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Algorithms for Decision Support

Computational Complexity 

How hard is optimization?
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Outline

! Definitions 
! P vs. NP 
! NP-completeness 

! Why is it relevant? 
! What is it exactly? 
! How is it proven? Reduction 

! More reductions 
! Just a few animals from the complexity zoo 
! Exercises
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Today’s Lecture

! Definitions 
! P vs. NP 
! NP-completeness 

! Why is it relevant? 
! What is it exactly? 
! How is it proven? Reduction 

! 3-SAT 
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How Hard is a Problem? 
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from computer’s aspect
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In order to solve some problem,  
how many resources is needed?
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time, memory, I/O access, information……
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Definition: Problem

!  

PARTITION problem
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Different versions of problems

! Decision problems. 
! Answer is yes or no. 

! Optimization problems. 
! Answer is a number representing an objective value. 

! Construction problems. 
! Answer is some object (set of vertices, function, …). 

! Counting problems. 
! How many objects of some kind exists?

First focus on 
decision problems
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Decision vs optimization problems

! An optimization problem can be turned into a decision 
problem by introducing a threshold value y.  

! In case of a minimization problem M , the decision variant 
becomes:  
! Given an instance of M together with a threshold value y , does 

there exist a feasible solution with outcome value ≤y? 
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Definition: Instance

! A description of the problem together with the parameters 
that describe the input of the problem.  

! Values have been assigned to the parameters.
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Definition: Input size

!  

PARTITION is then 
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Binary encoding problem instances

a

b
c

d e
f

g h

0 1 1 0 0 0 1 0
1 0 1 0 0 0 0 0
1 1 0 1 1 1 0 0
0 0 1 0 1 0 0 0
0 0 1 1 0 0 0 0
0 0 1 0 0 0 1 0
1 0 0 0 0 1 0 1
0 0 0 0 0 0 1 0If there are n vertices,  

what is the input size?
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Binary encoding problem instances

8 2

8 6 9 1

2 6 9

9 3
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If there are n vertices,  
what is the input size?
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Running time of an algorithm

! Suppose we have chosen some problem, and for this 
problem we have defined an algorithm to solve it. 

! We want to have a (rough) estimate of the number of 
elementary computations (additions, multiplications, 
comparisons, etc.) that are required by the algorithm to 
solve the problem in the worst case 

! This expression will depend on the values of the parameters 
input size.
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Definition: Polynomial versus exponential

!  
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Practice

• Recall some GRAPH problem: 
• n vertices 

Suppose there is an algorithm with running 
time O(n3). Is it a polynomial algorithm or an 
exponential one?
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Practice

• Recall the PARTITION problem: 
• n numbers 
• a1, a2, …, an 

Suppose there is an algorithm with running 
time O(amax3). Is it a polynomial algorithm or 
an exponential one?
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Legend: There is a 64-disk Hanoi Tower. 
When the last move of the puzzle is completed,  

the world will end
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When there are n disks and 3 pegs, 
it needs at least 2n-1 moves. 
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When there are n disks and 3 pegs, 
it needs at least 2n-1 moves. 
If one can move a disk within a second,  

completing 64-disk Hanoi Tower needs 585 billion years.
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When there are n disks and 3 pegs, 
it needs at least 2n-1 moves. 
If one can move a disk within a second,  

completing 64-disk Hanoi Tower needs 585 billion years. 
(42 times the current age of the universe)
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Polynomial versus exponential

! In general a polynomial algorithm is preferred over an 
exponential algorithm, because of the scalability (effect of 
increasing the size of the problem on the running time). 

! For many problems polynomial algorithms exist, but for 
many others they have not been found yet. Major question: 
are we to blame when we cannot find a polynomial 
algorithm for some problem? 

