
‹#› Algorithms for decision support,
lecture complexity

1

‹#›

Algorithms for Decision Support

Computational Complexity

How hard is optimization?

2

‹#› Algorithms for decision support,
lecture complexity

Outline

! Definitions
! P vs. NP
! NP-completeness

! Why is it relevant?
! What is it exactly?
! How is it proven? Reduction

! More reductions
! Just a few animals from the complexity zoo
! Exercises

3

‹#› Algorithms for decision support,
lecture complexity

Today’s Lecture

! Definitions
! P vs. NP
! NP-completeness

! Why is it relevant?
! What is it exactly?
! How is it proven? Reduction

! 3-SAT

4

‹#› Algorithms for decision support,
lecture complexity

How Hard is a Problem?

5

‹#› Algorithms for decision support,
lecture complexity

How Hard is a Problem?

from computer’s aspect

6

‹#› Algorithms for decision support,
lecture complexity

How Hard is a Problem?

from computer’s aspect

In order to solve some problem,  
how many resources is needed?

7

‹#› Algorithms for decision support,
lecture complexity

How Hard is a Problem?

from computer’s aspect

In order to solve some problem,  
how many resources is needed?

time, memory, I/O access, information……

8

‹#› Algorithms for decision support,
lecture complexity

How Hard is a Problem?

from computer’s aspect

In order to solve some problem,  
how many resources is needed?

time, memory, I/O access, information……

9

‹#› Algorithms for decision support,
lecture complexity

Definition: Problem

!

PARTITION problem

10

‹#› Algorithms for decision support,
lecture complexity

Different versions of problems

! Decision problems.
! Answer is yes or no.

! Optimization problems.
! Answer is a number representing an objective value.

! Construction problems.
! Answer is some object (set of vertices, function, …).

! Counting problems.
! How many objects of some kind exists?

First focus on
decision problems

11

‹#› Algorithms for decision support,
lecture complexity

Decision vs optimization problems

! An optimization problem can be turned into a decision
problem by introducing a threshold value y.

! In case of a minimization problem M , the decision variant
becomes:
! Given an instance of M together with a threshold value y , does

there exist a feasible solution with outcome value ≤y?

12

‹#› Algorithms for decision support,
lecture complexity

Definition: Instance

! A description of the problem together with the parameters
that describe the input of the problem.

! Values have been assigned to the parameters.

13

‹#› Algorithms for decision support,
lecture complexity

Definition: Input size

!

PARTITION is then

14

‹#› Algorithms for decision support,
lecture complexity

Binary encoding problem instances

a

b
c

d e
f

g h

0 1 1 0 0 0 1 0
1 0 1 0 0 0 0 0
1 1 0 1 1 1 0 0
0 0 1 0 1 0 0 0
0 0 1 1 0 0 0 0
0 0 1 0 0 0 1 0
1 0 0 0 0 1 0 1
0 0 0 0 0 0 1 0If there are n vertices,  

what is the input size?

15

‹#› Algorithms for decision support,
lecture complexity

Binary encoding problem instances

8 2

8 6 9 1

2 6 9

9 3

1 3

b

a

c

e

d

8

2
6

1

9

3

If there are n vertices,  
what is the input size?

16

‹#› Algorithms for decision support,
lecture complexity

Running time of an algorithm

! Suppose we have chosen some problem, and for this
problem we have defined an algorithm to solve it.

! We want to have a (rough) estimate of the number of
elementary computations (additions, multiplications,
comparisons, etc.) that are required by the algorithm to
solve the problem in the worst case

! This expression will depend on the values of the parameters
input size.

17

‹#› Algorithms for decision support,
lecture complexity

Definition: Polynomial versus exponential

!

18

‹#› Algorithms for decision support,
lecture complexity

Practice

• Recall some GRAPH problem:
• n vertices

Suppose there is an algorithm with running
time O(n3). Is it a polynomial algorithm or an
exponential one?

19

‹#› Algorithms for decision support,
lecture complexity

Practice

• Recall the PARTITION problem:
• n numbers
• a1, a2, …, an

Suppose there is an algorithm with running
time O(amax3). Is it a polynomial algorithm or
an exponential one?

