

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

Algorithms for Decision Support

Output analysis

Stochastic variables occur in simulation at different places:

- 1. Input data are modeled as stochastic variables
 - E.g time until arrival of next customer

2. Generate random variables

- When you schedule a new Arrival event you have to generate a random number for the time delay
- 3. Analysis of results _____ This lecture

[Faculty of Science Information and Computing Sciences]

10/4/2019

Universiteit Utrecht

This lecture

Output: A simulation determines the value of some performance measures, e.g. production per hour, average queue length etc...

If your model contains random input values (e.g. customers interarrival times), your output, i.e., performance measures, are stochastic variables as well

In this lecture you learn basic statistical principles to analyse the output values of a simulation

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

10/4/2019

Output analysis

Quote from Law (simulation book):

`Simulation is computer-based
 statistical sampling
 experiment'

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

10/4/2019

some statistics in general **Estimators (unbiased)**

n

Assume X_1, \ldots, X_n samples of a stochastic variable X modelling given entity (length of bachelor students)

 $\overline{X}(n) = \frac{\sum_{i=1}^{N} X_i}{\sum_{i=1}^{N} X_i}$ Sample mean: (estimates µ of the underlying distribution)

Sample variance:
(estimates
$$\sigma^2$$
 of
the underlying distribution) $S^2(n) = \frac{\sum_{i=1}^{n} (X_i - \overline{X}(n))^2}{n-1}$

[Faculty of Science Information and Computing Sciences]

Universiteit Utrecht

10/4/2019

Strong law of large numbers

average dice value against number of rolls 6 aver age y=3.5 5 mean value 4 з 2 1 100 200 300 400 500 600 700 800 900 1000 0 trials [Faculty of Science Universiteit Utrecht Information and Computing Sciences] 10/4/2019 ADS, lecture output analysis

Strong law of large numbers

 $X_1,...,X_n$ samples from a stochastic variable X with $E(X) = \mu$

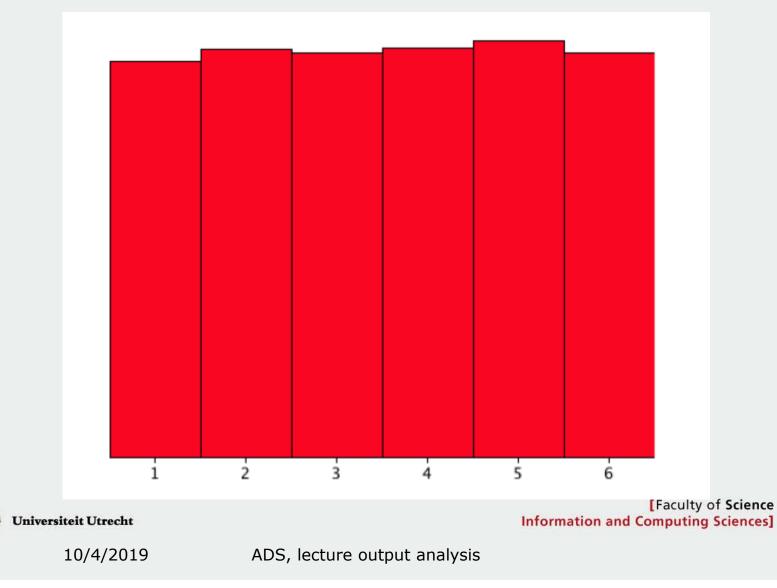
$X(n) \rightarrow \mu$ with probability 1 if $n \rightarrow \infty$

Universiteit Utrecht

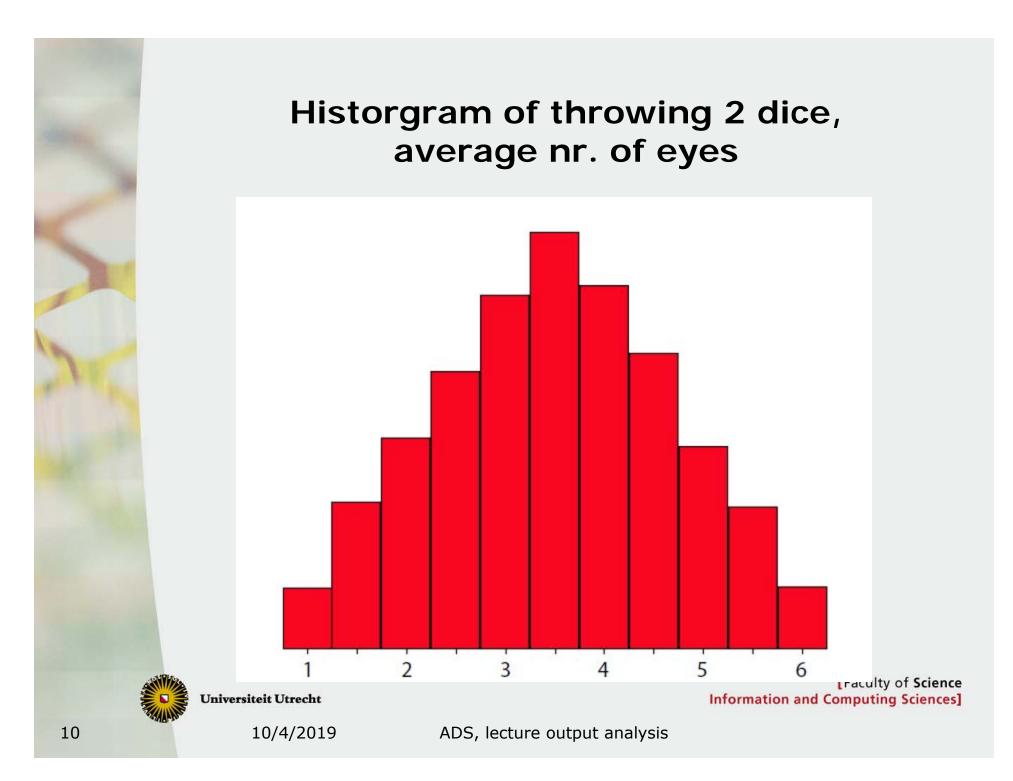
[Faculty of Science Information and Computing Sciences]