! This has been a major topic of research in the area of 
Computational Complexity.
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Complexity class P and NP
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Turing machine

! Wikipedia: 
“A Turing machine is a device that manipulates symbols on a 
strip of tape according to a table of rules. Despite its 
simplicity, a Turing machine can be adapted to simulate the 
logic of any computer algorithm, and is particularly useful in 
explaining the functions of a CPU inside a computer.”
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Lego Turing machine

! https://www.youtube.com/watch?v=FTSAiF9AHN4 
! See also http://www.legoturingmachine.org/

29
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Turing machine: mathematical model

A Turing Machine TM is a mathematical model:  
! which consists of an infinite length tape divided into cells 
 on which input is given.  
! It has a head which reads the input tape.  
! A state register stores the state of the Turing machine.  
! After reading an input symbol, it is replaced with another 

symbol, its internal state is changed, and it moves from one 
cell to the right or left. (this transition also depends on the 
state) 

! If the TM reaches the final state `accept’, the input string is 
accepted, otherwise rejected. 
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Complexity class P

! A decision problem belongs to the class P if there is a 
solution algorithm with a running time that is polynomial in 
the input size 
! In practice: encoding and corresponding concrete problem is 

assumed very implicitly. 

! Alternative definition of P 
Class of decision problems, for which there exists a 
Deterministic Turing Machine that can solve any 
instance in polynomial time.
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Complexity class NP

A decision problem belongs to the class NP if: 

! Any solution y leading to `yes' can be encoded in  
polynomial space with respect to the size of the input x. 

! Checking whether a given solution leads to `yes' can be 
done in polynomial time with respect to the size of (x,y).
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Complexity classes P and NP

! Were originally and formally defined in terms of Turing 
machines 

Alternative definition of NP 
! Class of decision problems, for which there exists a Non-

Deterministic Turing Machine that can solve any yes 
instance in polynomial time. 
! The machine guesses a yes solution and then verifies that it is 

a yes solution
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Never tell to an expert in Computational Complexity that you 
think that NP stands for Non Polynomial 

NP stands for Non-deterministic Polynomial
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Many problems are in NP

! Hamiltonian Path,  
! Maximum Independent Set,  
! Vertex Cover, 
! Satisfiability,  
! Integer Linear Programming  

! Easy to show for 0/1 programming,  
! non-trivial in general
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Solution methods for linear programming

! Simplex method 
! Slower than polynomial 
! Practical 

! Ellipsoid method 
! Polynomial (Khachian, 1979) 
! Not practical 

! Interior points methods 
! Polynomial (Karmakar, 1984) 
! Outperforms Simplex for very large instances

PLP∈
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! P vs NP  
$ 1 million Millenium Prize problem 
http://www.claymath.org/millennium/P_vs_NP

NP

P
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Reducibility

! Problem A is polynomial time reducible to problem B (or: 
A ≤P B ), if there exists a polynomial time computable 
function f from the instance set of I(A) of A  to the instance 
set I(B) of B 
!  x ∈ I(A) is a yes-instance for A , if and only if, f(x) ∈ I(B) is a 

yes-instance for B.
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Reducibility (2)

! Lemma:  If A ≤P B then: if B ∈ P, then A ∈ P.  

 Proof-idea:      
! Let x be an instance of problem A. 
! Determine f(x) 
! run an algorithm for B on f(x).
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NP-complete

! There are certain problems in NP whose individual 
complexity is related to that of the entire class 

! If a polynomial time algorithm exists for any of the NP-
complete problems, all problems in NP would be 
polynomial time solvable. 

NP

P NP-complete
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Definition: NP-hard and NP-complete

A problem A is NP-hard, if: 
1. For every B ∈ NP: B ≤P A. 

A problem A is NP-complete, if: 
1. A ∈ NP. 
2. For every B ∈ NP: B ≤P A. 

NP-hardness/NP-completeness also used as term  
! for problems that are not a decision problem, e.g. the 

optimization version of an NP-complete decision problem 
! for problems that are ‘harder than NP’.
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Decision vs optimization problems

! An optimization problem can be turned into a decision problem 
by introducing a threshold value y.  

! In case of a minimization problem M , the decision variant 
becomes:  
! Given an instance of M together with a threshold value y , does 

there exist a feasible solution with outcome value ≤y?  

! If optimization problem M can be solved in polynomial time, 
then its decision variant can be decided in polynomial time. 

! If an optimization problem H has an NP-complete decision 
version L, then H is called NP-hard.
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What does it mean to be 
NP-Complete?
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What does it mean to be 
NP-Complete?

