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Algorithms for Decision Support

Simulation: Input analysis
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 Until now:
 Modelling
 Simulation study
 Validation

 Today we are going to look at stochastic variables

In this lecture:
 You learn about modelling uncertain input data, mostly by 

probability distributions

ADS, lecture input analysis
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Stochastic input variables model:

 Variation
 Things that are uncertain from the viewpoint of the system

ADS, lecture input analysis
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Examples stochastic input variables

 Production line
 Transportation planning at DHL
 Communication network
 Sensor (e.g. in Electronic Road Pricing)
Military
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Stochastic variables occur in simulation 
at different places:

1. Input data are modeled as stochastic variables
• E.g time until arrival of next customer

2. Generate random variables
• When you schedule a new Arrival event you have to generate a 

random number for the time delay

3. Analysis of results

ADS, lecture input analysis
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Basics

 Experiment: process with uncertain outcome/result

 Stochastic variable represents the outcome of experiment

 Stochastic variable X
 Discrete
 Continuous

ADS, lecture input analysis
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Discrete stochastic variable X

 Possible values x1, x2,…,xn

 Example:
 Die
 Flip a coin 4 times: X is the number of heads
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Continuous stochastic variable X

 Can take any value in an interval
 Probability Density Function f
(kansdichtheid)
 Total surface under graph equals 1


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Normal N(µ,σ2)
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Continuous stochastic variable X (2)

 Cumulative Distribution Function F 
(verdelingsfunctie):

 p-th percentile xp: 
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Expected value (average) E(X)

 Let X and Y be stochastic variables
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Variance, standard deviation

 Let X be a stochastic variable
 Variance 

𝜎௑
ଶ ൌ 𝑣𝑎𝑟 𝑋 ൌ 𝐸 𝑋 െ 𝐸 𝑋 ଶ ൌ 𝐸 𝑋ଶ െ 𝐸 𝑋 ଶ

 Standard deviation
𝜎௑ ൌ 𝑣𝑎𝑟 𝑋

 Computation, let a and b be real numbers

𝑣𝑎𝑟 𝑎𝑋 ൅ 𝑏 ൌ 𝑎ଶ𝑣𝑎𝑟 𝑋
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Exercise:
Variance standard die?
Variance die, 2,3,3,4,4,5?
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Variance, covariance

 Let X and Y be stochastic variables

𝑣𝑎𝑟 𝑋 ൅ 𝑌 ൌ 𝑣𝑎𝑟 𝑋 ൅ 𝑣𝑎𝑟 𝑌 ൅ 2 𝑐𝑜𝑣 𝑋, 𝑌

where
𝑐𝑜𝑣 𝑋, 𝑌 ൌ 𝐸ሺሺ𝑋 െ 𝐸 𝑋 ሻሺ𝑌 െ 𝐸 𝑌 ሻሻ

is the covariance of X and Y.

 Correlation

𝑐𝑜𝑟𝑟 𝑋, 𝑌 ൌ  
𝑐𝑜𝑣ሺ𝑋, 𝑌ሻ

𝜎௫ 𝜎௒
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Independence

Two stochastic variables X and Y are independent if:

 Continuous

 Discrete

BABYPAXPBYAXP , sets   )()() and ( 

yxyYPxXPyYxXP ,   )()() and ( 
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Example:
One deck of cards, take 2 cards without putting back
X=#aces, Y=#kings, Dependent or independent?
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Independence (2)
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If X and Y independent stochastic variables:
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Input of simulation

1. Direct use of data: trace driven simulation
2. Empirical distribution
3. Theoretical probability distribution (see Law and 

Kelton tables 6.3 and 6.4 for an overview)
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Theoretical distribution

 Given data X1,X2,…,Xn for a certain input entity of the 
system (e.g. interarrival times of customers)

 What probability distribution should we use to model 
the input entity?