10/4/2019

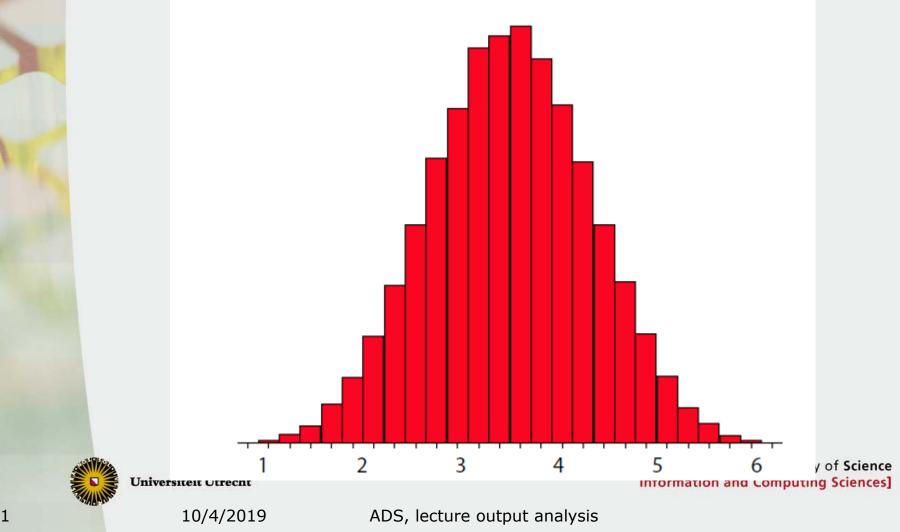
Histogram of throwing a die



9



Historgram of throwing 5 dice, average nr. of eyes



Central limit theorem

 $X_{1,...,X_n}$ Independent Identically Distributed stochastic variables, average μ , variance σ^2

$$Z_{n} = \frac{\overline{X}(n) - \mu}{\sqrt{\sigma^{2}/n}} = \frac{\sum_{i=1}^{n} X_{i} - n\mu}{\sigma\sqrt{n}}$$

if $n \rightarrow \infty$ then Z_n normally distributed N(0,1)

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

10/4/2019

Confidence interval: idea

Amount from coffee machine have variance $\sigma^2 = 4$.

- Samples: 170, 171, 171, 172, 173, 175, 175, 176, 178, 179
- Find an interval for the real average μ using central limit theorem
- Such an interval is called a **confidence interval**

What if σ^2 is unknown?

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

10/4/2019

Confidence interval

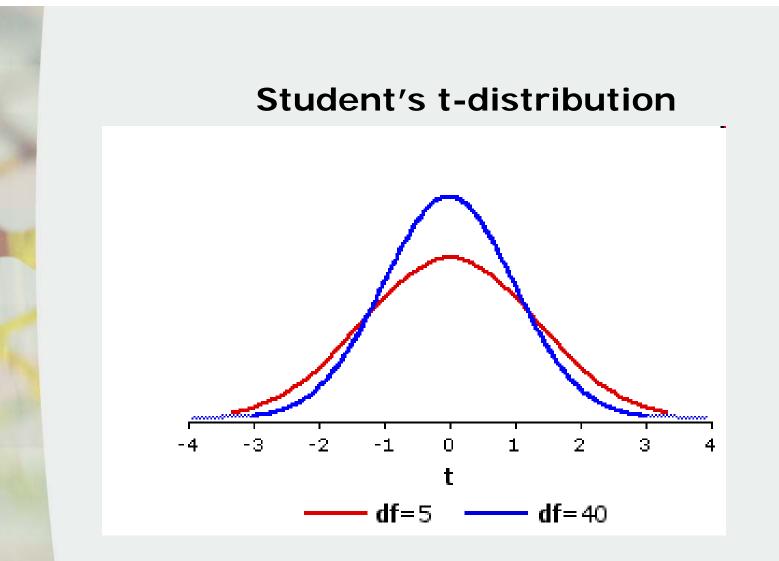
• X_1, \dots, X_n IID stochastic variables

$$t_n = \frac{X(n) - \mu}{\sqrt{S^2(n)/n}}$$

- Follows student's t-distribution with n-1 degrees of freedom
- Note σ² replaced by estimate
- Assumption (not too strict): X_i are normally distributed

Universiteit Utrecht

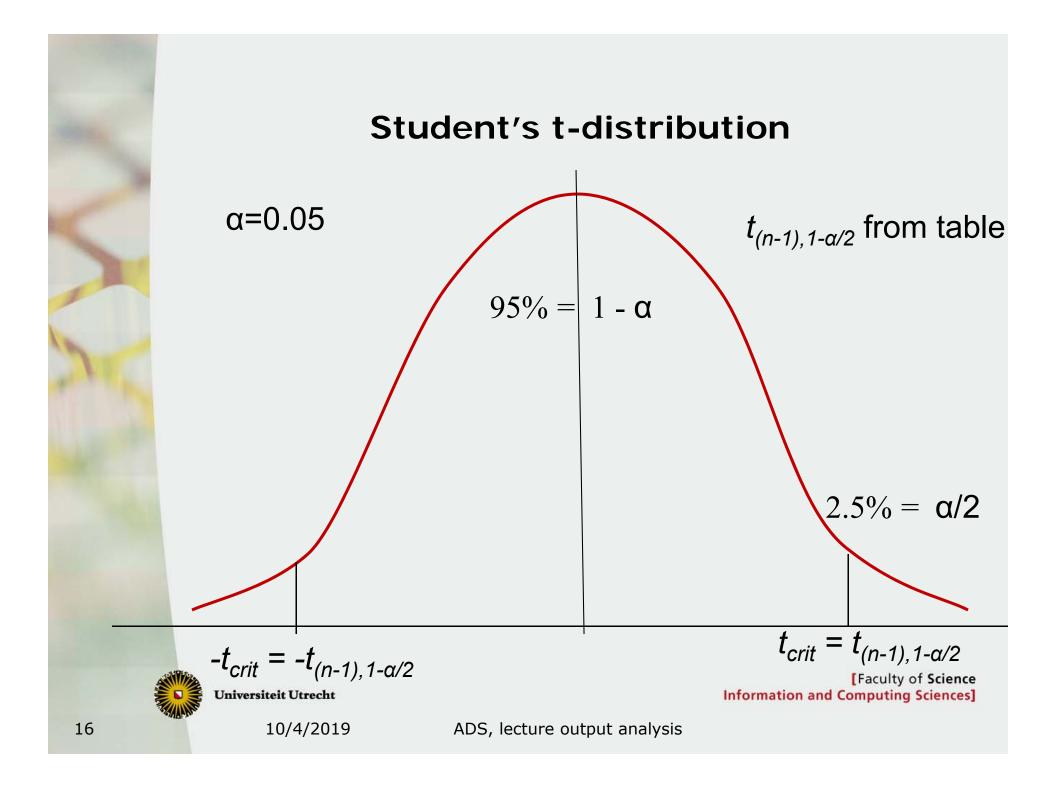
[Faculty of Science Information and Computing Sciences]



