the gap between the left- and right-hand side of the
original inequality. Introducing slack variables x3 and x4 in our
model yields

max 2x1 + x2

s.t.

x1 − x2 + x3 = 1

2x1 + 2x2 + x4 = 7

x1, x2, x3, x4 ∈N0.

(17)

The optimal solution of the LP-relaxation of this model is x1 =

21/3, x2 = 11/4, x3 = x4 = 0, with a value of 53/4. In the dictio-
nary of this solution, the non-zero decision variables x1 and x2 are
expressed in the other, zero-valued decision variables,

x1 = 2
1
4
− 1

2
x3 −

1
4

x4 (18)

x2 = 1
1
4
+

1
2

x3 −
1
4

x4. (19)

We can derive a Gomory cut from the constraint of any fractional
decision variable. For example, as x2 = 1 1

4 , rewriting Equation (19) to

x2 −
1
2

x3 +
1
4

x4 = 1
1
4

,

and rounding down gives the Gomory cut

x2 − b
1
2
cx3 + b

1
4
cx4 = x2 − x3 ≤ b1

1
4
c = 1. (20)

Not only are Gomory cuts generated efficiently from the final dic-
tionary of an LP-relaxation, these cutting planes are also effective. In

lecture notes on integer linear programming 22

our example, the current optimal LP-relaxation solution does not
satisfy inequality (20), since

1
1
4
− 0 > 1.

The property of cutting off the current optimal solution of the LP-
relaxation holds for any Gomory cut generated from the constraint
of a fraction decision variable. This property is a direct result of the
expressing the non-zero decision variable in terms of the zero-valued
decision variables:

xk = bk + ∑
i:xi=0

aixi = bk > bbkc if xi is fractional.

Therefore, adding the valid inequality in Equation (20) as a con-
straint to our example model model (17) and solving the LP-relaxation
yields a new optimum of 51/2 at x1 = 2, x2 = 11/2, as is illustrated in
Figure 11.

ob
je

ct
iv

e

2x
1
+

x 2

12

0
x1

x2

0 1 2 3 4

0

1

2

3

4
Gomory cut

Figure 11: The feasible region of the
LP-relaxation of model (16) with the
Gomory cut in Equation (20). The gray
area is removed by the Gomory cut.

Since the optimum of the LP-relaxation of the extended model is
fractional as well, we can repeat the process of adding Gomory cuts
and solving the resulting LP-relaxation, until an integral solution
is found. This procedure, the cutting plane algorithm, is guaranteed
to converge to an integral solution, although the number of cutting
planes added to the model can be exponential. In branch-and-cut,
we do not necessarily have to continue until an integral solution is
found, as a good bound on the objective of a node in the search tree
is sufficient in many cases.

Problem specific cuts

Although the previous valid inequalities are generally applicable,
cutting planes that exploit the structure of a problem are often able
to strengthen the bound of an LP-relaxation much more efficiently.
In this section we will look at two of these problem specific valid
inequalities.

1/2 1/2

1/2

1/2

1/2

Figure 12: The fractional solution to the
Maximum Independent Set problem
that assigns 1/2 to each vertex in the
odd cycle is optimal, with a value of
21/2, but does not satisfy the odd cycle
inequality.

The first example relates to the Maximum Independent Set

problem. It is based on the observation that at most half of the ver-
tices in a cycle in a graph can be included in an independent set. This
results for model (6) in the valid inequality

∑
i∈C

xi ≤
|C| − 1

2
,

where C ⊆ V is an odd cycle in the graph. The odd cycle25 inequality 25 Of course, a similar inequality exists
for even cycles as well. However, as
feasible fractional solution satisfy
the even cycle inequality, we do not
strengthen the LP-relaxation bound by
adding it to our model.

eliminates fractional solutions such as the one shown in Figure 12.
Another type of problem specific valid inequalities can be derived

for the Knapsack problem. Suppose that we have a subset of items

lecture notes on integer linear programming 23

I ⊂ {1, . . . , n} with a total weight larger than the capacity of our
knapsack. Then we know that we cannot carry all items in the subset
with us, i.e. every feasible solution in model (5) should satisfy

∑
i∈I

xi ≤ |I| − 1.

This type of cutting plane, known as a cover inequality, is applicable
to many other problems as well, and is commonly used strategy in
modern solvers to tighten the bound of the LP-relaxation. As an
example of its usage, take the subset of items I = {1, 3, 4, 5} for the
problem instance listed in Table 2. Since

∑
i∈I

ai = 4 + 3 + 6 + 5 > 15,

the set I covers our knapsack. The corresponding cover inequality

x1 + x3 + x4 + x5 ≤ 3

cuts off the optimal solution to the LP-relaxation, x3 = x4 = x5 = 1,
x1 = 1/4.

References

Vasek Chvatal. Linear Programming. Macmillan, 1983.

	Linear Programming
	Modeling
	Solving an ILP: branch-and-bound
	Valid Inequalities