20

‹#› Algorithms for decision support,
lecture complexity

21

‹#› Algorithms for decision support,
lecture complexity

Legend: There is a 64-disk Hanoi Tower.
When the last move of the puzzle is completed,

the world will end

22

‹#› Algorithms for decision support,
lecture complexity

When there are n disks and 3 pegs,
it needs at least 2n-1 moves.

23

‹#› Algorithms for decision support,
lecture complexity

When there are n disks and 3 pegs,
it needs at least 2n-1 moves.
If one can move a disk within a second,

completing 64-disk Hanoi Tower needs 585 billion years.

24

‹#› Algorithms for decision support,
lecture complexity

When there are n disks and 3 pegs,
it needs at least 2n-1 moves.
If one can move a disk within a second,

completing 64-disk Hanoi Tower needs 585 billion years.
(42 times the current age of the universe)

25

‹#› Algorithms for decision support,
lecture complexity

Polynomial versus exponential

! In general a polynomial algorithm is preferred over an
exponential algorithm, because of the scalability (effect of
increasing the size of the problem on the running time).

! For many problems polynomial algorithms exist, but for
many others they have not been found yet. Major question:
are we to blame when we cannot find a polynomial
algorithm for some problem?

! This has been a major topic of research in the area of
Computational Complexity.

26

‹#› Algorithms for decision support,
lecture complexity

Complexity class P and NP

27

‹#› Algorithms for decision support,
lecture complexity

Turing machine

! Wikipedia:
“A Turing machine is a device that manipulates symbols on a
strip of tape according to a table of rules. Despite its
simplicity, a Turing machine can be adapted to simulate the
logic of any computer algorithm, and is particularly useful in
explaining the functions of a CPU inside a computer.”

28

‹#› Algorithms for decision support,
lecture complexity

Lego Turing machine

! https://www.youtube.com/watch?v=FTSAiF9AHN4
! See also http://www.legoturingmachine.org/

29

https://www.youtube.com/watch?v=FTSAiF9AHN4

‹#› Algorithms for decision support,
lecture complexity

Turing machine: mathematical model

A Turing Machine TM is a mathematical model:
! which consists of an infinite length tape divided into cells
 on which input is given.
! It has a head which reads the input tape.
! A state register stores the state of the Turing machine.
! After reading an input symbol, it is replaced with another

symbol, its internal state is changed, and it moves from one
cell to the right or left. (this transition also depends on the
state)

! If the TM reaches the final state `accept’, the input string is
accepted, otherwise rejected.

30

‹#› Algorithms for decision support,
lecture complexity

Complexity class P

! A decision problem belongs to the class P if there is a
solution algorithm with a running time that is polynomial in
the input size
! In practice: encoding and corresponding concrete problem is

assumed very implicitly.

! Alternative definition of P 
Class of decision problems, for which there exists a
Deterministic Turing Machine that can solve any
instance in polynomial time.

31

‹#› Algorithms for decision support,
lecture complexity

Complexity class NP

A decision problem belongs to the class NP if:

! Any solution y leading to `yes' can be encoded in
polynomial space with respect to the size of the input x.

! Checking whether a given solution leads to `yes' can be
done in polynomial time with respect to the size of (x,y).

32

‹#› Algorithms for decision support,
lecture complexity

Complexity classes P and NP

! Were originally and formally defined in terms of Turing
machines

Alternative definition of NP
! Class of decision problems, for which there exists a Non-

Deterministic Turing Machine that can solve any yes
instance in polynomial time.
! The machine guesses a yes solution and then verifies that it is

a yes solution

33

‹#› Algorithms for decision support,
lecture complexity

Never tell to an expert in Computational Complexity that you
think that NP stands for Non Polynomial

NP stands for Non-deterministic Polynomial

34

‹#› Algorithms for decision support,
lecture complexity

Many problems are in NP

! Hamiltonian Path,
! Maximum Independent Set,
! Vertex Cover,
! Satisfiability,
! Integer Linear Programming

! Easy to show for 0/1 programming,
! non-trivial in general

35

‹#› Algorithms for decision support,
lecture complexity

Solution methods for linear programming

! Simplex method
! Slower than polynomial
! Practical

! Ellipsoid method
! Polynomial (Khachian, 1979)
! Not practical

! Interior points methods
! Polynomial (Karmakar, 1984)
! Outperforms Simplex for very large instances

PLP∈
36

‹#› Algorithms for decision support,
lecture complexity

! P vs NP
$ 1 million Millenium Prize problem
http://www.claymath.org/millennium/P_vs_NP

NP

P

37

‹#› Algorithms for decision support,
lecture complexity

Reducibility

! Problem A is polynomial time reducible to problem B (or:
A ≤P B), if there exists a polynomial time computable
function f from the instance set of I(A) of A to the instance
set I(B) of B
! x ∈ I(A) is a yes-instance for A , if and only if, f(x) ∈ I(B) is a

yes-instance for B.