Statistical table:

- book of Law, copy on course website
- <u>http://www.statsoft.com/textbook/distribution-tables/#t</u>

10/4/2019



$$\begin{split} & P(-t_{n-1,1-\alpha_{/2}} \leq t_{n-1} \leq t_{n-1,1-\alpha_{/2}}) \approx 1 - \alpha \\ & P(-t_{n-1,1-\alpha_{/2}} \leq \frac{\bar{X}(n) - \mu}{\sqrt{S^2(n)_{/n}}} \leq t_{n-1,1-\alpha_{/2}}) \approx 1 - \alpha \\ & P(\bar{X}(n) - t_{n-1,1-\alpha_{/2}} \sqrt{\frac{S^2(n)_{/n}}{S^2(n)_{/n}}} \leq \mu \leq \bar{X}(n) + t_{n-1,1-\alpha_{/2}} \sqrt{\frac{S^2(n)_{/n}}{S^2(n)_{/n}}} \approx 1 - \alpha \end{split}$$

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

10/4/2019

Piared-t (1-α)100 % confidence interval

$$\left[\overline{\mathbf{X}}(n) - t_{n-1,1-\frac{\alpha}{2}}\sqrt{\frac{\mathbf{S}^{2}(n)}{n}}, \overline{\mathbf{X}}(n) + t_{n-1,1-\frac{\alpha}{2}}\sqrt{\frac{\mathbf{S}^{2}(n)}{n}}\right]$$

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

10/4/2019

Confidence interval: example

How many hours do computer science students spend on gaming?

Sample: 18, 25, 28, 21, 23, 18, 18, 26, 25, 21

95% confidence interval?

```
\overline{X} = 22.3
```

 $t(9)_{0.025} = 2.262$

 $S^2(10) = 13.34$

95% confidence interval:

 $[22.3 - 2.262\sqrt{\frac{13.34}{10}}, 22.3 + 2.262\sqrt{\frac{13.34}{10}}] = [19.69, 24.91]$

This means that with 95 % probabilitity the average number of hours that cs students spend on gaming is within the interval [19.69,24.91]

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

10/4/2019

Paired-t Confidence interval (2)

$$\left[\overline{\mathbf{X}}(n) - t_{n-1,1-\frac{\alpha}{2}}\sqrt{\frac{\mathbf{S}^{2}(n)}{n}}, \overline{\mathbf{X}}(n) + t_{n-1,1-\frac{\alpha}{2}}\sqrt{\frac{\mathbf{S}^{2}(n)}{n}}\right]$$

What does this mean?

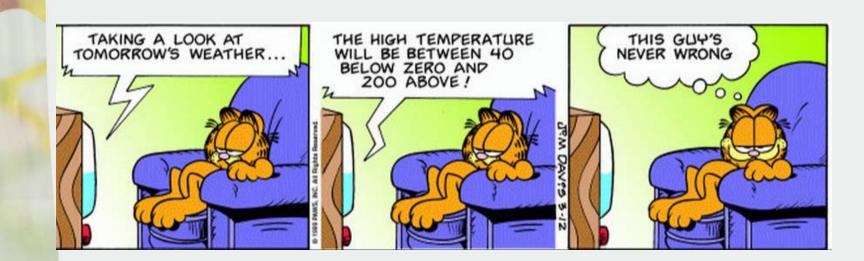
 $(1-\alpha)100$ % confidence, μ is in the interval with probability 1- α ,

 $t_{n-1,1-\alpha/2}$ converges to $z_{1-\alpha/2}$ for large *n*

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

10/4/2019



End some statistics in general

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

10/4/2019

Stochastic variables occur in simulation at different places:

- 1. Input data are modeled as stochastic variables
 - E.g time until arrival of next customer

2. Generate random variables

- When you schedule a new Arrival event you have to generate a random number for the time delay
- 3. Analysis of results _____ This lecture

[Faculty of Science Information and Computing Sciences]

Universiteit Utrecht

10/4/2019

Types of simulation w.r.t. output analysis

Terminating:

Endpoint of simulation run is defined by your model.

Non-terminating

Examples?

Terminating or non-terminating for the same system?

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

10/4/2019

Types of simulation w.r.t. output analysis: examples

Terminating:

- Bank open 9AM to 5PM, ends after departure last customer
- Production line, time to produce 1000 aircraft

Non-terminating

- Continuous production line
- Helpdesk for internet provider (if 24/7)
- Emergency department

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

Analysis: first consider terminating simulation

- X_i output result, value of a certain performance measure, of simulation run i Example
 - Simulation of the orthopedia policlinic department in a hospital.
 - X_{ik} is waiting time of patient k in run i.
 - X_i average waiting time in run i

run 1:
$$X_{11}, X_{12}, \dots, X_{1j}, \dots$$
 avg = X_1
run 2: $X_{21}, X_{22}, \dots, X_{2j}, \dots$ avg = X_2
:

$$\operatorname{run} \mathbf{n} : X_{n1}, X_{n2}, \dots, \quad X_{nj}, \dots \qquad \operatorname{avg} = X_n$$

[Faculty of Science Information and Computing Sciences]

Universiteit Utrecht

10/4/2019

Terminating simulation

 The X_i 's can be considered as Independent Identically Distributed (IID) stochastic variables
 We want to find the value µ = E(X)

the orthopedia policlinic department in a hospital.

