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Algorithms for Decision Support

Simulation: Input analysis
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 Until now:
 Modelling
 Simulation study
 Validation

 Today we are going to look at stochastic variables

In this lecture:
 You learn about modelling uncertain input data, mostly by 

probability distributions
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Stochastic input variables model:

 Variation
 Things that are uncertain from the viewpoint of the system
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Examples stochastic input variables

 Production line
 Transportation planning at DHL
 Communication network
 Sensor (e.g. in Electronic Road Pricing)
Military
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Stochastic variables occur in simulation 
at different places:

1. Input data are modeled as stochastic variables
• E.g time until arrival of next customer

2. Generate random variables
• When you schedule a new Arrival event you have to generate a 

random number for the time delay

3. Analysis of results
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Basics

 Experiment: process with uncertain outcome/result

 Stochastic variable represents the outcome of experiment

 Stochastic variable X
 Discrete
 Continuous
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Discrete stochastic variable X

 Possible values x1, x2,…,xn

 Example:
 Die
 Flip a coin 4 times: X is the number of heads
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Continuous stochastic variable X

 Can take any value in an interval
 Probability Density Function f
(kansdichtheid)
 Total surface under graph equals 1
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Normal N(µ,σ2)

2

2)(

2
22

1)( 









x

exf



11

Continuous stochastic variable X (2)

 Cumulative Distribution Function F 
(verdelingsfunctie):

 p-th percentile xp: 
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Expected value (average) E(X)

 Let X and Y be stochastic variables

E(Y)  E(X)  Y)E(X
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Variance, standard deviation

 Let X be a stochastic variable
 Variance 

𝜎
ଶ ൌ 𝑣𝑎𝑟 𝑋 ൌ 𝐸 𝑋 െ 𝐸 𝑋 ଶ ൌ 𝐸 𝑋ଶ െ 𝐸 𝑋 ଶ

 Standard deviation
𝜎 ൌ 𝑣𝑎𝑟 𝑋

 Computation, let a and b be real numbers

𝑣𝑎𝑟 𝑎𝑋  𝑏 ൌ 𝑎ଶ𝑣𝑎𝑟 𝑋
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Exercise:
Variance standard die?
Variance die, 2,3,3,4,4,5?
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Variance, covariance

 Let X and Y be stochastic variables

𝑣𝑎𝑟 𝑋  𝑌 ൌ 𝑣𝑎𝑟 𝑋  𝑣𝑎𝑟 𝑌  2 𝑐𝑜𝑣 𝑋, 𝑌

where
𝑐𝑜𝑣 𝑋, 𝑌 ൌ 𝐸ሺሺ𝑋 െ 𝐸 𝑋 ሻሺ𝑌 െ 𝐸 𝑌 ሻሻ

is the covariance of X and Y.

 Correlation

𝑐𝑜𝑟𝑟 𝑋, 𝑌 ൌ  
𝑐𝑜𝑣ሺ𝑋, 𝑌ሻ

𝜎௫ 𝜎
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Variances
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added
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Independence

Two stochastic variables X and Y are independent if:

 Continuous

 Discrete

BABYPAXPBYAXP , sets   )()() and ( 

yxyYPxXPyYxXP ,   )()() and ( 
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Example:
One deck of cards, take 2 cards without putting back
X=#aces, Y=#kings, Dependent or independent?
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Independence (2)
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If X and Y independent stochastic variables:
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Input of simulation

1. Direct use of data: trace driven simulation
2. Empirical distribution
3. Theoretical probability distribution (see Law and 

Kelton tables 6.3 and 6.4 for an overview)



18 ADS, lecture input analysis

Theoretical distribution

 Given data X1,X2,…,Xn for a certain input entity of the 
system (e.g. interarrival times of customers)

 What probability distribution should we use to model 
the input entity?

