

From Facebook

Optimal tour along 24727 pubs in the UK

Road distance (by google maps)

see also

http://www.math.uwaterloo.ca/tsp/pubs/index.html

(part of TSP homepage http://www.math.uwaterloo.ca/tsp/)

Applies branch-and-cut and heuristic based on Lin-Kernighan

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

A&N: TSP

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

The Landscape of Algorithms example: Travelling Salesman Problem

Algorithms for Decision Support

Solution quality Computation time	Optimum	Bound on quality	Good solution, no quality guarantee
Polynomial	Polynomial solution algorithms	Approximation algorithms	Construction heuristics
Super polynomial and/or no guarantee	 Exact algorithms: Tree search Dynamic programming Integer linear programming 	Hybrid algorithms • Column generation without complete branch-and- price	Meta heuristics: • Local search • Genetic algorithms

Contents

- TSP and its applications
- Construction heuristics and approximation algorithms
- Local search
- Exact algorithms

TSP is the most frequently used benchmark for new algorithms

Universiteit Utrecht

Travelling Salesman Problem

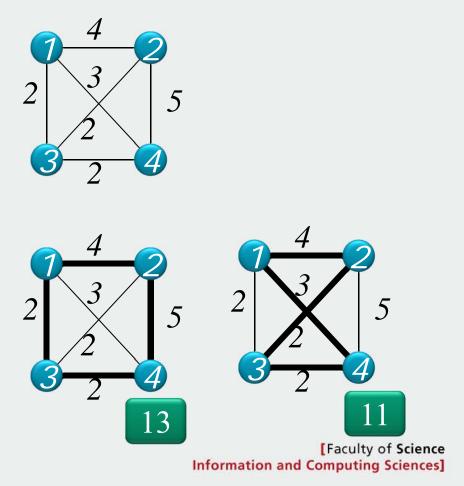
PROBLEM DEFINITION APPLICATIONS

Universiteit Utrecht

Travelling Salesman Problem

Instance: *n* vertices (cities), distance between every pair of vertices.

Question: Find shortest (simple) cycle that visits every city exactly once?



Applications

- Vehicle routing
- Routing school buses
- Pickup and delivery problems
- Robotics

Scheduling of a machine to drill holes in a circuit board or other object (chip manufacturing)

Universiteit Utrecht

Assumptions / Problem Variants

Complete graph vs. underlying graph structure.

- Complete graph: a given distance between all pairs of cities.
- Directed edges vs. undirected arcs.
 - Undirected: symmetric: w(u, v) = w(v, u).
 - Directed: not symmetric.
 - Asymmetric examples: one-way streets, prices of flight tickets.

Lengths:

Universiteit Utrecht

- Lengths are non-negative (or positive).
- Triangle inequality: for all x, y, z:

 $w(x,y) + w(y,z) \ge w(x,z)$

Different assumptions lead to different problems.

NP-complete

Instance: cities, distances, k.

Question: is there a TSP-tour of length at most k?

- Is an NP-complete problem.
- Has been shown by reduction from Hamiltonian Circuit problem.

Universiteit Utrecht

Solut qua Computati time	lity	Bound on quality	Good solution, no quality guarantee
Polynomia	Polynomial solution algorithms	Approximation algorithms	Construction heuristics
Super polynomia and/or no guarantee	Integer linear	 Hybrid algorithms Column generation without complete branch-and- price 	 Meta heuristics: Local search Genetic algorithms

Approximation algorithms

- Have performance guarantee, also called approximation ratio.
 - We consider a *minimization* problem P.
 - Let $Z_A(x)$ be the value found by algorithm A for instance x
 - Let *Zopt* (*x*)be the optimal value for instance *x*
 - Clearly $Z_A(x) \ge Z_{opt}(x)$

Then A is an approximation algorithm with worst case performance guarantee c (c>1) if for each instance x of P we have

$$Z_A(x) \le cZ_{opt}(x)$$
 i.e. $\frac{Z_A(x)}{Z_{opt}(x)} \le c$

[Faculty of Science Information and Computing Sciences]

Approximation algorithms: now maximization

We consider a *maximization* problem P.

