
Simulation

Exercise 1.26
System description, input date/distributions:
see description of the exercise

Assumptions:
no new assumptions are made

State:
server A1 idle/busy1 (i.e. busy with type 1 customer) /busy2
server A2 idle/busy1/busy2
server B idle/busy1/busy2
number of customers in queue 1 with their arrival times
number of customers in queue 2 with their arrival times.

Events:
arrival of customer
departure1A: departure of type 1 customer from server of type A
departure1B: departure of type 1 customer from server of type B
departure of type 2 customer

Performance measures:
average delay in queue for each type of customer:

Let D1 be the total delay of type 1 customers in the simulation and n1 be the number of type 1
customers for which delay has been measured. If a customer enters service, increase D1 by the
delay of this customer and increase n1 by 1.At the end of the simulation the average delay equals
D1/n1. Same is applied for customers of type 2.

average number of customers in queue 1 en queue 2.
Note that this is an average over time. Let Q1 be the surface under the graph of the queue-length of
queue 1 as a function of time until the current time. At each event we update Q1 by adding (time –
timeprevious event)*(queue length during this interval). At the end the average number of customers in
the queue equals Q1 divided by the total time. Similarly, we have Q2.

expected portion of time that each server spends on customer of type 1 and type 2
Let T1,S be the amount of time that server S (S=A1,A2,B) is busy until the current time. At each
event update T1,S by adding time – timeprevious event if the server S was busy working for customer 1
during the interval [timeprevious event.,time]. Similarly, we have the number T2,S. At the end, these
numbers have to be the divided by the total time.

Pseudo-code:
 while time < runlength
{
case nextevent of
 arrival:
 {
 schedule new arrival;
 determine client type (with random generator);

update busy time of servers and total queue lengths;
if type 1 customer
 if (all servers busy) add customer to queue
 else{ update D

1
;

if server of type A is available {
start service on type A server;
schedule departure type 1 from type A
server}

 else{ start service on type B server;
schedule departure type 1 from type B
server }

 }
 }
else /* type 2 customer */

if (server A and B available){
update D

2
;

start service;
 schedule departure2;
 }
 else add customer to queue

}

 departure1A:
 {
 update busy time of servers and total queue lengths;

set server idle;
if (server A and B are available and queue2 not empty)
{

update D
2
;

start service type 2 customer;
schedule departure2;

 }
 else
 if queue1 is not empty

 {
update D

1
;

start service type 1 customer;
schedule new departure1A

 }

 }

 departure 1B:
 similar

 departure2: /* almost the same */

{
 update busy time of servers and total queue lengths,

set one more server A and set server B idle
if (queue2 not empty)
{

update D
2
;

start service type 2 customer;
schedule new departure2

 }
 else
 if queue1 is not empty

 {
update D

1
;

start service type 1 customer on server A;
schedule departure1A;
if queue1 is still not empty
{
 update D

1
;

start service type 1 customer onserverB;
 schedule departure1B
}

 }

 }

}

NB: To determine the amount of time that each of the servers spends on customers of type 1 and 2, we also
need to know for each departure from a server A, from which of the two servers this departure takes place.
This detail is not included in the pseudo-code.

