Inventory strategy

- Single product
- Time between demands from customers: exponential with mean 0.1 day
- Demand:
 - 1 w.p. 1/6
 - 2 w.p. 1/3,
 - 3 w.p. 1/3,
 - 4 w.p. 1/6

Inventory strategy (2)

- Ordering cost for quantity Z: 32 + 3Z
- Delivery time Uniform[0.5 week, 1 week]
- Inventory check = possible order point: beginning of each month
 - (s,S) strategy:

- order S-I if I<s
- 0 if I \ge s
- Holding cost: 1 EURO per item per week
 - Backlogging: shortage cost 5 EURO per item per week

Universiteit Utrecht

Inventory strategy (3)

- State I(t) = amount of inventory at time t (can be negative)
- Performance measure: total cost

Events:

- Demand from customer
 - Randomly generate amount
 - Add holding cost and backlogging cost form previous event until now.
 - Update I(t)
 - Generate next demand event

Universiteit Utrecht

Inventory strategy (4)

Events (2):

- Inventory evaluation
 - Add holding cost and backlogging cost form previous event until now
 - If I<s, generate order arrival event of S-I at now + U[0.5 m, 1 m] and add ordering cost
 - Generate next inventory evaluation event
- Order arrival
 - Add holding cost and backlogging cost form previous event until now.
 - Update I(t)
- End simulation

Always handle earliest event.

Universiteit Utrecht