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Simulation: Input analysis



B Until now:
B Modelling
B Simulation study
B Validation

B Today we are going to look at stochastic variables

In this lecture:

B You learn about modelling uncertain input data, mostly by
probability distributions
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Stochastic input variables model:

B Variation
B Things that are uncertain from the viewpoint of the system
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“After closer investigation, it's become clear that
we need to enter more than one value.”
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Examples stochastic input variables

B Production line

B Transportation planning at DHL

B Communication network

B Sensor (e.qg. in Electronic Road Pricing)
B Military
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Stochastic variables occur in simulation
at different places:

1. Input data are modeled as stochastic variables

J E.g time until arrival of next customer
2. Generate random variables
. When you schedule a new Arrival event you have to generate a

random number for the time delay
3. Analysis of results
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Basics

B Experiment: process with uncertain outcome/result
B Stochastic variable represents the outcome of experiment

I Stochastic variable X
B Discrete
B Continuous
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Discrete stochastic variable X

B Possible values x;, x,,..., X,

p; = P(X =x;)

0<p, <L) p;=1

B Example:
B Die
B Flip a coin 4 times: X is the number of heads
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Continuous stochastic variable X

B Can take any value in an interval
Il Probability Density Function f

(kansdichtheid)
B Total surface under graph equals 1

b
P(a< X <b)= j f(x)dx
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Normal N(pu,02)
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Continuous stochastic variable X (2)

Il Cumulative Distribution Function F
(verdelingsfunctie):

F(x)=P(X <x)= [ f(y)dy

B p-th percentile x:
X, such that:

F(x,)=P(X <x,)= | f(y)dy=p
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Expected value (average) E(X)

B Let X and Y be stochastic variables

u=E(X)= Zpixi

u=E(X)= szxf (x)dx

E(cX) =cE(X)
E(X+Y)=E(X)+E(Y)
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Variance, standard deviation

B Let X be a stochastic variable
B Variance

0% = var(X) = E ((X . E(X))Z) = E(X2) — (E(X))°
J Standard deviation

oy = var(X)

B Computation, let a and b be real numbers

var(aX + b) = a?var(X)

Exercise:
Variance standard die?
Variance die, 2,3,3,4,4,5?
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Variance, covariance

‘2 B Let X and Y be stochastic variables

var(X +Y) = var(X) + var(Y) + 2 cov(X,Y)

where
cov(X,Y) = E((X — EX))(Y — E(V)))

is the covariance of X and Y.

B Correlation
cov(X,Y)

corr(X,Y) = 5, Gy
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Independence

Two stochastic variables X and Y are independent if:
I Continuous

P(X e AandY € B)=P(X e A)P(Y € B) Vsets A, B

B Discrete

P(X=xandY =y)=P(X =xX)P(Y =y) VX,y

Example:
One deck of cards, take 2 cards without putting back

| X=t#aces, Y=#kings, Dependent or independent?
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Independence (2)

If X and Y independent stochastic variables:

E(XY)=E(X)E()
cov(X,Y)=E(X-E(X)(Y -E())=0
var(X +Y) = var(X )+ var(Y)
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Input of simulation

1. Direct use of data: trace driven simulation
2. Empirical distribution

3. Theoretical probability distribution (see Law and
Kelton tables 6.3 and 6.4 for an overview)
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Theoretical distribution

B Given data X, X,,..., X, for a certain input entity of the
system (e.g. interarrival times of customers)

B What probability distribution should we use to model
the input entity?

B We assume the values X; are Independent and
Identically Distributed, so independent samples from
the same distribution.
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Uniform(a,b)

(1
f)={p_a <SPl
| 0 otherwise
0
X<a
FO)=+2"2 a<x<b
b—a
1 X >b
a+b
E(X)=2—
(X) >
(b—a)’
X ) =
var(X) =

[Faculty of Science
Information and Computing Sciences]

ADS, lecture input analysis



20

Universiteit Utrecht

Exponential(3)

1 o
f(x)=—e ” (x=0)
p
F(X)= I-e # (x=0)
E(X)= 4
var(X) = f°
Sometimes denoted with parameter A = %B

A 1s the rate.

