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From Facebook
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Optimal tour along 24727 pubs in the UK 

 Road distance (by google maps)
 see also

http://www.math.uwaterloo.ca/tsp/pubs/index.html
(part of TSP homepage http://www.math.uwaterloo.ca/tsp/ )
 Applies branch-and-cut and heuristic based on Lin-

Kernighan

A&N: TSP
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The Landscape of Algorithms
example: Travelling Salesman 

Problem

Algorithms for Decision Support
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Contents

 TSP and its applications
 Construction heuristics and approximation algorithms
 Local search
 Exact algorithms

 TSP is the most frequently used benchmark for new 
algorithms
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PROBLEM DEFINITION
APPLICATIONS

Travelling Salesman Problem
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Travelling Salesman Problem

 Instance: n vertices 
(cities), distance 
between every pair of 
vertices.

 Question: Find 
shortest (simple) cycle 
that visits every city 
exactly once?
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Applications

 Vehicle routing
 Routing school buses
 Pickup and delivery problems
 Robotics
 Scheduling of a machine to drill holes in a circuit board or 

other object (chip manufacturing)
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Assumptions / Problem Variants

 Complete graph vs. underlying graph structure.
 Complete graph: a given distance between all pairs of cities.

 Directed edges vs. undirected arcs.
 Undirected: symmetric: w(u,v) = w(v,u).
 Directed: not symmetric.
 Asymmetric examples: one-way streets, prices of flight 

tickets.

 Lengths:
 Lengths are non-negative (or positive).
 Triangle inequality: for all x, y, z:

w(x,y) + w(y,z)  w(x,z)

 Different assumptions lead to different problems.
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NP-complete

 Instance: cities, distances, k.
 Question: is there a TSP-tour of length at most k?

 Is an NP-complete problem.
 Has been shown by reduction from Hamiltonian Circuit 

problem.
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Approximation algorithms

 Have performance guarantee, also called approximation 
ratio.

 We consider a minimization problem P. 
 Let 𝑍஺ ሺ𝑥ሻ be the value found by algorithm A for instance x
 Let 𝑍𝑜𝑝𝑡 𝑥 be the optimal value for instance x
 Clearly 𝑍஺ 𝑥 ൒ 𝑍௢௣௧ሺ𝑥ሻ

 Then A is an approximation algorithm with worst case 
performance guarantee c (c>1) if for each instance x of P 
we have

𝒁𝑨 𝒙 ൑ 𝒄𝒁𝒐𝒑𝒕 𝒙    𝒊. 𝒆.     
𝒁𝑨 𝒙

𝒁𝒐𝒑𝒕 𝒙 ൑ 𝒄
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Approximation algorithms: now 
maximization

 We consider a maximization problem P. 
 Let 𝑍஺ ሺ𝑥ሻ be the value found by algorithm A for instance x
 Let 𝑍𝑜𝑝𝑡 𝑥 be the optimal value for instance x
 Clearly 𝑍஺ 𝑥 ൑ 𝑍௢௣௧ሺ𝑥ሻ

 Then A is an approximation algorithm with worst case 
performance guarantee c (c<1) if for each instance x of P 
we have

𝒁𝑨 𝒙 ൒ 𝒄𝒁𝒐𝒑𝒕 𝒙    𝒊. 𝒆.     
𝒁𝑨 𝒙

𝒁𝒐𝒑𝒕 𝒙 ൒ 𝒄
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1st Construction Heuristic:
Nearest neighbor

 Start at some vertex s; v=s;
 While not all vertices visited

 Select closest unvisited neighbor w of v
 Go from v to w; v=w

 Go from v to s.
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Minimum spanning tree

 Algorithm of Kruskal:
 Builds a tree T step by step 
 In each step it adds the edge with minimal cost in the graph

which does not cause T to be a cycle

 Algorithm of Prim/Dijkstra
 Builds a tree T step by step
 In each step it adds the edge minimal cost connecting a vertex 

from T with a vertex outside T
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2nd Construction Heuristic: 
Double tree heuristic with ratio 2

 Assume symmetric TSP
 Find a minimum spanning tree
 Make a tour as follows:

 Walk along all vertices of the MST (you visits every edge 
twice)

 Apply shortcuts

 If triangle inequality, we have approximation ratio 2:
 OPT ≥ MST
 2 MST ≥ Result
 Result ≤ 2MST ≤ 2OPT 
 Result/OPT ≤ 2
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3rd Construction Heuristic: 
Christofides

Assume symmetric TSP
1. Make a Minimum Spanning Tree T.
2. Set W = {v | v has odd degree in tree T}.

|W| must be even, since for any graph ∑ 𝑑𝑒𝑔𝑟𝑒𝑒 𝑣௩∈௏  ൌ 2|𝐸|
3. Compute a minimum weight matching M in the graph 

G[W].
4. Look at the graph T+M. 

 Note that T+M is Eulerian (all vertices haven even degree)!
5. Compute a Euler tour (tour that visits every edge exactly 

once) C’ in T+M.
6. Add shortcuts to C’ to get a TSP-tour.
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Triangle inequality: Ratio 1.5

 Total length edges in MST 
T: at most OPT

 Red matching+ black 
matching ≤ OPT

 Total length edges in min 
weight matching M: at 
most OPT/2.