38

‹#› Algorithms for decision support,
lecture complexity

Reducibility (2)

! Lemma: If A ≤P B then: if B ∈ P, then A ∈ P.

 Proof-idea:
! Let x be an instance of problem A.
! Determine f(x)
! run an algorithm for B on f(x).

39

‹#› Algorithms for decision support,
lecture complexity

NP-complete

! There are certain problems in NP whose individual
complexity is related to that of the entire class

! If a polynomial time algorithm exists for any of the NP-
complete problems, all problems in NP would be
polynomial time solvable.

NP

P NP-complete

40

‹#› Algorithms for decision support,
lecture complexity

Definition: NP-hard and NP-complete

A problem A is NP-hard, if:
1. For every B ∈ NP: B ≤P A.

A problem A is NP-complete, if:
1. A ∈ NP.
2. For every B ∈ NP: B ≤P A.

NP-hardness/NP-completeness also used as term
! for problems that are not a decision problem, e.g. the

optimization version of an NP-complete decision problem
! for problems that are ‘harder than NP’.

41

‹#› Algorithms for decision support,
lecture complexity

Decision vs optimization problems

! An optimization problem can be turned into a decision problem
by introducing a threshold value y.

! In case of a minimization problem M , the decision variant
becomes:
! Given an instance of M together with a threshold value y , does

there exist a feasible solution with outcome value ≤y?

! If optimization problem M can be solved in polynomial time,
then its decision variant can be decided in polynomial time.

! If an optimization problem H has an NP-complete decision
version L, then H is called NP-hard.

42

‹#› Algorithms for decision support,
lecture complexity

What does it mean to be 
NP-Complete?

43

‹#› Algorithms for decision support,
lecture complexity

What does it mean to be 
NP-Complete?

! Evidence that it is (very probably) hard to find an algorithm
that solves the problem.
! Always.
! Exactly.
! In polynomial time.

! For an NP-hard optimization problem:

If you want to find the optimal solution,
we cannot guarantee anything better than

checking all possibilities

NP

P NP-complete

44

‹#› Algorithms for decision support,
lecture complexity

What does it mean to be 
NP-Complete?

! Suppose there is a polynomial algorithm for some NP-
complete problem X.

! In other words, X is NP-complete and X ∈ P.
! Then for every A ∈ NP: A ≤P X.
! So for every A ∈ NP: A ∈ P
! All NP problems can be solved in polynomial time

45

‹#› Algorithms for decision support,
lecture complexity

CNF-Satisfiability: SAT

! Input: Expression over Boolean variables in conjunctive
normal form (CNF).

! “and” of clauses;
! each clause “or” of variables or negations (xi or ¬(xj))

! Question: Is the expression satisfiable?  
I.e., can we give each variable a value (true or false) such
that the expression becomes true?

not xj

46

‹#› Algorithms for decision support,
lecture complexity

Cook-Levin theorem

Theorem: CNF-Satisfiability is NP-complete.

! Most well known is Cook’s proof, using Turing machine
characterization of NP.

! It design a Turing machine that verifies yes-instances of SAT

47

‹#› Algorithms for decision support,
lecture complexity

Proving problems NP-complete

Lemma (key in the proof)
1. Let A ≤P B and let A be NP-complete. Then B is NP-

hard.

2. Let A ≤P B and let A be NP-complete, and B ∈ NP.
Then B is NP-complete.

48

‹#› Algorithms for decision support,
lecture complexity

Proving problems NP-complete: General
recipe for a reduction

!

49

S

‹#› Algorithms for decision support,
lecture complexity

Reduction: first example

50

Theorem: SUBSET-SUM is NP-complete

‹#› Algorithms for decision support,
lecture complexity

Reduction: first example

! The SUBSET-SUM problem

SUBSET-SUM

PARTITION problem

PARTITION problem is
NP-complete

51

‹#› Algorithms for decision support,
lecture complexity

Reduction: first example

! The SUBSET-SUM problem

SUBSET-SUM

PARTITION problem

PARTITION problem is
NP-complete

52

‹#› Algorithms for decision support,
lecture complexity

Proof SUBSET-SUM is NP-complete

!