Let $Z_A(x)$ be the value found by algorithm A for instance x

Let Zopt(x) be the optimal value for instance x

Clearly $Z_A(x) \leq Z_{opt}(x)$

Then A is an approximation algorithm with worst case performance guarantee c (c<1) if for each instance x of P we have

$$Z_A(x) \ge cZ_{opt}(x)$$
 i.e. $\frac{Z_A(x)}{Z_{opt}(x)} \ge c$

Universiteit Utrecht

1st Construction Heuristic: Nearest neighbor

Start at some vertex s; v=s;

While not all vertices visited

Select closest unvisited neighbor w of v

Go from v to w; v=w

Go from v to s.

Universiteit Utrecht

Minimum spanning tree

Algorithm of Kruskal:

- Builds a tree T step by step
- In each step it adds the edge with minimal cost in the graph which does not cause T to be a cycle

Algorithm of Prim/Dijkstra

- Builds a tree T step by step
- In each step it adds the edge minimal cost connecting a vertex from T with a vertex outside T

Universiteit Utrecht

2nd Construction Heuristic: Double tree heuristic with ratio 2

Assume symmetric TSP

- Find a minimum spanning tree
- Make a tour as follows:
 - Walk along all vertices of the MST (you visits every edge twice)
 - Apply shortcuts

If triangle inequality, we have approximation ratio 2:

OPT ≥ MST

Universiteit Utrecht

- 2 MST \geq Result
- Result \leq 2MST \leq 20PT
- Result/OPT ≤ 2

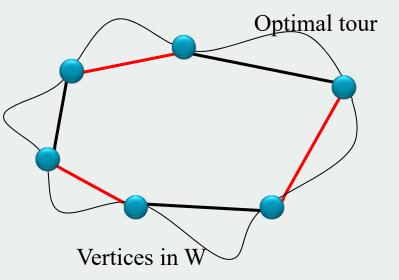
3rd Construction Heuristic: Christofides

Assume symmetric TSP

- 1. Make a Minimum Spanning Tree T.
- 2. Set W = { $v \mid v$ has odd degree in tree T}. |W| must be even, since for any graph $\sum_{v \in V} degree(v) = 2|E|$
- 3. Compute a minimum weight matching M in the graph G[W].
- 4. Look at the graph T+M.
 - Note that T+M is Eulerian (all vertices haven even degree)!
- Compute a Euler tour (tour that visits every edge exactly once) C' in T+M.
- 6. Add shortcuts to C' to get a TSP-tour.

Triangle inequality: Ratio 1.5

Total length edges in MST T: at most OPT Red matching+ black matching \leq OPT Total length edges in min weight matching M: at most OPT/2. Euler circuit C' in (T+M) has length at most 3/2 OPT. By Δ -inequality, result after shortcut at most 3/2 OPT.



4th Construction Heuristic: Closest insertion heuristic

- Build tour by starting with one vertex and inserting vertices one by one.
- Always insert vertex that is closest to a vertex already in tour.



[Faculty of Science Information and Computing Sciences]

Many variants

- **Closest insertion:** insert vertex closest to vertex in the tour.
- **Farthest insertion**: insert vertex whose minimum distance to a node on the cycle is maximum.
- **Cheapest insertion:** insert the node that can be inserted with minimum increase in cost.
 - Computationally expensive.
- **Random insertion:** randomly select a vertex.
- Each time: insert vertex at position that gives minimum increase of tour length.

Universiteit Utrecht

5th Construction Heuristic: Cycle merging heuristic

- Start with n cycles of length 0.
- Repeat:
 - Find two cycles with minimum distance.
 - Merge them into one cycle.
- Until 1 cycle with *n* vertices.