 We assume the values Xi are Independent and 
Identically Distributed, so independent samples from 
the same distribution.
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Uniform(a,b)
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Exponential(ß)

 Exp(ß)~gamma(1, ß)~weibull(1, ß)
Memory-less
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Exponential distribution is memory-less

 Suppose X follows an exponential distribution with EሺXሻ ൌ β
 Probability that X is more than t:

𝑃 𝑋 ൐ 𝑡 ൌ 1 െ 𝐹 𝑡 ൌ 1 െ 1 െ 𝑒ି ೟
ഁ ൌ 𝑒ି ೟

ഁ

 Probability that X is more than s+t (so at least t larger
than s) given that we know that it is at least s

𝑃 𝑋 ൐ 𝑠 ൅ 𝑡 𝑋 ൐ 𝑠 ൌ ௉ሺ௑வ௦ା௧ ௔௡ௗ ௑வ௦ሻ
௉ሺ௑வ௦ሻ

ൌ ௘
షೞశ೟

ഁ

௘
ష ೞ

ഁ
ൌ 𝑒ି ೟

ഁ

 These are equal, so memory-less

ADS, lecture input analysis
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At the exam

 You have to know the formulas of the uniform and
exponential distribution by heart

 For the next distributions you have to know properties
 Formulas will be given if you need them.

ADS, lecture input analysis
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Gamma(α,β)
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Exercise:
Variance Exp(p)?
Variance Gamma(k,p/k)? 
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Gamma(α (=k),β(=θ))

ADS, lecture input analysis
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Normal N(µ,σ2)
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Normal N(µ,σ2)

Exercise:

 The amount that a coffee machine puts in a cup is 
normally distributed with average μ= 170 ml and standard 
deviation σ= 4. Coffee cups are 175 ml. What is 
(approximately) the probability of overflow?

 What should μ be such that the probability of overflow is 
2%?

See statistical tables on course website.

ADS, lecture input analysis
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LogNormal LN(µ,σ2)

ADS, lecture input analysis

𝑓ሺ𝑥ሻ ൌ ൞
1

𝑥 2𝜋𝜎ଶ
𝑒ିሺ୪୬ ௫ିఓሻమ

ଶఙమ if 𝑥 ൐ 0

0 otherwise
𝜎 ൐ 0 shape parameter,  eఓ scale parameter
𝐸ሺ𝑋ሻ ൌ eఓାఙమ

ଶൗ

varሺ 𝑋ሻ ൌ eଶఓାఙమሺeఙమ െ 1ሻ
𝑋~𝐿𝑁 𝜇, 𝜎ଶ ⇔ 𝑋 ൌ 𝑒௒ with 𝑌~𝑁ሺ𝜇, 𝜎ଶሻ
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LogNormal LN(µ,σ2): density function for 
µ=0 

ADS, lecture input analysis
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Discrete distributions

 Binomial(n,p):

Geometric(p):
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Discrete distributions: Poisson(λ)

𝐸 𝑋 ൌ 𝜆;     𝑣𝑎𝑟 𝑋 ൌ 𝜆

 Let 𝑌ଵ, 𝑌ଶ, … be independent and have an exponential
distribution with rate 𝜆, i.e. expected value భ

ഊ, e.g. 
𝑌ଵ, 𝑌ଶ, … are interarrival times

 Then max ሼ𝑖| ∑ 𝑌௝ ൑ 1ሽ௜
௝ୀଵ , i.e. the number of Y’s that fit 

in 1 unit, i.e. the number of arrivals in 1 time period
has the Poisson(λ) distribution.

ADS, lecture input analysis

𝑃 𝑋 ൌ 𝑘 ൌ ௘షഊఒೖ

௞!
 ሺ𝑘 ൌ 0,1, … ሻ
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Poisson process

 The arrival process 𝑌ଵ, 𝑌ଶ, … is called Poisson process with
intensity λ.

 Suppose we have generated the number of arrivals from in 
a given time interval I by drawing this number from the
Poisson distribution.
 Then each individual arrival time is from the uniform 

distribution on that interval.

ADS, lecture input analysis
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Background Poisson process

 Poisson distribution is `limit’ of binomial distribution
 Law of rare events

 Exponential inter arrival times result in Poisson 
distribution for number of arrivals per time unit
 Memory-less

ADS, lecture input analysis
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Probability distribution: overview

 Continuous:
 Uniform: first guess
 Exponential: inter arrival times
 Gamma: time to complete task
 Weibull: time to complete task, time to failure
 Normal: errors of various types, sum of large number 

of other quantities
 LogNormal: time to complete task, estimate in the 

absence of data, time until maintenance, income
 Discrete:

 Binomial: number of successes
 Geometric: time until first success
 Poisson(λ): gives number of arrival per time period 

when inter arrival times are exponentially distributed 
with parameter 1/λ.
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Different distributions: example

 Single server queue
 Exponential interarrival times: avg 1 minute
 Historic data: 98 service times

Service time 
distribution

Avg 
delay

Avg 
queue 
length

% 
delays 
>= 15

Exponential 4.356 4.363 4.7
Gamma 2.849 2.845 1
Weibull 2.687 2.692 0.7
Lognormal 4.816 4.825 5.8
Normal 3.308 3.309 1.7
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Which distribution?