 We assume the values Xi are Independent and 
Identically Distributed, so independent samples from 
the same distribution.
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Uniform(a,b)
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Exponential(ß)

 Exp(ß)~gamma(1, ß)~weibull(1, ß)
Memory-less

rate.  theis 
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Exponential distribution is memory-less

 Suppose X follows an exponential distribution with EሺXሻ ൌ β
 Probability that X is more than t:

𝑃 𝑋  𝑡 ൌ 1 െ 𝐹 𝑡 ൌ 1 െ 1 െ 𝑒ି 
ഁ ൌ 𝑒ି 

ഁ

 Probability that X is more than s+t (so at least t larger
than s) given that we know that it is at least s

𝑃 𝑋  𝑠  𝑡 𝑋  𝑠 ൌ ሺவ௦ା௧ ௗ வ௦ሻ
ሺவ௦ሻ

ൌ 
షೞశ

ഁ


ష ೞ

ഁ
ൌ 𝑒ି 

ഁ

 These are equal, so memory-less
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At the exam

 You have to know the formulas of the uniform and
exponential distribution by heart

 For the next distributions you have to know properties
 Formulas will be given if you need them.
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Gamma(α,β)
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Exercise:
Variance Exp(p)?
Variance Gamma(k,p/k)? 
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Gamma(α (=k),β(=θ))
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Normal N(µ,σ2)
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Normal N(µ,σ2)

Exercise:

 The amount that a coffee machine puts in a cup is 
normally distributed with average μ= 170 ml and standard 
deviation σ= 4. Coffee cups are 175 ml. What is 
(approximately) the probability of overflow?

 What should μ be such that the probability of overflow is 
2%?

See statistical tables on course website.
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LogNormal LN(µ,σ2)

ADS, lecture input analysis

𝑓ሺ𝑥ሻ ൌ ൞
1

𝑥 2𝜋𝜎ଶ
𝑒ିሺ୪୬ ௫ିఓሻమ

ଶఙమ if 𝑥  0

0 otherwise
𝜎  0 shape parameter,  eఓ scale parameter
𝐸ሺ𝑋ሻ ൌ eఓାఙమ

ଶൗ

varሺ 𝑋ሻ ൌ eଶఓାఙమሺeఙమ െ 1ሻ
𝑋~𝐿𝑁 𝜇, 𝜎ଶ ⇔ 𝑋 ൌ 𝑒 with 𝑌~𝑁ሺ𝜇, 𝜎ଶሻ
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LogNormal LN(µ,σ2): density function for 
µ=0 
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Discrete distributions

 Binomial(n,p):

Geometric(p):

knk pp
k
n
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Discrete distributions: Poisson(λ)

𝐸 𝑋 ൌ 𝜆;     𝑣𝑎𝑟 𝑋 ൌ 𝜆

 Let 𝑌ଵ, 𝑌ଶ, … be independent and have an exponential
distribution with rate 𝜆, i.e. expected value భ

ഊ, e.g. 
𝑌ଵ, 𝑌ଶ, … are interarrival times

 Then max ሼ𝑖| ∑ 𝑌  1ሽ
ୀଵ , i.e. the number of Y’s that fit 

in 1 unit, i.e. the number of arrivals in 1 time period
has the Poisson(λ) distribution.
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𝑃 𝑋 ൌ 𝑘 ൌ షഊఒೖ

!
 ሺ𝑘 ൌ 0,1, … ሻ
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Poisson process

 The arrival process 𝑌ଵ, 𝑌ଶ, … is called Poisson process with
intensity λ.

 Suppose we have generated the number of arrivals from in 
a given time interval I by drawing this number from the
Poisson distribution.
 Then each individual arrival time is from the uniform 

distribution on that interval.

ADS, lecture input analysis
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Background Poisson process

 Poisson distribution is `limit’ of binomial distribution
 Law of rare events

 Exponential inter arrival times result in Poisson 
distribution for number of arrivals per time unit
 Memory-less

ADS, lecture input analysis
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-1 െ 𝑒ିఓ
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Probability distribution: overview

 Continuous:
 Uniform: first guess
 Exponential: inter arrival times
 Gamma: time to complete task
 Weibull: time to complete task, time to failure
 Normal: errors of various types, sum of large number 

of other quantities
 LogNormal: time to complete task, estimate in the 

absence of data, time until maintenance, income
 Discrete:

 Binomial: number of successes
 Geometric: time until first success
 Poisson(λ): gives number of arrival per time period 

when inter arrival times are exponentially distributed 
with parameter 1/λ.