! Evidence that it is (very probably) hard to find an algorithm 
that solves the problem. 
! Always. 
! Exactly. 
! In polynomial time. 

! For an NP-hard optimization problem:  

If you want to find the optimal solution,  
we cannot guarantee anything better than  

checking all possibilities

NP

P NP-complete
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What does it mean to be 
NP-Complete?

! Suppose there is a polynomial algorithm for some NP-
complete problem X. 

! In other words, X is NP-complete and X ∈ P. 
! Then for every A ∈ NP: A ≤P X. 
! So for every A ∈ NP: A ∈ P 
! All NP problems can be solved in polynomial time
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CNF-Satisfiability: SAT

! Input: Expression over Boolean variables in conjunctive 
normal form (CNF). 

! “and” of clauses;  
! each clause “or” of variables or negations (xi or ¬(xj)) 

! Question: Is the expression satisfiable?  
I.e., can we give each variable a value (true or false) such 
that the expression becomes true?

not xj
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Cook-Levin theorem

Theorem: CNF-Satisfiability is NP-complete. 

! Most well known is Cook’s proof, using Turing machine 
characterization of NP. 

! It design a Turing machine that verifies yes-instances of SAT
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Proving problems NP-complete

Lemma (key in the proof) 
1. Let A ≤P B and let A be NP-complete. Then B is NP-

hard. 

2. Let A ≤P B and let A be NP-complete, and B ∈ NP. 
Then B is NP-complete.
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Proving problems NP-complete: General 
recipe for a reduction

!  

49
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Reduction: first example

50

Theorem: SUBSET-SUM is NP-complete
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Reduction: first example

!  The SUBSET-SUM problem 

SUBSET-SUM

PARTITION problem

PARTITION problem is    
NP-complete
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Reduction: first example

!  The SUBSET-SUM problem 

SUBSET-SUM

PARTITION problem

PARTITION problem is    
NP-complete
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Proof SUBSET-SUM is NP-complete

!  

PARTITION 
PARTITION 

SUBSET-SUM is in NP: 
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Recap

55

! Class P: set of decision problems that can be solved in 
polynomial time 

! Class NP: set of decision problems whose yes solution can 
be verified in polynomial time 

! Polynomial time reduction ≤P: X ≤P Y implies that Y is at 
least as hard as X! That is, Y cannot be easier than X.  

! Problem A is NP-hard if every problem in NP can be 
reduced to A. (That is, for all B ∈ NP, B ≤P A.) 

! Problem A is NP-complete if it is in NP and it is NP-hard. 
That is, 1) any yes solution of A can be verified in 
polynomial time and 2) for all B ∈ NP, B ≤P A. 
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Theorem: 3-SAT is NP-complete
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3-SAT is NP-complete

! A 3-SAT is a special case of CNF-SAT where each clause 
has exactly three literals. 
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3-SAT is NP-complete

! A 3-SAT is a special case of CNF-SAT where each clause 
has exactly three literals.  

! Theorem: 3-SAT is NP-complete 
Proof: 
1. Membership in NP (easy to check). 
2. Reduction (next slide). 

! 3-SAT is important starting problem for many NP-
completeness proofs.
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Theorem: 3-SAT is NP-complete

59

   

! Lemma: CNF-SAT ≤p 3-SAT 
! Clauses with less than 3 literals: 

! Replace (x1 v x2) by (x1 v x2 v x1) (or (x1 v x2 v x2) ) 
! Replace (x1) by (x1 v x1 v x1) 

! Clauses with more than 3 literals: 
! For (x1 v x2 v x3 v … v xn), add new variable y and 

replace the clause by (x1 v x2 v y) ^ ( -y v x3 v … v 
xn), repeating this procedure. 
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Clique

60
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Clique

! Clique: set of vertices W ⊆ V, such that for all v,w ∈ W: 
{v,w} ∈ E.
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Clique

! Clique: set of vertices W ⊆ V, such that for all v,w ∈ W: 
{v,w} ∈ E. 

CLIQUE (decision problem) 
! Given: graph G=(V,E), integer k.
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Clique

! Clique: set of vertices W ⊆ V, such that for all v,w ∈ W: 
{v,w} ∈ E. 