B Exp(B)~gamma(l, B)~weibull(1, B)
B Memory-less

[Faculty of Science
Information and Computing Sciences]

ADS, lecture input analysis



Exponential distribution is memory-less

B Suppose X follows an exponential distribution with E(X) =
B Probability that X is more than t:

t

P(X>t):1—F(t)=1—(1—e_%):e_3

B Probability that X is more than s+t (so at least ¢t larger
than s) given that we know that it is at least s

P(X>s+t and X> F —
P(X >s+t|X>s)=2EsHtandX>s) e © _ .73
P(X>S) _F
e
B These are equal, so memory-less
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At the exam

B You have to know the formulas of the uniform and
exponential distribution by heart

B For the next distributions you have to know properties
B Formulas will be given if you need them.
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fF(X)= (@)

[(z)= th‘le‘tdt(z > 0)
0

Gamma(aq,B)

I'(z+1)=12I'(2)

(x> 0) [C'(k +1) =k!,k positive integer

E(X)=af

var(X) = aff’

if X, ~gamma(e,, #), X, ~ gamma(a,, )
then X, + X, ~ gamma(e, +a,, ),

a shape parameter, £ scale parameter

gamma(l, 5) = exp(/)
gamma(k, ) = k - Erlang(5)

Exercise:
Variance Exp(p)?

gamma(k /2,2) =

Universiteit Utrecht
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Gamma(a (=k),B(=06))
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Normal N(pu,02)
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f(x)= =€ %7
t 2o
E(X) = u
y 2
var(X) =0
“*N(0,1) standard normal — ——
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Normal N(pu,02)

\ Exercise:

B The amount that a coffee machine puts in a cup is
\n normally distributed with average y= 170 ml and standard
deviation o= 4. Coffee cups are 175 ml. What is
(approximately) the probability of overflow?

B What should p be such that the probability of overflow is
2%7?

See statistical tables on course website.
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LogNormal LN(u,02)

(1 _nx-p?

S .
f(x)=<—xme 20 ifx >0

L 0 otherwise

o > 0 shape parameter, e* scale parameter
2
E(X) = et /2

var(X) = e2#t9° (e — 1)
X~LN(u,0%) © X = e¥ withY~N(u,c?)
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LogNormal LN(pu,02): density function for
p=0

N\ /7 [Faculty of Science
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Discrete distributions

B Binomial(n,p):

p(k) = P(X =k) =[Ejpk<l— p)"

B Geometric(p):

p(k) =P(X =k) = p(1-p)"*
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Discrete distributions: Poisson(A)

e~k
k!

EXX)=24;, var(X) =4

P(X=k)=

(k=0,1,..)

B LetY,Y,,.. be independent and have an exponential
distribution with rate 4, i.e. expected value 3, e.g.

Y;,Y,, ... are interarrival times

B Then max{i|¥i_, ¥; < 1}, i.e. the number of Y’s that fit

in 1 unit, i.e. the number of arrivals in 1 time period
has the Poisson(A) distribution.
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Poisson process

B The arrival process V;,Y,, ... is called Poisson process with
intensity A.

B Suppose we have generated the number of arrivals from in
a given time interval I by drawing this number from the
Poisson distribution.

B Then each individual arrival time is from the uniform
distribution on that interval.
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Background Poisson process

I Poisson distribution is " limit’ of binomial distribution
B Law of rare events

B Exponential inter arrival times result in Poisson
distribution for number of arrivals per time unit
B Memory-less
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Poisson proces Suppose 100 students independently decide on going to the Su-
per, each with probahility ]]U The number of &.tudcnt&. that visits the Super follows
a binomial distribution with n = 100 and p = m The expected value equals 10,

n p  E(X) Distribution
100 ll_c' 100 Binomial
1000 0 100 Binomial
10000 oo 100 Binomial
100000 5000 100 Binomial
o0 0 100 Poisson with A = np = 10
If we increase n and decrease p in such a way that we still have np = 10, the

mumber of students that visit the Super, still follows the binomila distribution with
F{X)=10. If n — oo and p — 0 in such a way that np = 10, then the number
of students that visit the Super follow a Poisson distribution with E{X) = 10. So,
the Poisson Distribution is the limit of the binomial distribution. This is called the

Law of rare events.