- X average waiting time in a simulation run
 - What is the expected value of X?

Statistical theory from previous slides applies

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

10/4/2019

Terminating simulation (3) Estimate for average $\overline{X}(n) = \frac{1}{n} \sum_{i=1}^{n} X_i$ $\sum_{i=1}^{n} (X_i - \overline{X}(n))^2$ Sample variance $S^2(n) = \frac{i=1}{n-1}$

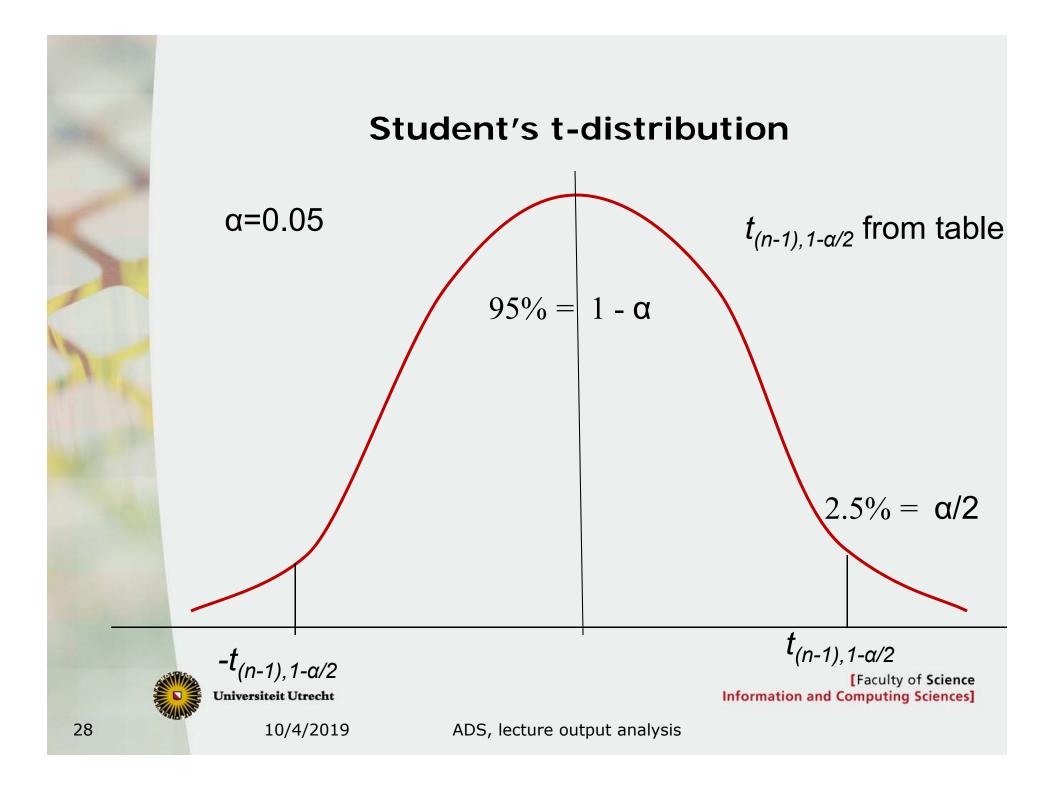
(1-a)100 % confidence interval; $\mu=E(X)$ is in the interval with probability 1-a:

$$\overline{X}(n) - t_{n-1,1-\frac{\alpha}{2}}\sqrt{\frac{S^2(n)}{n}}, \overline{X}(n) + t_{n-1,1-\frac{\alpha}{2}}\sqrt{\frac{S^2(n)}{n}}$$

So from the simulation results X_1, X_2 , ...we can conclude that with probability $(1 - \alpha)$ the average of the measure X is in the above interval

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

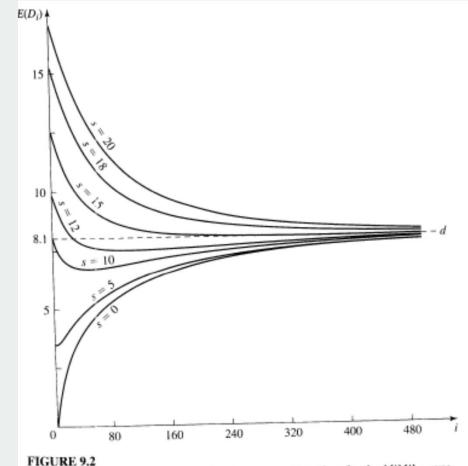


Non-terminating simulation: Steady state (example)

M|M|1 queue (single server queue with exponential inter arrival and service times) and $\rho=0.9$

D_i: waiting time of customer *i*

s number of customers present at time 0



 $E(D_i)$ as a function of *i* and the number in system at time 0, *s*, for the *M/M/*1 queue with $\rho = 0.9$

[Faculty of Science Information and Computing Sciences]

Universiteit Utrecht

10/4/2019

Steady state

 Y_i : i-th realization of performance measure Y within a simulation run (e.g. the waiting time of the i-th customer) I: initial conditions

Consider the conditional distribution function of Y_i given IThe simulation converges to a steady state if:

$$\begin{split} F_i(y \mid I) &= P(Y_i \leq y \mid I) \\ F_i(y \mid I) \xrightarrow{i \to \infty} F(y) \text{ for all } y, I \end{split}$$

In the steady state the *probability distribution* of *Y* is constant and independent from the initial conditions *I NB: Y* itself is in general not constant