36 ADS, lecture input analysis

Different distributions: example

 Single server queue
 Exponential interarrival times: avg 1 minute
 Historic data: 98 service times

Service time 
distribution

Avg 
delay

Avg 
queue 
length

% 
delays 
>= 15

Exponential 4.356 4.363 4.7
Gamma 2.849 2.845 1
Weibull 2.687 2.692 0.7
Lognormal 4.816 4.825 5.8
Normal 3.308 3.309 1.7
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Which distribution?

ADS, lecture input analysis
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Which distribution?

ADS, lecture input analysis
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Which distribution?

ADS, lecture input analysis
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Empirical distribution
 Given observations X1 <,…, < Xn. Find probability 

distribution that directly follows from these 
observations.

 Discrete or continuous possible
 Discrete:

 each observation probability 1/n.

 Example:
 Time to complete assignment: 2,3,5,8,16,20
 Discrete: only these values, each with p = 1/6
 If you also want to generate values like 4.5, use 

continuous CDF.
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Empirical distribution

 Continuous: 
 linear interpolation,
 interval [X1,Xn]

ADS, lecture input analysis

Xi

Xi
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Input of simulation

1. Direct use of data: trace driven simulation
2. Empirical distribution
3. Theoretical probability distribution (see Law and 

Kelton tables 6.3 and 6.4 for an overview)

Advantages, disadvantages.
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Input of simulation: advantages

1. Direct use of data: trace driven simulation
 valid, few data, no modeling difficulties

2. Empirical distribution:
Given range, may have irregularities

3. Theoretical probability distribution (see Law and 
Kelton tables 6.3 and 6.4 for an overview)
 smooth, compact,  easy to change to run another scenario, no 

bound on the range, physical or theoretical reason
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Wrap-up

 Simulation need stochastic variables for input entities that
are subject to uncertainty
 Interarrival times of customers
 Time until machine breakdown

 Probability distributions are the best way to model these 
things:
 E.g. interarrival times from exponential distribution
 When your simulation program does: schedule new arrival

You have to generate a random number from the exponential
distribution to put the event in the event list with the right time-stamp

ADS, lecture input analysis
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Fitting a distribution

 When you do a simulation study

 You hope to have a collection of data for the entity you
need to model

 Question: What probability distribution should I use?

Fitting a distribution!

ADS, lecture input analysis
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Fitting a distribution

 Observations X1,…,Xn

 Finding a Cumulative Distribution Function F that 
models the observations is called Fitting

Goodness-of-fit
 Quality if the fit
 Can we assume that X1,…,Xn really have distribution 

F ?
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Fitting a distribution

 Clean the data
 Make a histogram
 Select a type of distribution

 Visual inspection
 Fitting software

 Estimate the parameters
 Evaluate the goodness of fit:

 Heuristically
 Statistically

ADS, lecture input analysis
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Fitting a distribution

 Available software:
 Expert fit (free for small number of data elements)
 MATLAB
 R

ADS, lecture input analysis

If fitting software suggests
a distribution, it will be one
with many parameters.
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Fitting a distribution: Estimate the 
parameters

 X1,…,Xn samples of Independent Identically Distributed (IID) 
stochastic variables

 Sample mean

 Sample variance

 These are unbiased estimators!

ADS, lecture input analysis
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Evaluate goodness of fit 
heuristically: Q-Q plot

 Q-Q plot 
 Assume X1 ≤ X2 ≤…≤Xn

~ straight line `y=x’
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Goodness of fit heuristically: Q-Q 
plot
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Goodness of fit heuristically: Q-Q 
plot example

 F: U[0,1]
Data points 0.11; 0.29; 0.52; 0.69; 0.93

 F: U[0,1]
Data points 0.1; 0.11;1 0.3; 0.4;  0.9
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Evaluate goodness of fit: statistical 
tests

 Hypothesis H0:  
 the observations X1,X2,…,Xn follow distribution F

 Do we accept or reject this hypothesis?

 Chi-squared test
 Kolmogorov-Smirnov test

 Can be performed with R
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Statistical testing in general: Example

 Suppose we investigate the average number of hours 
gaming per week for CS students and we do not want 
collect numbers from all students.