ADS, lecture input analysis
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Which distribution?

ADS, lecture input analysis
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Which distribution?

ADS, lecture input analysis
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Empirical distribution
 Given observations X1 <,…, < Xn. Find probability 

distribution that directly follows from these 
observations.

 Discrete or continuous possible
 Discrete:

 each observation probability 1/n.

 Example:
 Time to complete assignment: 2,3,5,8,16,20
 Discrete: only these values, each with p = 1/6
 If you also want to generate values like 4.5, use 

continuous CDF.
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Empirical distribution

 Continuous: 
 linear interpolation,
 interval [X1,Xn]

ADS, lecture input analysis

Xi

Xi
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Input of simulation

1. Direct use of data: trace driven simulation
2. Empirical distribution
3. Theoretical probability distribution (see Law and 

Kelton tables 6.3 and 6.4 for an overview)

Advantages, disadvantages.
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Input of simulation: advantages

1. Direct use of data: trace driven simulation
 valid, few data, no modeling difficulties

2. Empirical distribution:
Given range, may have irregularities

3. Theoretical probability distribution (see Law and 
Kelton tables 6.3 and 6.4 for an overview)
 smooth, compact,  easy to change to run another scenario, no 

bound on the range, physical or theoretical reason
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Wrap-up

 Simulation need stochastic variables for input entities that
are subject to uncertainty
 Interarrival times of customers
 Time until machine breakdown

 Probability distributions are the best way to model these 
things:
 E.g. interarrival times from exponential distribution
 When your simulation program does: schedule new arrival

You have to generate a random number from the exponential
distribution to put the event in the event list with the right time-stamp

ADS, lecture input analysis



45

Fitting a distribution

 When you do a simulation study

 You hope to have a collection of data for the entity you
need to model

 Question: What probability distribution should I use?

Fitting a distribution!

ADS, lecture input analysis
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Fitting a distribution

 Observations X1,…,Xn

 Finding a Cumulative Distribution Function F that 
models the observations is called Fitting

Goodness-of-fit
 Quality if the fit
 Can we assume that X1,…,Xn really have distribution 

F ?
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Fitting a distribution

 Clean the data
 Make a histogram
 Select a type of distribution

 Visual inspection
 Fitting software

 Estimate the parameters
 Evaluate the goodness of fit:

 Heuristically
 Statistically

ADS, lecture input analysis
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Fitting a distribution

 Available software:
 Expert fit (free for small number of data elements)
 MATLAB
 R

ADS, lecture input analysis

If fitting software suggests
a distribution, it will be one
with many parameters.
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Fitting a distribution: Estimate the 
parameters

 X1,…,Xn samples of Independent Identically Distributed (IID) 
stochastic variables

 Sample mean

 Sample variance

 These are unbiased estimators!

ADS, lecture input analysis
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Evaluate goodness of fit 
heuristically: Q-Q plot

 Q-Q plot 
 Assume X1 ≤ X2 ≤…≤Xn

~ straight line `y=x’
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Goodness of fit heuristically: Q-Q 
plot
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Goodness of fit heuristically: Q-Q 
plot example

 F: U[0,1]
Data points 0.11; 0.29; 0.52; 0.69; 0.93

 F: U[0,1]
Data points 0.1; 0.11;1 0.3; 0.4;  0.9
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Evaluate goodness of fit: statistical 
tests

 Hypothesis H0:  
 the observations X1,X2,…,Xn follow distribution F

 Do we accept or reject this hypothesis?

 Chi-squared test
 Kolmogorov-Smirnov test

 Can be performed with R
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Statistical testing in general: Example

 Suppose we investigate the average number of hours 
gaming per week for CS students and we do not want 
collect numbers from all students.

 Our hypothesis is H0: avg = 25
 Suppose we sample five persons and find: 24, 24,24, 26, 

26 (avg 24.8)
 Compute average from sample and ask: `Do we believe 

H0?’
 Believe H0 if avg is close enough to 25

 How close is close enough?
 The above sample looks close enough, but how about: 20, 22, 

23, 24, 26 (avg 23)
 Can statistics help to decide?