PARTITION
PARTITION

SUBSET-SUM is in NP:

53

‹#› Algorithms for decision support,
lecture complexity

54

‹#› Algorithms for decision support,
lecture complexity

Recap

55

! Class P: set of decision problems that can be solved in
polynomial time

! Class NP: set of decision problems whose yes solution can
be verified in polynomial time

! Polynomial time reduction ≤P: X ≤P Y implies that Y is at
least as hard as X! That is, Y cannot be easier than X.

! Problem A is NP-hard if every problem in NP can be
reduced to A. (That is, for all B ∈ NP, B ≤P A.)

! Problem A is NP-complete if it is in NP and it is NP-hard.
That is, 1) any yes solution of A can be verified in
polynomial time and 2) for all B ∈ NP, B ≤P A.

‹#› Algorithms for decision support,
lecture complexity

Theorem: 3-SAT is NP-complete

56

‹#› Algorithms for decision support,
lecture complexity

3-SAT is NP-complete

! A 3-SAT is a special case of CNF-SAT where each clause
has exactly three literals.

57

‹#› Algorithms for decision support,
lecture complexity

3-SAT is NP-complete

! A 3-SAT is a special case of CNF-SAT where each clause
has exactly three literals.

! Theorem: 3-SAT is NP-complete
Proof:
1. Membership in NP (easy to check).
2. Reduction (next slide).

! 3-SAT is important starting problem for many NP-
completeness proofs.

58

‹#› Algorithms for decision support,
lecture complexity

Theorem: 3-SAT is NP-complete

59

! Lemma: CNF-SAT ≤p 3-SAT
! Clauses with less than 3 literals:

! Replace (x1 v x2) by (x1 v x2 v x1) (or (x1 v x2 v x2))
! Replace (x1) by (x1 v x1 v x1)

! Clauses with more than 3 literals:
! For (x1 v x2 v x3 v … v xn), add new variable y and

replace the clause by (x1 v x2 v y) ^ (-y v x3 v … v
xn), repeating this procedure.

‹#› Algorithms for decision support,
lecture complexity

Clique

60

‹#› Algorithms for decision support,
lecture complexity

Clique

! Clique: set of vertices W ⊆ V, such that for all v,w ∈ W:
{v,w} ∈ E.

61

‹#› Algorithms for decision support,
lecture complexity

Clique

! Clique: set of vertices W ⊆ V, such that for all v,w ∈ W:
{v,w} ∈ E.

CLIQUE (decision problem)
! Given: graph G=(V,E), integer k.

62

‹#› Algorithms for decision support,
lecture complexity

Clique

! Clique: set of vertices W ⊆ V, such that for all v,w ∈ W:
{v,w} ∈ E.

CLIQUE (decision problem)
! Given: graph G=(V,E), integer k.
! Question: does G have a clique with at k vertices?

63

least
most

Which one makes more sense?

‹#› Algorithms for decision support,
lecture complexity

Clique

! Clique: set of vertices W ⊆ V, such that for all v,w ∈ W:
{v,w} ∈ E.

CLIQUE (decision problem)
! Given: graph G=(V,E), integer k.
! Question: does G have a clique with at least k vertices?

64

‹#› Algorithms for decision support,
lecture complexity

Clique is NP-complete

! CLIQUE is in NP.
! Graph (V,E) with n nodes can be encoded in O(n2) bits; k can

be encoded in log(n) bits
! A solution is a set of nodes S, can be encoded in O(n) bits
! Checking if S is a clique of size at least k , takes O(n2)

! Reduction from 3-SAT
! Let x be an instance from 3-SAT
! Define instance f(x) from CLIQUE
! Make clear that f can be performed in polynomial time
! Show x is yes-instance iff f(x) is yes-instance
! All detailed in next slides

65

‹#›

!

…

CLIQUE:

66

x1 -x2 x3

x1

-x3
x2

Reduction from 3-SAT to CLIQUE

‹#› Algorithms for decision support,
lecture complexity

Correctness

!