:  Universiteit Utrecht
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Suppose we have exponential inter-arrival times with average ﬁ and intensity pu.

We divide 1 time period into n small time periods of length %

We now have

1
P(arrival in interval) = F{E} = (memory less) =1 — - I—(1—=4=(=) =)~ =

Consequently

P(no arrival in interval) ~ 1 —

==

Observe that in the above we have used that:

<k
=

k=l

Now the number of arrival follows a binomial distribution with n and p = £ and
hence the expected number of arrivals equals np = pu.

Now suppose n — oo, then p — (0. This models the situation where a very large
number of people individually make a decision on going to the Super and decide to
go the Super with a veryv small probability. By the law of rare events the number
of arrivals follows a Poisson distribution with A = np = p. Therefore the Poisson
proces 15 a good model for the arrival of customers from the outside world.

LrdLUILy Ui JueliLe
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Probability distribution: overview

I Continuous:
B Uniform: first guess
B Exponential: inter arrival times
B Gamma: time to complete task
B Weibull: time to complete task, time to failure

B Normal: errors of various types, sum of large number
of other quantities

B LogNormal: time to complete task, estimate in the
absence of data, time until maintenance, income

B Discrete:
B Binomial: number of successes
B Geometric: time until first success

B Poisson(A): gives number of arrival per time period
when inter arrival times are exponentially distributed
with parameter 1/A. el i Tonce

'-:7_ Universiteit Utrecht Information and Computing Sciences]
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Different distributions: example

B Single server queue
B Exponential interarrival times: avg 1 minute
B Historic data: 98 service times

Service time | Avg Avg %
distribution |delay queue delays
length >= 15
Exponential 4.356 4.363 4.7
Gamma 2.849 2.845 1
Weibull 2.687 2.692 0.7
Lognormal 4.816 4.825 5.8
Normal 3.308 3.309 1.7

= Universiteit Utrecht
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Which distribution?
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Figure 4.9 Probability density histogram with 50 bins of PF processing times data
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Figure 4.6 Probability density histogram of provided DC
processing time measurements
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Which distribution?
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Figure 4.1 Probability density diagram of the provided IM Processing time measurements
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Empirical distribution

B Given observations X, <,..., < X,.. Find probability
distribution that directly follows from these
observations.

B Discrete or continuous possible

B Discrete:
B each observation probability 1/n.

B Example:
B Time to complete assignment: 2,3,5,8,16,20
B Discrete: only these values, each with p = 1/6

B If you also want to generate values like 4.5, use
continuous CDF.
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Empirical distribution

B Continuous:
M linear interpolation,
M interval [Xq,X,]

. . . i —1
n—1
(0 T o< }{1
D) — i—1 r—X; . Y.
_F[:I) — ﬂ-—l —|_ {XE—I_XI'JI:TI—].:I Xl {_i I { JX'I-"—l
1 I :_} }{n.
1 . <
f(r) =4 w=xom=n A 7 <Xip
{] I 2 _(Xﬂ
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Input of simulation

1. Direct use of data: trace driven simulation
2. Empirical distribution

3. Theoretical probability distribution (see Law and
Kelton tables 6.3 and 6.4 for an overview)

Advantages, disadvantages.