CLIQUE (decision problem) 
! Given: graph G=(V,E), integer k. 
! Question: does G have a clique with at          k vertices?

63

least 
most

Which one makes more sense?
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Clique

! Clique: set of vertices W ⊆ V, such that for all v,w ∈ W: 
{v,w} ∈ E. 

CLIQUE (decision problem) 
! Given: graph G=(V,E), integer k. 
! Question: does G have a clique with at least k vertices?
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Clique is NP-complete

! CLIQUE is in NP. 
! Graph (V,E) with n nodes can be encoded in O(n2 ) bits; k can 

be encoded in log(n) bits   
! A solution is a set of nodes S, can be encoded in O(n) bits 
! Checking if S is a clique of size at least k , takes O(n2) 

! Reduction from 3-SAT 
! Let x be an instance from 3-SAT 
! Define instance f(x) from CLIQUE 
! Make clear that f can be performed in polynomial time 
! Show x is yes-instance iff f(x) is yes-instance  
! All detailed in next slides
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!  

…

 

 

CLIQUE:

66

x1 -x2 x3

x1

-x3
x2

Reduction from 3-SAT to CLIQUE
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Correctness

!  

67

There is a satisfying truth assignment, if and only if, f(x) has  
a clique with m vertices
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Independent set
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Independent set

! Independent set: set of vertices W ⊆ V, such that for all v,w 
∈ W: {v,w} ∉ E. 

! Independent set problem:INDEPENDENT-SET (decision problem):
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Independent set

! Independent set: set of vertices W ⊆ V, such that for all v,w 
∈ W: {v,w} ∉ E. 

! Independent set problem: 
! Given: graph G, integer k.

INDEPENDENT-SET (decision problem):
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Independent set

! Independent set: set of vertices W ⊆ V, such that for all v,w 
∈ W: {v,w} ∉ E. 

! Independent set problem: 
! Given: graph G, integer k. 
! Question: Does G have an independent set of size at least k?

INDEPENDENT-SET (decision problem):
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Independent set

! Independent set: set of vertices W ⊆ V, such that for all v,w 
∈ W: {v,w} ∉ E. 

! Independent set problem: 
! Given: graph G, integer k. 
! Question: Does G have an independent set of size at least k? 

! Independent set is NP-complete.

INDEPENDENT-SET (decision problem):

INDEPENDENT-SET is NP-complete
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INDEPENDENT-SET is NP-complete

! In NP. 
! Reduction: transform from CLIQUE. 
! W is a clique in G, if and only if, W is an independent set in 

the complement of G (there is an edge in Gc iff. there is no 
edge in G).
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How do I write down this proof?

Theorem: INDEPENDENT-SET is NP-complete. 
Proof:  
! The problem belongs to NP:  

! Solutions are subsets of vertices of the input graph; polynomial 
size 

! We can check in polynomial time for a given subset of vertices 
that it is an independent set and that its size is at least k. 

! We use a reduction from CLIQUE.  
! Let (G,k) be an instance of the clique problem.  
! Transform this to instance (Gc,k) of the independent set problem 

with Gc the complement of G.  
! As G has a clique with k vertices, if and only if, Gc has an 

independent set with k vertices, this is a correct transformation.  
! The transformation can clearly be carried out in polynomial time. 
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Writing an NP-Completeness proof

! Proof starts with showing that problem belongs to NP. 

! Give/explain the encoding of a solution leading to yes,  

! show/state that it is polynomial in the size of instance and 

! explain how (or state that, if trivial) a yes-solution can verified in 
polynomial time w.r.t. the length of instance and solution. 

! State which known NP-complete problem you reduce 
from. 

! Explain the transformation (also called reduction). 
! Give the proof: instance to original problem is Yes-

instance, if and only if, transformed instance is Yes-
instance for the known NP-complete problem. 

! Remember: you need to proof this in two directions. 
! Phrase (or prove if not trivial): transformation can be 

carried out in polynomial time, hence problem is NP-
complete. 
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3-Colouring Problem

!3-COLOURING 
!Given: Graph 

G=(V,E) 
!Question: Can we 

colour the vertices 
with 3 colours, such 
that for all edges 
{v,w} in E, the 
colour of v differs 
from the colour of w. 