67

There is a satisfying truth assignment, if and only if, f(x) has
a clique with m vertices

‹#› Algorithms for decision support,
lecture complexity

Independent set

68

‹#› Algorithms for decision support,
lecture complexity

Independent set

! Independent set: set of vertices W ⊆ V, such that for all v,w
∈ W: {v,w} ∉ E.

! Independent set problem:INDEPENDENT-SET (decision problem):

69

‹#› Algorithms for decision support,
lecture complexity

Independent set

! Independent set: set of vertices W ⊆ V, such that for all v,w
∈ W: {v,w} ∉ E.

! Independent set problem:
! Given: graph G, integer k.

INDEPENDENT-SET (decision problem):

70

‹#› Algorithms for decision support,
lecture complexity

Independent set

! Independent set: set of vertices W ⊆ V, such that for all v,w
∈ W: {v,w} ∉ E.

! Independent set problem:
! Given: graph G, integer k.
! Question: Does G have an independent set of size at least k?

INDEPENDENT-SET (decision problem):

71

‹#› Algorithms for decision support,
lecture complexity

Independent set

! Independent set: set of vertices W ⊆ V, such that for all v,w
∈ W: {v,w} ∉ E.

! Independent set problem:
! Given: graph G, integer k.
! Question: Does G have an independent set of size at least k?

! Independent set is NP-complete.

INDEPENDENT-SET (decision problem):

INDEPENDENT-SET is NP-complete

72

‹#› Algorithms for decision support,
lecture complexity

INDEPENDENT-SET is NP-complete

! In NP.
! Reduction: transform from CLIQUE.
! W is a clique in G, if and only if, W is an independent set in

the complement of G (there is an edge in Gc iff. there is no
edge in G).

73

‹#› Algorithms for decision support,
lecture complexity

How do I write down this proof?

Theorem: INDEPENDENT-SET is NP-complete.
Proof:
! The problem belongs to NP:

! Solutions are subsets of vertices of the input graph; polynomial
size

! We can check in polynomial time for a given subset of vertices
that it is an independent set and that its size is at least k.

! We use a reduction from CLIQUE.
! Let (G,k) be an instance of the clique problem.
! Transform this to instance (Gc,k) of the independent set problem

with Gc the complement of G.
! As G has a clique with k vertices, if and only if, Gc has an

independent set with k vertices, this is a correct transformation.
! The transformation can clearly be carried out in polynomial time.

74

‹#› Algorithms for decision support,
lecture complexity

Writing an NP-Completeness proof

! Proof starts with showing that problem belongs to NP.

! Give/explain the encoding of a solution leading to yes,

! show/state that it is polynomial in the size of instance and

! explain how (or state that, if trivial) a yes-solution can verified in
polynomial time w.r.t. the length of instance and solution.

! State which known NP-complete problem you reduce
from.

! Explain the transformation (also called reduction).
! Give the proof: instance to original problem is Yes-

instance, if and only if, transformed instance is Yes-
instance for the known NP-complete problem.

! Remember: you need to proof this in two directions.
! Phrase (or prove if not trivial): transformation can be

carried out in polynomial time, hence problem is NP-
complete.

75

‹#› Algorithms for decision support,
lecture complexity

3-Colouring Problem

!3-COLOURING
!Given: Graph

G=(V,E)
!Question: Can we

colour the vertices
with 3 colours, such
that for all edges
{v,w} in E, the
colour of v differs
from the colour of w.

!3-colouring is NP-
Complete.

1 2

3

21

3

2

76

‹#› Algorithms for decision support,
lecture complexity

Proof: 3-COLOURING is NP-Complete

In NP:
! Encoding a solution: colour for

each vertex (O(n))
! Checking if a solution is a yes

instance: O(n2).

Reduction from 3-SAT:
! Given an instance from 3-SAT

! We build a graph in 3 steps:

1. Take a clique with 3 
vertices True, False, C.

2. Take two adjacent vertices
for each variable x.

T F

C

x1 x2

We name the
colours:
T, F, C

77

‹#› Algorithms for decision support,
lecture complexity

NP-Completeness of 3-Colouring

3. For each clause
{l1,l2,l3}, take the
following gadget:

T

C

l1 l2

l3

78

‹#› Algorithms for decision support,
lecture complexity

!