Universiteit Utrecht

10/4/2019

ADS, lecture output analysis

[Faculty of Science Information and Computing Sciences]

Steady state

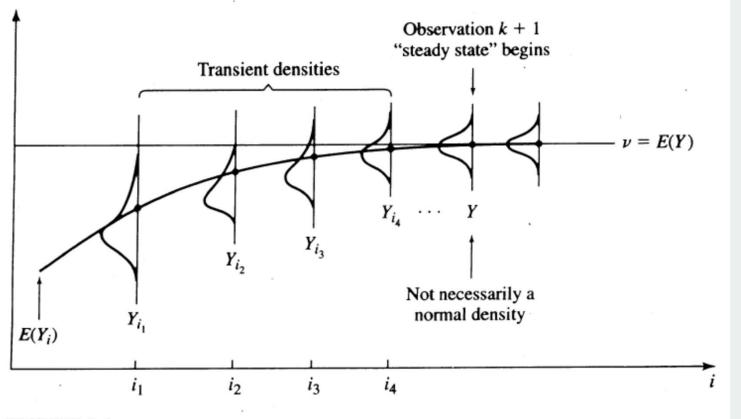


FIGURE 9.1

Transient and steady-state density functions for a particular stochastic process Y_1, Y_2, \ldots and initial conditions *I*.

f Science iciences]

Properties of steady state formulations

The theoretical utilization degree is less than 100% All input distributions are constant

Examples steady state:

- Helpdesk with interarrival times exp(3 mins), service times exp(2 mins)
- Examples without steady state:
 - Helpdesk with interarrival times exp(2 mins), service times exp(3 mins)
 - 📕 Uithoflijn

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

10/4/2019

Question

Suppose you consider the Uithoflijn simulation as nonterminating and we use runs of length 3 months.

- Does it have a steady state? Explain.
 - No, passenger arrival rates vary
- If not, how could you change the model to obtain a steady state simulation?
 - \blacksquare X_{ij} : average passenger waiting time on day j in run i
 - X_{ij} : average passenger waiting time during daily peak hour 8:00-9:00 on day *j* in run *i*

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

10/4/2019

If you do not have a steady state you might have:

Time axis can be divided into time interval cycles.

- One week in call center
- One week in an emergency department
- The daily peak hour 8:00-9:00 for the Uithoflijn
- Y^C_i random variable on *i-th* cycle
 - e.g. number of calls with a waiting time longer than 15 minutes in week *i* a call center
- $Y^{C}_{1}Y^{C}_{2}Y^{C}_{3}$... has a steady state distribution F^{C} .

Steady cycle

[Faculty of Science Information and Computing Sciences]

Universiteit Utrecht

Non-terminating simulation

Steady stateSteady cycleOthers

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

10/4/2019

Non terminating simulation

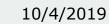
We assume a steady state or steady cycle

Methods

- Separate runs
- Batch means

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]



Non-terminating simulation

Replication/deletion approach, i.e. separate runs of length K:

Initialization effect i.e. warm-up period (K₀)

Either very large runs or

Known confidence interval from:

$$X_{i} = \frac{\sum_{j=K_{0}+1}^{K} X_{i,j}}{K - K_{0}}$$

| Where X_{ij} is the <u>*j-th*</u> observation in run *i*

Χ

Universiteit Utrecht

[Faculty of Science] Information and Computing Sciences]

Non-terminating simulation (2)

Batch means method (sub runs):

- Correlation
- X_iis observation j
- Either very large runs or
- Assume
 - Covariance stationary:
 - Weak independence:

$$\operatorname{cov}(X_j, X_{j+k})$$
 independent of $\operatorname{cov}(X_j, X_{j+n}) \to 0 \quad (n \to \infty)$

Confidence interval from

$$Y_i = \frac{\sum_{j=1}^{K} X_{(i-1)K+j}}{K}$$

[Faculty of Science Information and Computing Sciences]

Universiteit Utrecht

10/4/2019

Non-terminating simulation (3)

$$\frac{S^2(n)}{n} \text{ is replaced by } \frac{S^2(n)}{n} + 2\frac{C(n)}{n^2}$$

with $C(n) = \sum_{i=1}^{n-1} (Y_i - \overline{Y})(Y_{i+1} - \overline{Y})$

$$\bar{Y}(n) - t_{n-1,1-\alpha/2} \sqrt{\frac{S^2(n)}{n} + \frac{2C(n)}{n^2}}, \bar{Y}(n) + t_{n-1,1-\alpha/2} \sqrt{\frac{S^2(n)}{n} + \frac{2C(n)}{n^2}}$$

[Faculty of Science Information and Computing Sciences]

Universiteit Utrecht

10/4/2019

Warm up period ->Steady state

run 1:
$$X_{11}, X_{12}, \dots, X_{1j}, \dots$$

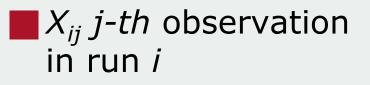
run 2: $X_{21}, X_{22}, \dots, X_{2j}, \dots$
:
run n: $X_{n1}, X_{n2}, \dots, X_{nj}, \dots$
average : $\overline{X}_1, \overline{X}_2, \dots, \overline{X}_n, \dots$

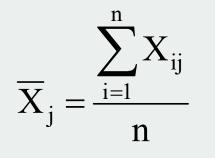
Universiteit Utrecht

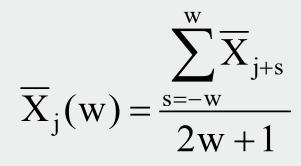
[Faculty of Science Information and Computing Sciences]

10/4/2019

Warm up period ->Steady state







Moving average should converge

[Faculty of Science Information and Computing Sciences]

10/4/2019

Universiteit Utrecht

Warm-up period: example

Exponential interarrival times with mean 1 minute
Machine processing times uniform [0.65,0.7] minutes
Inspection times uniform [0.75,0.8] minutes
Machine: lifetime exp(6 hours) and repair times uniform 8 to 12 minutes.