!3-colouring is NP-
Complete.

1 2

3

21

3

2
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Proof: 3-COLOURING is NP-Complete

In NP:  
! Encoding a solution: colour for 

each vertex (O(n)) 
! Checking if a solution is a yes 

instance: O(n2). 

Reduction from 3-SAT: 
! Given an instance from 3-SAT

  
! We build a graph in 3 steps: 

1. Take a clique with 3 
vertices True, False, C. 

2. Take two adjacent vertices 
for each variable x.

T F

C

x1   x2  

We name the 
colours: 
T, F, C
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NP-Completeness of 3-Colouring

3. For each clause 
{l1,l2,l3}, take the 
following gadget:

T

C

l1 l2

l3
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!  

79

NP-Completeness of 3-Colouring
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THREE APPROACHES TO 
PROVE NP-COMPLETENESS

80
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Approaches to proving NP-Hardness

Three approaches to prove NP-hardness: 
1) Restriction 
2) Local replacement 
3) Component Design
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Approach 1: Restriction

! Take the problem.  
! Add a restriction to the set of instances. 

Define a special case. 
! If this restricted problem is a known NP-complete problem, 

then your original problem is also NP-complete.
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Vertex Cover

! Set of vertices W ⊆ V with for all {x,y} ∈ E: x∈W or y∈W. 
! Vertex Cover problem: 

! Given graph G, find vertex cover of minimum size. 
! Decision version VERTEX-COVER: 

! Given graph G, number k 
! Find a vertex cover with size at most k 

! Vertex Cover  is NP-complete

= vertex cover
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Restriction: Weighted Vertex Cover

! Weighted vertex cover 
! Given: Graph G=(V,E), for each vertex v ∈ V, a positive integer 

weight w(v), integer k. 
! Question: Does G have a vertex cover of total weight at most k? 

! NP-Complete. 
! In NP. 
! NP-Hardness: reduction from Vertex Cover to Weighted Vertex 

Cover (set all weights to 1). 

! This is the easiest form of reduction. 
! Vertex cover is NP-complete in exercises
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Restriction: Subset sum

!  

85

PARTITION problem:

SUBSET-SUM problem:

SUBSET-SUM is a generalization of PARTITION (or in other  
words, PARTITION is a special case of SUBSET-SUM), and  
hence SUBSET-SUM is NP-complete as well.     
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Approach 2: Local replacement

! Form an instance of our problem by 
! Taking an instance of a known NP-Complete problem. 
! Making some change “everywhere”. 
! Such that we get an equivalent instance, but now of the 

problem we want to show NP-complete.
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Examples of Local Replacement

! We saw: 
! 3-SAT (from SAT). 
! CLIQUE (from 3-SAT). 
! INDEPENDENT-SET (from CLIQUE). 

! We will see: 
! Travelling Salesman Problem (from Hamiltonian Circuit). 
! Planar 3-Colouring (from 3-Colouring).
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! Given: Graph G 
! Question: does G have a 

simple cycle that contains all 
vertices?

88

Hamiltonian Circuit
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NP-Completeness of Travelling Salesman 
Problem by local replacement

! In NP. 
! Reduction from HAMILTONIAN-CIRCUIT: 

! Take city for each vertex. 
! Take cost(i,j) = 1 if {i,j} ∉ E. 
! Take cost(i,j) = 0, if {i,j} ∈ E. 
! G has HC, if and only if, there is a TSP-tour of length 0. 

Remark 
! TSP variant with triangle inequality: 

! Use weights 2 and 1. 
! G has HC, if and only if, there is a TSP-tour of length n.
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NP-Completeness of Planar 3-Colouring  
by Local Replacement

! Planar 3-COLOURING 
! Given: Planar graph G=(V,E). 
!  A planar graph is a graph that can be embedded in 

the plane, i.e., it can be drawn on the plane in such a way 
that its edges intersect only at their endpoints. 