79

NP-Completeness of 3-Colouring

‹#› Algorithms for decision support,
lecture complexity

THREE APPROACHES TO
PROVE NP-COMPLETENESS

80

‹#› Algorithms for decision support,
lecture complexity

Approaches to proving NP-Hardness

Three approaches to prove NP-hardness:
1) Restriction
2) Local replacement
3) Component Design

81

‹#› Algorithms for decision support,
lecture complexity

Approach 1: Restriction

! Take the problem.
! Add a restriction to the set of instances. 

Define a special case.
! If this restricted problem is a known NP-complete problem,

then your original problem is also NP-complete.

82

‹#› Algorithms for decision support,
lecture complexity

Vertex Cover

! Set of vertices W ⊆ V with for all {x,y} ∈ E: x∈W or y∈W.
! Vertex Cover problem:

! Given graph G, find vertex cover of minimum size.
! Decision version VERTEX-COVER:

! Given graph G, number k
! Find a vertex cover with size at most k

! Vertex Cover is NP-complete

= vertex cover

83

‹#› Algorithms for decision support,
lecture complexity

Restriction: Weighted Vertex Cover

! Weighted vertex cover
! Given: Graph G=(V,E), for each vertex v ∈ V, a positive integer

weight w(v), integer k.
! Question: Does G have a vertex cover of total weight at most k?

! NP-Complete.
! In NP.
! NP-Hardness: reduction from Vertex Cover to Weighted Vertex

Cover (set all weights to 1).

! This is the easiest form of reduction.
! Vertex cover is NP-complete in exercises

84

‹#› Algorithms for decision support,
lecture complexity

Restriction: Subset sum

!

85

PARTITION problem:

SUBSET-SUM problem:

SUBSET-SUM is a generalization of PARTITION (or in other
words, PARTITION is a special case of SUBSET-SUM), and
hence SUBSET-SUM is NP-complete as well.

‹#› Algorithms for decision support,
lecture complexity

Approach 2: Local replacement

! Form an instance of our problem by
! Taking an instance of a known NP-Complete problem.
! Making some change “everywhere”.
! Such that we get an equivalent instance, but now of the

problem we want to show NP-complete.

86

‹#› Algorithms for decision support,
lecture complexity

Examples of Local Replacement

! We saw:
! 3-SAT (from SAT).
! CLIQUE (from 3-SAT).
! INDEPENDENT-SET (from CLIQUE).

! We will see:
! Travelling Salesman Problem (from Hamiltonian Circuit).
! Planar 3-Colouring (from 3-Colouring).

87

‹#›

! Given: Graph G
! Question: does G have a

simple cycle that contains all
vertices?

88

Hamiltonian Circuit

‹#› Algorithms for decision support,
lecture complexity

NP-Completeness of Travelling Salesman
Problem by local replacement

! In NP.
! Reduction from HAMILTONIAN-CIRCUIT:

! Take city for each vertex.
! Take cost(i,j) = 1 if {i,j} ∉ E.
! Take cost(i,j) = 0, if {i,j} ∈ E.
! G has HC, if and only if, there is a TSP-tour of length 0.

Remark
! TSP variant with triangle inequality:

! Use weights 2 and 1.
! G has HC, if and only if, there is a TSP-tour of length n.

89

‹#› Algorithms for decision support,
lecture complexity

NP-Completeness of Planar 3-Colouring
by Local Replacement

! Planar 3-COLOURING
! Given: Planar graph G=(V,E).
! A planar graph is a graph that can be embedded in

the plane, i.e., it can be drawn on the plane in such a way
that its edges intersect only at their endpoints.

! Question: Can we colour the vertices of G with 3 colours, such
that adjacent vertices have different colours?

! Plan: reduction from 3-COLOURING.
! Take arbitrary graph G.
! Draw G on the plane.
! So, we possibly get some crossings.
! Replace the crossings by something clever.

90

‹#› Algorithms for decision support,
lecture complexity

Clever reduction

! Garey and Johnson (1979) found the following:

c d

a

b

c

a

d

b 91

‹#› Algorithms for decision support,
lecture complexity

Property of the gadget

! If a and b have the same colour, we cannot colour the
gadget with 3 colours.

! If c and d have the same colour, we cannot colour the
gadget with 3 colours.

! Otherwise, we can.

! ... Some additional details (basically, repeat the step) when
an edge has more than one crossing …

92

‹#› Algorithms for decision support,
lecture complexity

Approach 3: Component design

! Component design (gadgeteering).