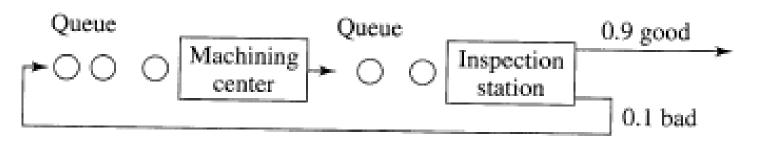
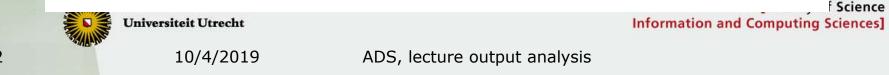
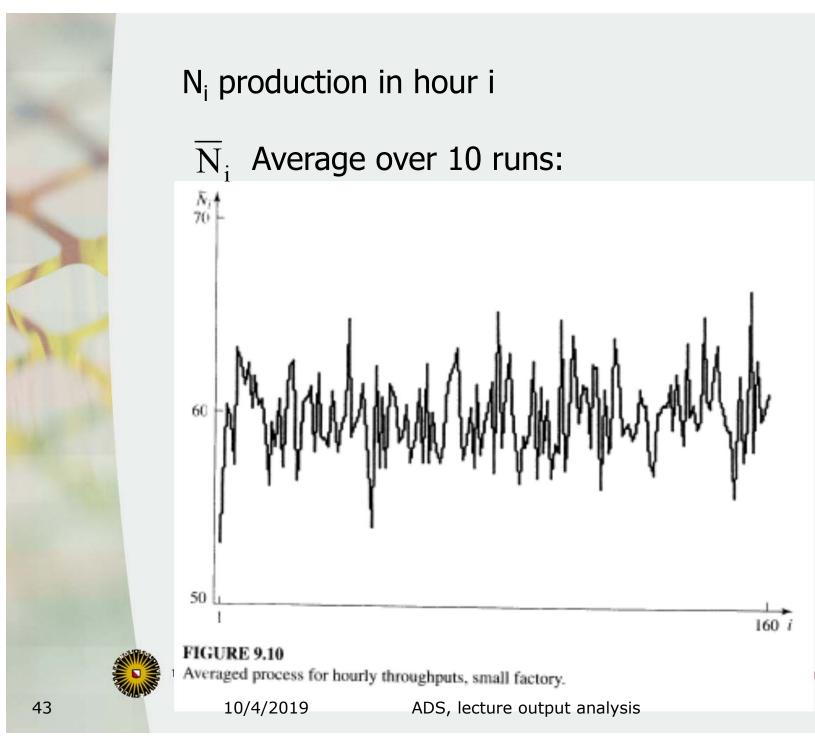


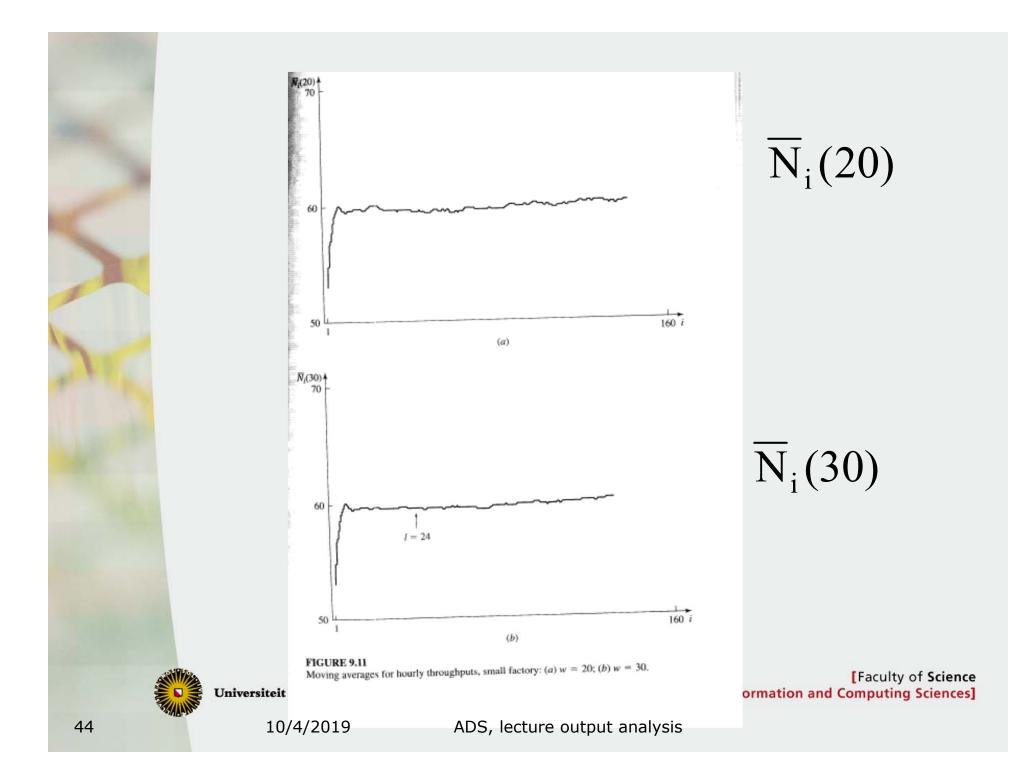
FIGURE 9.9

Small factory consisting of a machining center and an inspection station.