A [Faculty of Science
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Input of simulation: advantages

1. Direct use of data: trace driven simulation
B valid, few data, no modeling difficulties

2. Empirical distribution:
B Given range, may have irregularities

3. Theoretical probability distribution (see Law and
Kelton tables 6.3 and 6.4 for an overview)

B smooth, compact, easy to change to run another scenario, no
bound on the range, physical or theoretical reason
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Wrap-up

B Simulation need stochastic variables for input entities that
are subject to uncertainty
B Interarrival times of customers
B Time until machine breakdown

B Probability distributions are the best way to model these
things:
B E.qg. interarrival times from exponential distribution

B When your simulation program does: schedule new arrival

You have to generate a random number from the exponential
distribution to put the event in the event list with the right time-stamp

A [Faculty of Science
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Fitting a distribution

B When you do a simulation study

B You hope to have a collection of data for the entity you
need to model

B Question: What probability distribution should I use?

JFitting a distribution!
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Fitting a distribution

B Observations Xq,..., X,

B Finding a Cumulative Distribution Function F that
models the observations is called Fitting

Goodness-of-fit
B Quality if the fit

B Can we assume that X4,..., X, really have distribution
F?
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Fitting a distribution

B Clean the data
I Make a histogram

B Select a type of distribution
B Visual inspection
B Fitting software

B Estimate the parameters

B Evaluate the goodness of fit:
B Heuristically
B Statistically

Universiteit Utrecht
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Fitting a distribution

B Available software:
B Expert fit (freg for small number of data elements)

B MATLAB

B R
(75 [Faculty of Science
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Fitting a distribution: Estimate the
parameters

B X,,.... X, samples of Independent |dentically Distributed (lID)
stochastlc variables

M Sample mean X (n) =1
n
. n
B Sample variance va 2
? > (X = X(n))
S*(n)=12
—1
B These are unbiased estimators!
[Faculty of Science
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Evaluate goodness of fit
heuristically: Q-Q plot

B Q-Q plot

B Assume X; < X, =...=X,

If observations X, are from distribution F

then we should have P(X < X;) ~ =22 (where P is computed from F)
< F(X,) = =2 < X is percentile =22

& X, ~ FI(E)

Draw (X, F ™' (%))

n

4

~ straight line "y=x

% [Faculty of Science
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Goodness of fit heuristically: Q-Q
plot

Draw (X, F~'(iI722))

N

F—l(i—O.S) :

n

what would the

distribution give?

My data : X | [Faculty of Science

= Universiteit Utrecht Information and Computing Sciences]
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Goodness of fit heuristically: Q-Q
plot example

B F: UO,1]
Data points 0.11; 0.29; 0.52; 0.69; 0.93

B F: UO,1]
Data points 0.1; 0.11;1 0.3; 0.4; 0.9

[Faculty of Science
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Evaluate goodness of fit: statistical
tests

B Hypothesis Hy:
M the observations X, X, ..., X, follow distribution F
B Do we accept or reject this hypothesis?

B Chi-squared test
B Kolmogorov-Smirnov test

B Can be performed with R

[Faculty of Science
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Statistical testing in general: Example

B Suppose we investigate the average number of hours
gaming per week for CS students and we do not want
collect numbers from all students.

B Our hypothesis is HO: avg = 25

B Suppose we sample five persons and find: 24, 24,24, 26,
26 (avg 24.8)

B Compute average from sample and ask: Do we believe
HO?’

B Believe HO if avg is close enough to 25
B How close is close enough?

B The above sample looks close enough, but how about: 20, 22,
23, 24, 26 (avg 23)

B Can statistics help to decide?

[Faculty of Science
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1.

Statistical hypothesis testing

Formulate hypothesis H,
e For goodness-of-fit tests the observations

X1, X5 .., X, follow distribution F

Choose type of test
Determine significance a and decision rule
Compute test statistic and take decision

= Universiteit Utrecht
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Decision

= Universiteit Utrecht

Errors

Case
H, true H, false
Accept H, OK Type 2

Probability 1-a
Confidence level
Reject H, Type 1 OK

Probability a
Significance

[Faculty of Science
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Chi-squared test

Hy: the observations X, X, ..., X follow distribution F

[a()aal)a [a19a2)9°-'9 [aK_laaK)
Observed number :
N; =#X, in [a.,a.,)