! Build (often complicated) parts of an instance with certain
properties.
! Often we call these parts components, gadgets, or widgets.

! Glue them together in such a way that the proof works.

! Examples:
! 3-COLORING (from 3-SAT).
! Hamiltonian Circuit (from Vertex Cover).

93

‹#›

Hamiltonian circuit

! Given: Graph G
! Question: does G have a

simple cycle that contains all
vertices?

94

‹#› Algorithms for decision support,
lecture complexity

NP-Completeness of  
Hamiltonian Circuit

! Hamiltonian Circuit is in NP.
! Vertex Cover ≤P Hamiltonian Circuit: complicated proof

(component design)
! Given a graph G and an integer k, we construct a graph H, such

that H has a Hamilton Circuit, if and only if G has a Vertex
Cover C of size k.

! Widgets (one for each edge of graph G)
! Selector vertices: k.

95

‹#› Algorithms for decision support,
lecture complexity

Widget

! For each edge {u,v}
we have a widget Wuv

! Details for interested
reader

[u,v,1]

[u,v,6] [v,u,6]

[v,u,1]

96

‹#› Algorithms for decision support,
lecture complexity

Only possible ways to visit all vertices in widget
• One visit to the widget from the u side
• One visit from the v side
• Two visits
• You never switch to another side

97

‹#›

Connecting the widgets

! For each vertex v we
connect the widgets of all its
edges {v,w}.

! Suppose v has neighbors x1,
…, xr:
! add edges {[v,x1,6],

[v,x2,1]}, {[v,x2,6],
[v,x3,1]},

 …,
 {[v,xr-1,6],[v,xr,1]}.

98

‹#› Algorithms for decision support,
lecture complexity

Selector vertices

! We have k selector vertices s1, …, sk.
! They form a clique

! These will represent the vertices selected for the vertex
cover.

99

‹#›

Connecting the selector vertices to the
widgets

! Each selector vertex is
attached to the first
neighbor widget of each
vertex, i.e. to vertex [v,x1,1]
and to the last neighbor
widget [v,xr,6]

! We form a cycles around
each node v, which are
interrupted by selector
vertices

si

Vertex in example
has degree 2

100

‹#›

A (draft, draft) drawing to give you an idea

101

‹#› Algorithms for decision support,
lecture complexity

Correctness of reduction

! Lemma: G has a vertex cover of size (at most) k, if and
only if H has a Hamiltonian circuit.

! The idea of the proof is that the Hamiltonian circuit has to
contain exactly k circuits around nodes (since there are k
selector vertices. These k nodes form a vertex cover

! The reduction takes polynomial time.
! So, we can conclude that Hamiltonian Circuit is NP-

complete.

102

‹#› Algorithms for decision support,
lecture complexity

Problem with numbers: example

!

103

‹#› Algorithms for decision support,
lecture complexity

Problems with numbers

! Weak NP-complete (NP-complete in the ordinary sense):
! Problem is NP-complete if numbers are given in binary, but

polynomial time solvable when numbers are given in unary
encoding.

! Algorithms are known which solve them in time bounded by a
polynomial in the input length and the magnitude of the largest
number in the given problem instance.

! The problem is solvable in pseudo-polynomial time

! Strong NP-complete (NP-complete in the strong sense)
! Problem is NP-complete if numbers are given in unary encoding
! Problem is NP-complete even when the numerical parameters

are bounded by a polynomial in the input size

104

‹#› Algorithms for decision support,
lecture complexity

Examples

! 3-Partition
! Given: set of positive integers S.
! Question: can we partition S into sets of exactly 3 elements

each, such that each has the same sum (t)?
! 3-Partition is Strong NP-complete.

! t must be the sum of S divided by the number of groups (|S|/
3).

! Starting point for many reductions.

Let P’ be NP-complete in the strong sense. If P’ can be reduced to
P by a pseudo-polynomial reduction, and P in NP, then P is also
NP-complete in the strong sense.

105

‹#› Algorithms for decision support,
lecture complexity

Pitfalls in NP-completeness proofs

! Uncapacitated facility location is NP-complete by a reduction from
ILP

! Uncapacitated facility location
• Data:

– m customers, n possible locations of depot
– Each customer is assigned to one depot
– dij cost of serving customer i by depot j

– Fixed cost for opening depot DC: Fj

• Which depots are opened and which customer is served by which
depot?