 Euler circuit C’  in (T+M) 
has length at most 3/2 
OPT.

 By -inequality, result after 
shortcut at most 3/2 OPT .

Optimal tour

Vertices in W
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4th Construction Heuristic: 
Closest insertion heuristic

 Build tour by starting with one vertex and inserting 
vertices one by one.

 Always insert vertex that is closest to a vertex already in 
tour.
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Many variants

 Closest insertion: insert vertex closest to vertex in the 
tour.

 Farthest insertion: insert vertex whose minimum 
distance to a node on the cycle is maximum.

 Cheapest insertion: insert the node that can be inserted 
with minimum increase in cost.
 Computationally expensive.

 Random insertion: randomly select a vertex.

 Each time: insert vertex at position that gives minimum 
increase of tour length.
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5th Construction Heuristic: 
Cycle merging heuristic

 Start with n cycles of length 0.
 Repeat:

 Find two cycles with minimum distance.
 Merge them into one cycle.

 Until 1 cycle with n vertices.
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6th Construction Heuristic: 
Savings heuristic

 Cycle merging heuristic where we merge tours that provide 
the largest “savings”: 
 Saving for a merge: merge with the smallest additional cost / 

largest savings.

 Quite similar to Clark and Wright savings heuristic for 
vehicle routing
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Some test results

 In an overview paper, Junger et al. report on tests on set 
of instances (105 – 2392 vertices; city-generated TSP 
benchmarks)
 Nearest neighbor:
 Closest insertion: 
 Farthest insertion: 
 Cheapest insertion: 
 Random Insertion: 
 Min spanning trees:
 Christofides
 Savings method: 

 What is the average distance to the optimum
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Some test results

 In an overview paper, Junger et al. report on tests on set 
of instances (105 – 2392 vertices; city-generated TSP 
benchmarks)
 Nearest neighbor: 24% away from optimal in average
 Closest insertion: 20%;
 Farthest insertion: 10%;
 Cheapest insertion: 17%; 
 Random Insertion: 11%; 
 Min spanning trees: 38%;
 Christofides: 19% with improvement 11% / 10%;
 Savings method: 10% (and fast).
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If triangle inequality does not hold: 
negative result

Theorem: If PNP, then there is no polynomial time 
algorithm for TSP without triangle inequality that 
approximates within a ratio c>0, for any constant c.

Proof: 
 Suppose there is a polynomial time approximation 

algorithm A with ratio c. 
 We build a polynomial time algorithm for Hamiltonian    

Circuit (giving a contradiction with PNP ):
 Take instance G=(V,E) of Hamiltonian Circuit.
 Build instance of TSP: 

• A city for each v  V.
• If (v,w)  E, then d(v,w) = 1, otherwise d(v,w) = nc+1.

 Now run A on this instance
 A finds a TSP-tour with distance at most nc, if and only if, G 

has a Hamiltonian circuit.
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Improvement heuristics

 Start with a tour (e.g., from construction heuristic) and 
improve it stepwise

 Improvement heuristics can be used in different local
search methods.
 Iterated local search
 Variable neighborhood search
 Simulated annealing
 Tabu search
 Genetic algorithms
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2-opt

 Take two edges (v,w) and 
(x,y) and replace them by 
(v,x) and (w,y) if this 
improves the tour.

 Costly: part of tour should 
be turned around.

 In ℝଶ: get rid of crossings 
of tour.

v

w

x

y

v

w

x

y
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3-opt

 Choose three edges from tour
 Remove them, and combine the three parts to a tour in the 

cheapest way to link them
 k-opt: generalizes 3-opt
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Node insertion: 2.5-opt

 Node insertion:
 Take a vertex v and put it in a different spot in the tour.

 This is a special case of 3-opt, called 2.5-opt: 
 two of the three removed edges are consecutive edges in the 

tour, i.e. they are connected to the same vertex

v
v



31

Edge insertion

 Edge insertion:
 Take two successive vertices v, w and put these as edge 

somewhere else in the tour.
 This is also a special case of 3-opt: 

 two of the three removed edges are almost consecutive edges 
in the tour, i.e. they are connected to the same edge

v v

ww
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Lin-Kernighan

 Idea: modifications that are bad can lead to something 
good

 Tour modification:
 Collection of simple changes
 Some increase length
 Total set of changes decreases length



33

Lin-Kernighan

1. Break the tour
2. Add a new edge

3. Break the subtour
4. If connecting to a complete tour gives an improvement,

stop. Otherwise repeat (go to Step 1).

u w v

u w v
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Iterated Lin-Kernighan

 Construct a start tour.
 Repeat the following r times:

 Improve the tour with Lin-Kernighan until not possible.
 Do a random 4-opt move that does not increase the length 

with more than 10 percent.
 Report the best tour seen.

Cost much time.
Gives excellent 

results!
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Exact algorithms

 Dynamic Programming: Held Karp

 Branch-and cut:
 World-record exact TSP solving
 CONCORDE: 

http://www.math.uwaterloo.ca/tsp/concorde/index.html
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