 Our hypothesis is H0: avg = 25
 Suppose we sample five persons and find: 24, 24,24, 26, 

26 (avg 24.8)
 Compute average from sample and ask: `Do we believe 

H0?’
 Believe H0 if avg is close enough to 25

 How close is close enough?
 The above sample looks close enough, but how about: 20, 22, 

23, 24, 26 (avg 23)
 Can statistics help to decide?

ADS, lecture input analysis
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Statistical hypothesis testing

1. Formulate hypothesis H0
• For goodness-of-fit tests the observations 

X1,X2,…,Xn follow distribution F
2. Choose type of test
3. Determine significance α and decision rule
4. Compute test statistic and take decision

ADS, lecture input analysis
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Errors

Case
H0 true H0 false

Decision Accept H0 OK
Probability 1-α
Confidence level

Type 2

Reject  H0 Type 1 
Probability α
Significance

OK

ADS, lecture input analysis



57

Chi-squared test

H0: the observations X1,X2,…,Xn follow distribution F
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Interval choice:
• No Ei<1
• No more than 20% has 

Ni<5 
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Chi-squared test (2)
 Suppose H0 is true

 Suppose we draw N values X1,X2,…,Xn from the probablity
distribution F

 Then we can compute

 Now X2 is a stochastic variable

 Statistical theory learns us Χ2 follows a  chi-squared-
distribution with df=K-1

 We expect it to be small, but it may by coincidence attain
a large value. 

 However, at some point we do not believe H0 anymore.
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If H0 is true  then Χ2 ~ chi-squared-
distribution with df=K-1

www.statsoft.com

Significance α

Χ2(df)α

Accept H0 if
Reject                    otherwise

)(22 df

ADS, lecture input analysis

Now, the probability
that we reject H0 while
it is true is only α
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Example

 Are the following values from U[0,1]
a) 0.07; 0.15; 0.24; 0.31; 0.42; 0.51; 0.55; 0.65; 0.73; 0.76; 

0.85; 0.97
b) 0.07; 0.08; 0.15; 0.18; 0.51; 0.52; 0.53; 0.58; 0.64; 0.68; 

0.74; 0.95

 Use intervals [0;0.25), [0.25;0.5), [0.5;0.75), [0.75;1] 
and α=5%.

ADS, lecture input analysis

Statistical table:
http://www.statsoft.com/Textbook/Distribution-Tables#chi
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Kolmogorov-Smirnov test
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Kolmogorov-Smirnov test (2)
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𝐷
∗ ൌ sup௫ | 𝐹ሺ𝑥ሻ െ 𝐹ሺ𝑥ሻ|

If H0 is true the following holds

𝐻ሺ𝑡ሻ ൌ lim
→ஶ

𝑃 ሺ 𝑛𝐷
∗  𝑡ሻ ൌ 1 െ ሺെ1ሻିଵ𝑒ିଶమ௧మ

ஶ

ୀଵ
𝐻ሺ𝑡ሻ defines a probability distribution
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After this lecture

 You know different methods for generating stochastic input 
variables for simulation

 You know different probability distributions
 You are able to fit a probability distribution to input data

ADS, lecture input analysis
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Covariance, correlation

22XY
),cov( :ncorrelatio
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:Y and X  variablesstochastic 2Given 
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Example 1:  Die
•X = score
•Y =7 – score of same die

Example 2
• X score Dutch coin
•Y score Italian coin
•Where, head = 1, tail = 0
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Independence

Two stochastic variables X and Y are independent if:

 Continuous

 Discrete

BABYPAXPBYAXP , sets   )()() and ( 

yxyYPxXPyYxXP ,   )()() and ( 
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Independence (2)

)Yvar()Xvar()YXvar(
0)Y,Xcov(

)Y(E)X(E)XY(E






If X and Y independent stochastic variables:
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Wrap-up

 Previous lecture we studied some well-known probability
distribution.

 How do you know which probability distribution you should
use?
 From data
 Sometimes from theory

 This lecture:
 How to find out if you choose the correct distribution?
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Wrap-up

 Simulation need stochastic variables for input entities that
are subject to uncertainty
 Interarrival times of customers
 Time until machine breakdown

 Probability distributions are the best way to model these 
things:
 E.g. interarrival times from exponential distribution
 When your simulation program does: schedule new arrival

You have to generate a random number from the exponential
distribution to put the event in the event list with the right time-stamp

ADS, lecture input analysis