Faculty of Science mputing Sciences]



Multiple measures of performance

k performance measures, s=1,2,...,k

If I_s confidence interval for μ_s with confidence level $1 - \alpha_s$ Then (Bonferroni inequality)

$$P(\mu_s \in I_s \text{ for all } s = 1, 2, ..., k) \ge 1 - \sum_{s=1}^{n} \alpha_k$$

Example:

k = 2, performance measures

- average waiting time
- busy factor of server
- If we have 95% confidence intervals for each single measures we overall have 90% confidence

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

1

Comparing systems: example

- Arrival: Poisson 1 per minute
- Two types of ATM's:
 - Zippy: service time exp(0.9 min)
 - Klunky: service time exp(1.8 min)
- One Zippy or 2 Klunkies?
 - Cost are equal
 - Average customer waiting time matters
 - Since waiting is more annoying then being served, we consider pure waiting time and exclude service time

[Faculty of Science Information and Computing Sciences]

10/4/2019

Universiteit Utrecht

Comparing systems (2)

Zippy: X_{1j} (j=1,..,n) average delay run j

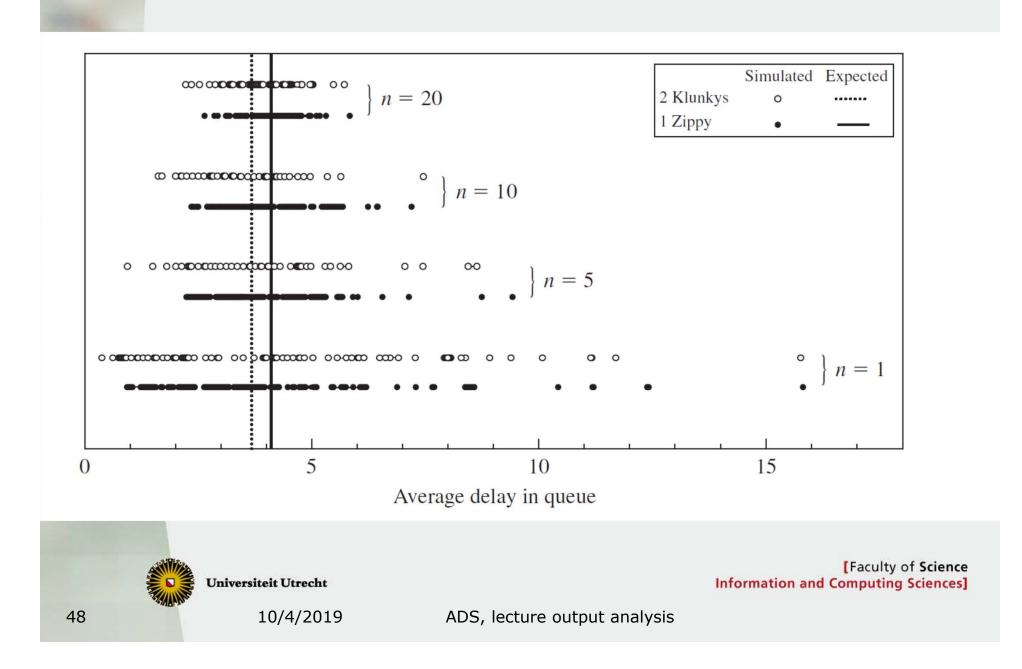
- 2 Klunkies: X_{2j} (j=1,..,n) average delay run j
- Compare: perform the following experiment 100 times to collect 100 votes:
 - Compare average delay of n runs with Zippy to average delay of n runs with 2 Klunkies. Vote (Zippy/2Klunkies)

n (# runs)	% Zippy
1	52
5	43
10	38
20	34

[Faculty of Science Information and Computing Sciences]

Universiteit Utrecht

10/4/2019 AD



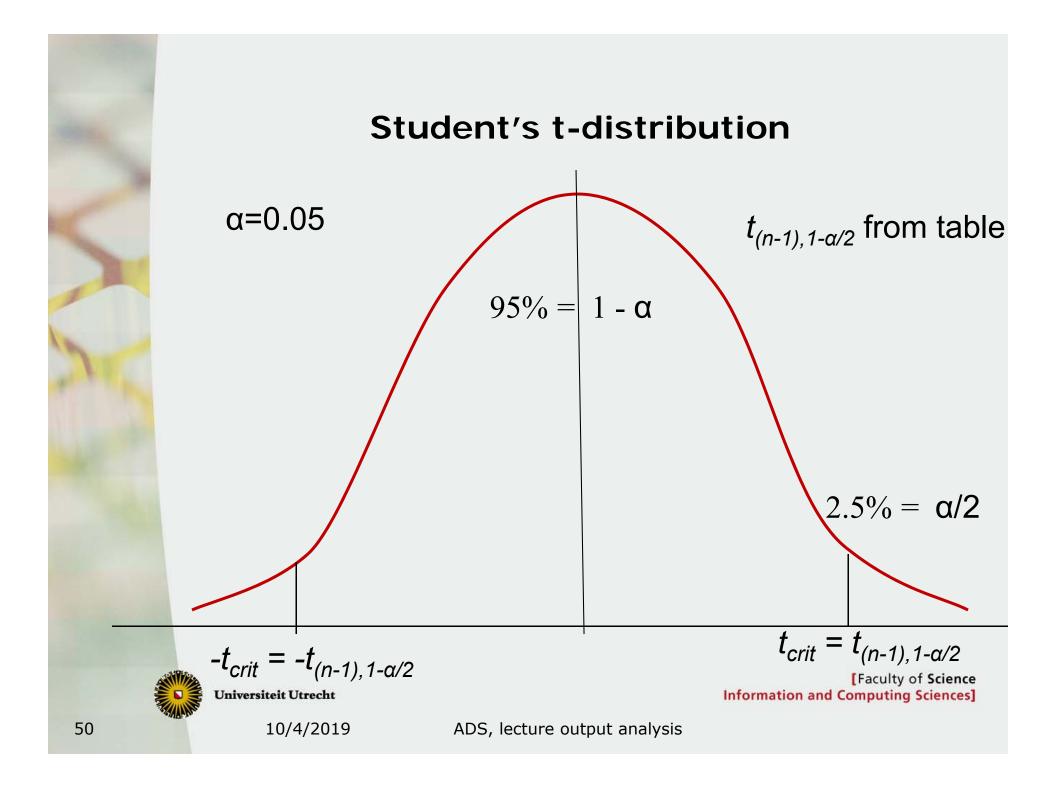
Comparing two systems: use paired tconfidence interval