Universiteit Utrecht

6th Construction Heuristic: Savings heuristic

- Cycle merging heuristic where we merge tours that provide the largest "savings":
 - Saving for a merge: merge with the smallest additional cost / largest savings.
- Quite similar to Clark and Wright savings heuristic for vehicle routing

Universiteit Utrecht

Some test results

- In an overview paper, Junger et al. report on tests on set of instances (105 – 2392 vertices; city-generated TSP benchmarks)
 - Nearest neighbor:
 - Closest insertion:
 - Farthest insertion:
 - Cheapest insertion:
 - Random Insertion:
 - Min spanning trees:
 - Christofides
 - Savings method:

What is the average distance to the optimum

Universiteit Utrecht

Some test results

- In an overview paper, Junger et al. report on tests on set of instances (105 – 2392 vertices; city-generated TSP benchmarks)
 - Nearest neighbor: 24% away from optimal in average
 - Closest insertion: 20%;
 - Farthest insertion: 10%;
 - Cheapest insertion: 17%;
 - Random Insertion: 11%;
 - Min spanning trees: 38%;
 - Christofides: 19% with improvement 11% / 10%;
 - Savings method: 10% (and fast).

If triangle inequality does not hold: negative result

Theorem: If $P \neq NP$, then there is no polynomial time algorithm for TSP without triangle inequality that approximates within a ratio c > 0, for any constant c.

Proof:

- Suppose there is a polynomial time approximation algorithm *A* with ratio *c*.
- We build a polynomial time algorithm for Hamiltonian Circuit (giving a contradiction with P≠NP):
 - Take instance G=(V,E) of Hamiltonian Circuit.
 - Build instance of TSP:
 - A city for each $v \in V$.
 - If $(v, w) \in E$, then d(v, w) = 1, otherwise d(v, w) = nc+1.
 - Now run A on this instance
 - A finds a TSP-tour with distance at most nc, if and only if, G has a Hamiltonian circuit.

Universiteit Utrecht

	lution uality ation	Optimum	Bound on quality	Good solution, no quality guarantee
Polynom	nial	Polynomial solution algorithms	Approximation algorithms	Construction heuristics
Super polynom and/or guarant	no	 Exact algorithms: Tree search Dynamic programming Integer linear programming 	Hybrid algorithms • Column generation without complete branch-and- price	Meta heuristics: • Local search • Genetic algorithms

Improvement heuristics

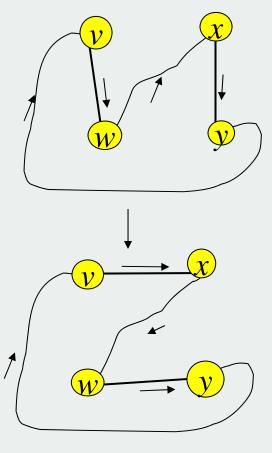
- Start with a tour (e.g., from construction heuristic) and improve it stepwise
- Improvement heuristics can be used in different local search methods.
 - Iterated local search
 - Variable neighborhood search
 - Simulated annealing
 - Tabu search
 - Genetic algorithms

2-opt

Take two edges (v,w) and (x,y) and replace them by (v,x) and (w,y) if this improves the tour.

Costly: part of tour should be turned around.

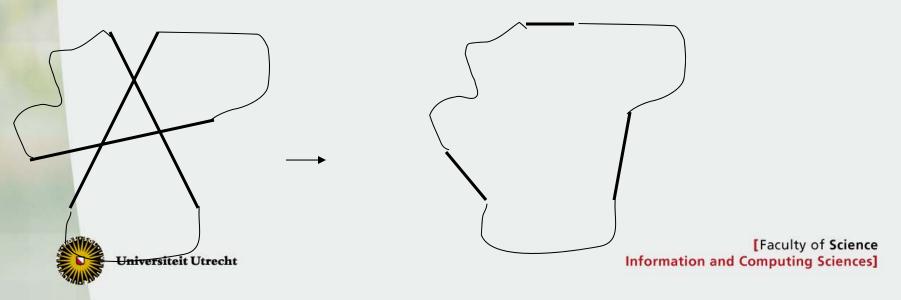
In \mathbb{R}^2 : get rid of crossings of tour.