• Decision variant: is there a solution with cost at most M

! Given an instance from Uncapacitated Facility Location: formulate
the problem as ILP

106

‹#› Algorithms for decision support,
lecture complexity

Recall: Proving problems NP-complete:
General recipe for a reduction

!

107

‹#› Algorithms for decision support,
lecture complexity

Pitfalls in NP-completeness proofs

!

108

‹#› Algorithms for decision support,
lecture complexity

Pitfalls in NP-completeness proofs

!

109

‹#› Algorithms for decision support,
lecture complexity

Pitfalls in NP-completeness proofs

! Going in the wrong direction
! Non-polynomial reduction

110

‹#› Algorithms for decision support,
lecture complexity

Reducibility

!

111

‹#› Algorithms for decision support,
lecture complexity

SOME ANIMALS FROM THE
COMPLEXITY ZOO

NP-Completeness

112

‹#› Algorithms for decision support,
lecture complexity

Much more complexity classes

! In Theoretical Computer Science, a large number of other
complexity classes have been defined.

! Completeness works in the same way
! Here, we give an informal introduction to a few of the more

important ones.
! There is much, much, much more…

113

‹#› Algorithms for decision support,
lecture complexity

The petting zoo

!https://
complexityzoo.u
waterloo.ca/
Petting_Zoo:

“Once finished, the Petting Zoo
will introduce complexity theory
to newcomers unready for the
terrifying and complex beasts
lurking in the main zoo.”

114

https://complexityzoo.uwaterloo.ca/Petting_Zoo

‹#› Algorithms for decision support,
lecture complexity

115

‹#› Algorithms for decision support,
lecture complexity

Complexity class NP

A decision problem belongs to the class NP if:

! Any solution y leading to `yes' can be encoded in
polynomial space with respect to the size of the input x.

! Checking whether a given solution leads to `yes' can be
done in polynomial time with respect to the size of (x,y).

116

‹#› Algorithms for decision support,
lecture complexity

Complexity class co-NP

A decision problem belongs to the class co-NP if:

! Any solution y leading to `no' can be encoded in
polynomial space with respect to the size of the input x.

! Checking whether a given solution leads to `no' can be
done in polynomial time with respect to the size of (x,y).

117

‹#› Algorithms for decision support,
lecture complexity

coNP

! Complement of a class: switch “yes” and “no”.
! Polynomial time verification of solutions of no instances.
! coNP: complement of problems in NP, e.g.:

NOT-HAMILTONIAN
! Given: Graph G.
! Question: Does G NOT have a Hamiltonian circuit.
UNSATISFIABLE
! Given: Boolean formula in CNF.
! Question: Do all truth assignments to the variable make the

formula false?

! All problems in P are in coNP.
! NP-Complete problems are most probably not in coNP.

118

‹#› Algorithms for decision support,
lecture complexity

A more natural example for NP and coNP

! Integer factorisation:
! Given: integer n, integer m.
! Question: does n have a prime factor less than m?

! In NP - Yes-solution:
! Two numbers i, j with i prime (prime testing is in P – 2002) ,
 ij = n, i < m.

! In coNP - No-solution:
! List of all prime factors of n.
! Verify that these are primes (prime testing is in P – 2002) and at

least m (trivial).
! Verify that when multiplied we have n.

! Problem in NP and coNP.
! Also in P? Maybe not – for cryptography sake we hope not!

119

‹#› Algorithms for decision support,
lecture complexity

PSPACE

! All decision problems solvable in polynomial space.
! Unknown: is P=PSPACE?
! NP included in PSPACE
! PSPACE-complete, e.g.,

! Strategies for generalized Tic-Tac-Toe, strategies for
generalized Reversi,

! Quantified Boolean formula’s (QBF):

() ()423214321 xxxxxxxxx ¬∨∧∨¬∨∃∀∃∀

120

‹#› Algorithms for decision support,
lecture complexity

Goal

! Make sure that you are able to write down a complexity proof
accurately

! To give an NP-completeness proof, you have to be able to select
a problem to reduce from out off a list of given NP-complete
problems.

! For the following problems you have to know the definition:
! Partition
! Subset Sum
! Knapsack
! Clique
! Independent set
! Vertex Cover
! Hamiltonian Path
! Hamiltonian Cycle

121