Expected number according to probability distribution :

i
E.=np, =n | f(x)dx
;[ Interval choice:
(N _E)? * NoE<I
Test statistic : X* = Z ' '  No more than 20% has
R N.<5

[Faculty of Science
Information and Computing Sciences]

ADS, lecture input analysis



Chi-squared test (2)
B Suppose H, is true

B Suppose we draw N values X, X, ..., X, from the probablity
distribution F

K-l _E\2
B Then we can compute Xzzz(Ni—Ei)
= _

E

B Now X2 is a stochastic variable

B Statistical theory learns us X2 follows a chi-squared-
distribution with df=K-1

B We expect it to be small, but it may by coincidence attain
a large value.

B However, at some point we do not believe H, anymore.

[Faculty of Science
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If HO is true then X2 ~ chi-squared-
distribution with df=K-1

Significance o

X £ Now, the probability
that we reject H, while

www.statsoft.com . - .
it 1s true is only a.

. 5 5 )
Accept Hy if X~ < X (df)
Reject otherwise
[Faculty of Science
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Example

B Are the following values from U[0,1]

a) 0.07; 0.15; 0.24; 0.31; 0.42; 0.51; 0.55; 0.65; 0.73; 0.76;
0.85; 0.97

b) 0.07; 0.08; 0.15; 0.18; 0.51; 0.52; 0.53; 0.58; 0.64; 0.68;
0.74; 0.95

B Use intervals [0;0.25), [0.25;0.5), [0.5;0.75), [0.75;1]
and a=5%.

Statistical table:
http://www.statsoft.com/Textbook/Distribution-Tables#chi

[Faculty of Science
:-'_ Universiteit Utrecht Information and Computing Sciences]

60 ‘ ADS, lecture input analysis



Kolmogorov-Smirnov test

H,:Do X, < X, <...< X, follow distribution F?

Empirical distribution F.(X) = — for X, <x< X,

*
D, =sup, | F(X)=F,(X)|
F
o
©
-
B
Q
o
o
s
S
4
% [Faculty of Science
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Kolmogorov-Smirnov test (2)

Dy, = sup, | F(x) — E,(x)]

If H,is true the following holds
H(t) = lim P (\/ED* < t) =1 — Z(_l)i—le—Zith
Nn—>00
i=1

H(t) defines a probability distribution
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After this lecture

B You know different methods for generating stochastic input
variables for simulation

B You know different probability distributions
B You are able to fit a probability distribution to input data

[Faculty of Science
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Covariance, correlation

Given 2 stochastic variables X and Y :
covariance: cov(X,Y)=E(X —E(X)(Y —E(Y)))

correlation : py, =

cov(X,Y)

D)
VO xOy

64

Example 1: Die

*X = score

*Y =7 — score of same die
Example 2

e X score Dutch coin

*Y score Italian coin
*Where, head = 1, tail = 0

Q P
. é Universiteit Utrecht
: S
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Independence

Two stochastic variables X and Y are independent if:
I Continuous

P(X e AandY € B)=P(X e A)P(Y € B) Vsets A, B

B Discrete

P(X=xandY =y)=P(X =X)P(Y =Yy) VX,y
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Independence (2)

If X and Y independent stochastic variables:

E(XY)=E(X)E(Y)
cov(X,Y)=0
var(X +Y) = var(X) + var(Y)
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Wrap-up

B Previous lecture we studied some well-known probability
distribution.

Il How do you know which probability distribution you should
use?
B From data
B Sometimes from theory

B This lecture:
B How to find out if you choose the correct distribution?

L5 [Faculty of Science
:-'_ Universiteit Utrecht Information and Computing Sciences]

67 ADS, lecture input analysis



Wrap-up

B Simulation need stochastic variables for input entities that
are subject to uncertainty
B Interarrival times of customers
B Time until machine breakdown

B Probability distributions are the best way to model these
things:
B E.qg. interarrival times from exponential distribution

B When your simulation program does: schedule new arrival

You have to generate a random number from the exponential
distribution to put the event in the event list with the right time-stamp
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