! Question: Can we colour the vertices of G with 3 colours, such 
that adjacent vertices have different colours? 

! Plan: reduction from 3-COLOURING. 
! Take arbitrary graph G. 
! Draw G on the plane. 
! So, we possibly get some crossings. 
! Replace the crossings by something clever.
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Clever reduction

! Garey and Johnson (1979) found the following:

c d

a

b

c

a

d
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Property of the gadget

! If a and b have the same colour, we cannot colour the 
gadget with 3 colours. 

! If c and d have the same colour, we cannot colour the 
gadget with 3 colours. 

! Otherwise, we can. 

! ... Some additional details (basically, repeat the step) when 
an edge has more than one crossing …
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Approach 3: Component design

! Component design (gadgeteering). 

! Build (often complicated) parts of an instance with certain 
properties. 
! Often we call these parts components, gadgets, or widgets. 

! Glue them together in such a way that the proof works. 

! Examples:  
! 3-COLORING (from 3-SAT). 
! Hamiltonian Circuit (from Vertex Cover).
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Hamiltonian circuit

! Given: Graph G 
! Question: does G have a 

simple cycle that contains all 
vertices?
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NP-Completeness of  
Hamiltonian Circuit

! Hamiltonian Circuit is in NP. 
! Vertex Cover ≤P Hamiltonian Circuit: complicated proof 

(component design) 
! Given a graph G and an integer k, we construct a graph H, such 

that H has a Hamilton Circuit, if and only if G has a Vertex 
Cover C of size k. 

! Widgets (one for each edge of graph G) 
! Selector vertices: k.
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Widget

! For each edge {u,v}  
we have a widget Wuv 

! Details for interested 
reader

[u,v,1]

[u,v,6] [v,u,6]

[v,u,1]
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Only possible ways to visit all vertices in widget 
• One visit to the widget from the u side 
• One visit from the v side 
• Two visits 
• You never switch to another side
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Connecting the widgets

! For each vertex v we 
connect the widgets of all its 
edges {v,w}.  

! Suppose v has neighbors x1, 
…, xr:  
! add edges {[v,x1,6],

[v,x2,1]}, {[v,x2,6],
[v,x3,1]},  

 …,  
 {[v,xr-1,6],[v,xr,1]}.

98



‹#› Algorithms for decision support, 
lecture complexity

Selector vertices

! We have k selector vertices s1, …, sk. 
!  They form a clique 

! These will represent the vertices selected for the vertex 
cover.
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Connecting the selector vertices to the 
widgets

! Each selector vertex is 
attached to the first 
neighbor widget of each 
vertex, i.e. to vertex [v,x1,1] 
and to the last neighbor 
widget [v,xr,6] 

! We form a cycles around 
each node v, which are 
interrupted by selector 
vertices

si

Vertex in example 
has degree 2
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A (draft, draft) drawing to give you an idea
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Correctness of reduction

! Lemma: G has a vertex cover of size (at most) k, if and 
only if H has a Hamiltonian circuit. 

! The idea of the proof is that the Hamiltonian circuit has to 
contain exactly k circuits around nodes (since there are k 
selector vertices. These k nodes form a vertex cover 

! The reduction takes polynomial time. 
! So, we can conclude that Hamiltonian Circuit is NP-

complete.
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Problem with numbers: example

!  
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Problems with numbers

! Weak NP-complete (NP-complete in the ordinary sense): 
! Problem is NP-complete if numbers are given in binary, but 

polynomial time solvable when numbers are given in unary 
encoding. 

! Algorithms are known which solve them in time bounded by a 
polynomial in the input length and the magnitude of the largest 
number in the given problem instance. 

! The problem is solvable in pseudo-polynomial time 

! Strong NP-complete (NP-complete in the strong sense) 
! Problem is NP-complete if numbers are given in unary encoding 
! Problem is NP-complete even when the numerical parameters 

are bounded by a polynomial in the input size
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Examples

! 3-Partition 
! Given: set of positive integers S. 
! Question: can we partition S into sets of exactly 3 elements 

each, such that each has the same sum (t)? 
! 3-Partition is Strong NP-complete. 

! t must be the sum of S divided by the number of groups (|S|/
3). 