ADS, lecture input analysis
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Statistical hypothesis testing

1. Formulate hypothesis H0
• For goodness-of-fit tests the observations 

X1,X2,…,Xn follow distribution F
2. Choose type of test
3. Determine significance α and decision rule
4. Compute test statistic and take decision

ADS, lecture input analysis
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Errors

Case
H0 true H0 false

Decision Accept H0 OK
Probability 1-α
Confidence level

Type 2

Reject  H0 Type 1 
Probability α
Significance

OK

ADS, lecture input analysis
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Chi-squared test

H0: the observations X1,X2,…,Xn follow distribution F
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Interval choice:
• No Ei<1
• No more than 20% has 

Ni<5 
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Chi-squared test (2)
 Suppose H0 is true

 Suppose we draw N values X1,X2,…,Xn from the probablity
distribution F

 Then we can compute

 Now X2 is a stochastic variable

 Statistical theory learns us Χ2 follows a  chi-squared-
distribution with df=K-1

 We expect it to be small, but it may by coincidence attain
a large value. 

 However, at some point we do not believe H0 anymore.

ADS, lecture input analysis
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If H0 is true  then Χ2 ~ chi-squared-
distribution with df=K-1

www.statsoft.com

Significance α

Χ2(df)α

Accept H0 if
Reject                    otherwise

)(22 df

ADS, lecture input analysis

Now, the probability
that we reject H0 while
it is true is only α
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Example

 Are the following values from U[0,1]
a) 0.07; 0.15; 0.24; 0.31; 0.42; 0.51; 0.55; 0.65; 0.73; 0.76; 

0.85; 0.97
b) 0.07; 0.08; 0.15; 0.18; 0.51; 0.52; 0.53; 0.58; 0.64; 0.68; 

0.74; 0.95

 Use intervals [0;0.25), [0.25;0.5), [0.5;0.75), [0.75;1] 
and α=5%.

ADS, lecture input analysis

Statistical table:
http://www.statsoft.com/Textbook/Distribution-Tables#chi
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Kolmogorov-Smirnov test

ADS, lecture input analysis
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Kolmogorov-Smirnov test (2)

ADS, lecture input analysis

𝐷௡
∗ ൌ sup௫ | 𝐹ሺ𝑥ሻ െ 𝐹௡ሺ𝑥ሻ|

If H0 is true the following holds

𝐻ሺ𝑡ሻ ൌ lim
௡→ஶ

𝑃 ሺ 𝑛𝐷௡
∗ ൑ 𝑡ሻ ൌ 1 െ ෍ሺെ1ሻ௜ିଵ𝑒ିଶ௜మ௧మ

ஶ

௜ୀଵ
𝐻ሺ𝑡ሻ defines a probability distribution
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After this lecture

 You know different methods for generating stochastic input 
variables for simulation

 You know different probability distributions
 You are able to fit a probability distribution to input data

ADS, lecture input analysis
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Covariance, correlation

22XY
),cov( :ncorrelatio

)))())((((),cov(  :covariance
:Y and X  variablesstochastic 2Given 

YX

YX
YEYXEXEYX


 



Example 1:  Die
•X = score
•Y =7 – score of same die

Example 2
• X score Dutch coin
•Y score Italian coin
•Where, head = 1, tail = 0

ADS, lecture input analysis
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Independence

Two stochastic variables X and Y are independent if:

 Continuous

 Discrete

BABYPAXPBYAXP , sets   )()() and ( 

yxyYPxXPyYxXP ,   )()() and ( 
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Independence (2)

)Yvar()Xvar()YXvar(
0)Y,Xcov(

)Y(E)X(E)XY(E


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

If X and Y independent stochastic variables:
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Wrap-up

 Previous lecture we studied some well-known probability
distribution.

 How do you know which probability distribution you should
use?
 From data
 Sometimes from theory

 This lecture:
 How to find out if you choose the correct distribution?

ADS, lecture input analysis
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Wrap-up

 Simulation need stochastic variables for input entities that
are subject to uncertainty
 Interarrival times of customers
 Time until machine breakdown

 Probability distributions are the best way to model these 
things:
 E.g. interarrival times from exponential distribution
 When your simulation program does: schedule new arrival

You have to generate a random number from the exponential
distribution to put the event in the event list with the right time-stamp

ADS, lecture input analysis