3-opt

Choose three edges from tour

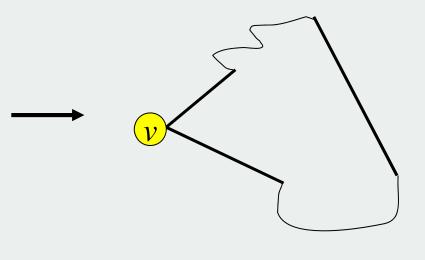
- Remove them, and combine the three parts to a tour in the cheapest way to link them
 - *k*-opt: generalizes 3-opt



Node insertion: 2.5-opt

Node insertion:

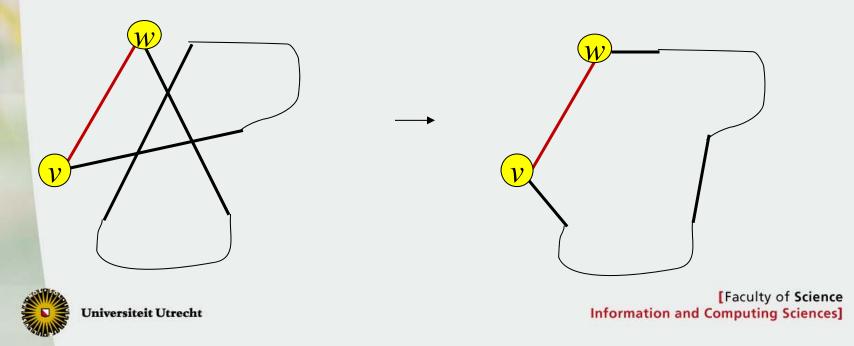
- Take a vertex v and put it in a different spot in the tour.
- This is a special case of 3-opt, called 2.5-opt:
 - two of the three removed edges are consecutive edges in the tour, i.e. they are connected to the same vertex



[Faculty of Science Information and Computing Sciences]

Edge insertion

- Edge insertion:
 - Take two successive vertices v, w and put these as edge somewhere else in the tour.
- This is also a special case of 3-opt:
 - two of the three removed edges are almost consecutive edges in the tour, i.e. they are connected to the same edge



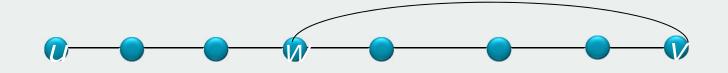
Lin-Kernighan

- Idea: modifications that are bad can lead to something good
- Tour modification:
 - Collection of simple changes
 - Some increase length
 - Total set of changes decreases length

Universiteit Utrecht

Lin-Kernighan

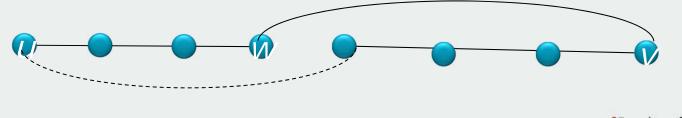
- 1. Break the tour
- 2. Add a new edge



3. Break the subtour

Universiteit Utrecht

4. If connecting to a complete tour gives an improvement, stop. Otherwise repeat (go to Step 1).



Iterated Lin-Kernighan

Construct a start tour.

Repeat the following *r* times:

Improve the tour with Lin-Kernighan until not possible.

Do a random 4-opt move that does not increase the length with more than 10 percent.

Report the best tour seen.

Cost much time. Gives excellent results!

Universiteit Utrecht

Solution quality Computation time	Optimum	Bound on quality	Good solution, no quality guarantee
Polynomial	Polynomial solution algorithms	Approximation algorithms	Construction heuristics
Super polynomial and/or no guarantee	 Exact algorithms: Tree search Dynamic programming Integer linear programming 	Hybrid algorithms • Column generation without complete branch-and- price	 Meta heuristics: Local search Genetic algorithms

Exact algorithms

Dynamic Programming: Held Karp

- Branch-and cut:
 - World-record exact TSP solving
 - CONCORDE: http://www.math.uwaterloo.ca/tsp/concorde/index.html

Universiteit Utrecht

The slides for this course were written by: Marjan van den Akker

> Peter de Waal Han Hoogeveen Hans Bodlaender Johan van Rooij Alison Liu [Faculty of Science

> Information and Computing Sciences]