! Starting point for many reductions.

Let P’ be NP-complete in the strong sense. If P’ can be reduced to 
P by a pseudo-polynomial reduction, and P in NP, then P is also 
NP-complete in the strong sense.
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Pitfalls in NP-completeness proofs

! Uncapacitated facility location is NP-complete by a reduction from 
ILP 

! Uncapacitated facility location 
• Data:  

– m customers, n possible locations of depot 
– Each customer is assigned to one depot 
– dij cost of serving customer i by depot j 

– Fixed cost for opening depot DC: Fj 

• Which depots are opened and which customer is served by which 
depot?  

• Decision variant: is there a solution with cost at most M 

! Given an instance from Uncapacitated Facility Location: formulate 
the problem as ILP
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Recall: Proving problems NP-complete: 
General recipe for a reduction

!  
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Pitfalls in NP-completeness proofs

!  
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Pitfalls in NP-completeness proofs

!  
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Pitfalls in NP-completeness proofs

! Going in the wrong direction 
! Non-polynomial reduction
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Reducibility

!  
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SOME ANIMALS FROM THE 
COMPLEXITY ZOO

NP-Completeness
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Much more complexity classes

! In Theoretical Computer Science, a large number of other 
complexity classes have been defined. 

! Completeness works in the same way 
! Here, we give an informal introduction to a few of the more 

important ones. 
! There is much, much, much more…
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The petting zoo

!https://
complexityzoo.u
waterloo.ca/
Petting_Zoo: 

“Once finished, the Petting Zoo 
will introduce complexity theory 
to newcomers unready for the 
terrifying and complex beasts 
lurking in the main zoo.”
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Complexity class NP

A decision problem belongs to the class NP if: 

! Any solution y leading to `yes' can be encoded in  
polynomial space with respect to the size of the input x. 

! Checking whether a given solution leads to `yes' can be 
done in polynomial time with respect to the size of (x,y).
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Complexity class co-NP

A decision problem belongs to the class co-NP if: 

! Any solution y leading to `no' can be encoded in  
polynomial space with respect to the size of the input x. 

! Checking whether a given solution leads to `no' can be 
done in polynomial time with respect to the size of (x,y).
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coNP

! Complement of a class: switch “yes” and “no”. 
! Polynomial time verification of solutions of no instances. 
! coNP: complement of problems in NP, e.g.: 

NOT-HAMILTONIAN 
! Given: Graph G. 
! Question: Does G NOT have a Hamiltonian circuit. 
UNSATISFIABLE 
! Given: Boolean formula in CNF. 
! Question: Do all truth assignments to the variable make the 

formula false? 

! All problems in P are in coNP. 
! NP-Complete problems are most probably not in coNP.
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A more natural example for NP and coNP

! Integer factorisation: 
! Given: integer n, integer m. 
! Question: does n have a prime factor less than m? 

! In NP - Yes-solution: 
! Two numbers i, j with i prime (prime testing is in P – 2002) ,  
 ij = n, i < m. 

! In coNP - No-solution: 
! List of all prime factors of n. 
! Verify that these are primes (prime testing is in P – 2002) and at 

least m (trivial). 
! Verify that when multiplied we have n. 

! Problem in NP and coNP. 
! Also in P? Maybe not – for cryptography sake we hope not!
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PSPACE

! All decision problems solvable in polynomial space. 
! Unknown: is P=PSPACE? 
! NP included in PSPACE 
! PSPACE-complete, e.g.,  

! Strategies for generalized Tic-Tac-Toe, strategies for 
generalized Reversi, 

! Quantified Boolean formula’s (QBF):

( ) ( )423214321 xxxxxxxxx ¬∨∧∨¬∨∃∀∃∀
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Goal

! Make sure that you are able to write down a complexity proof 
accurately 

! To give an NP-completeness proof, you have to be able to select 
a problem to reduce from out off a list of given NP-complete 
problems. 

! For the following problems you have to know the definition: 
! Partition 
! Subset Sum 
! Knapsack 
! Clique 
! Independent set 
! Vertex Cover 
! Hamiltonian Path 
! Hamiltonian Cycle
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