 $Z_j = X_{1j} - X_{2j} \qquad \mu = \mathsf{E}(\mathsf{Z})$ Assume X_{1i} and X_{2i} follow normal distribution. $\overline{Z}(n) = \frac{\sum_{j=1}^{n} Z_j}{n} \qquad S_Z^2(n) = \frac{\sum_{j=1}^{n} [Z_j - \overline{Z}(n)]^2}{n-1}$ $\frac{\overline{Z}(n) - \mu}{\sqrt{\frac{S_Z^2(n)}{n}}} \text{ follows t-distribution with } n-1 \text{ df}$

Confidence interval: $\overline{Z}(n) \pm t_{n-1,1-\alpha/2} \sqrt{\frac{S_Z^2(n)}{n}}$

[Faculty of Science Information and Computing Sciences]

Universiteit Utrecht



Comparing two systems: use paired tconfidence interval

confidence interval: $\overline{Z}(n) \pm t_{n-1,1-\alpha/2} \sqrt{\frac{S_Z^{-2}(n)}{n}}$

If 0 in confidence interval, no significant difference

If left side of interval
$$\overline{Z}(n) - t_{n-1,1-\alpha/2} \sqrt{\frac{S_Z^2(n)}{n}} > 0$$
, then X_1 larger than X_2
If right side interval $\overline{Z}(n) + t_{n-1,1-\alpha/2} \sqrt{\frac{S_Z^2(n)}{n}} < 0$ then X_1 smaller than X_2

[Faculty of Science Information and Computing Sciences]

 $Z_j = X_{1j} - X_{2j}$

Universiteit Utrecht

10/4/2019

Background: Paired t-test (two-sided) Used in course Evolutionary Computing

> $Z_{i} = X_{1i} - X_{2i}$ $\mu = E(Z)$ $H_0: \mu = 0$ $H_1: \mu \neq 0$ $\overline{Z}(n) = \frac{\sum_{j=1}^{n} Z_j}{\sum_{j=1}^{n} Z_j}$ n $S_{Z}^{2}(n) = \frac{\sum_{j=1}^{n} [Z_{j} - \overline{Z}(n)]^{2}}{1}$ [Faculty of Science Information and Computing Sciences]

Universiteit Utrecht

10/4/2019

ADS, lecture output analysis

52

Paired t-test

If H₀ is true:

 $t_{obs} = \frac{\overline{Z}(n)}{\sqrt{\frac{S_Z^2(n)}{n}}}$ follows a t-distribution with *n*-1 df We want confidence level $1 - \alpha$

So we accept H_0 when $-t_{n-1,1-\frac{\alpha}{2}} \leq t_{obs} \leq t_{n-1,1-\frac{\alpha}{2}}$

and reject otherwise.

[Faculty of Science Information and Computing Sciences]

10/4/2019

Universiteit Utrecht

Relation to paired-*t* confidence interval Accept H_0 : $\mu = E(Z) = 0$

if and only if

$$-t_{n-1,1-\frac{\alpha}{2}} \leq \frac{\overline{Z}(n)}{\sqrt{\frac{S_{Z}^{2}(n)}{n}}} \leq t_{n-1,1-\frac{\alpha}{2}}$$

if and only if

0 is in the paired t-confidence interval

Paired t-test: p-value

p-value (or significance): Indicates: how extreme is t_{obs} ?

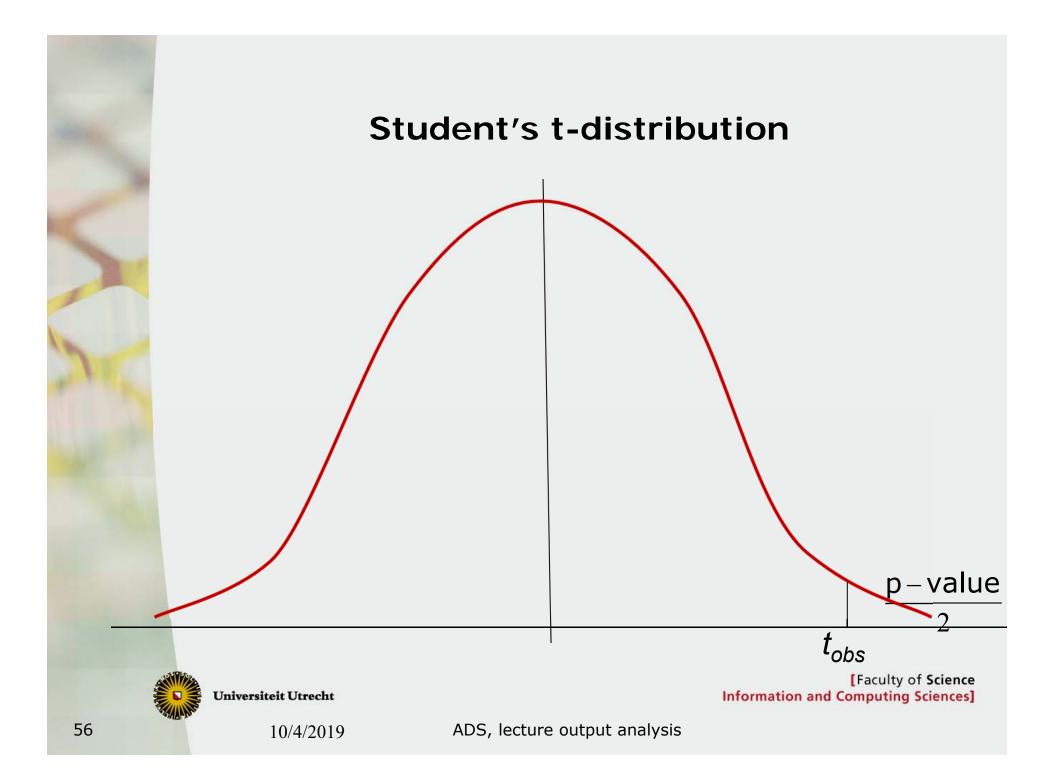
> p - value = 2 min($P(T \ge t_{obs}), P(T \le t_{obs})$), where T follows a t - distribution with n-1 df.

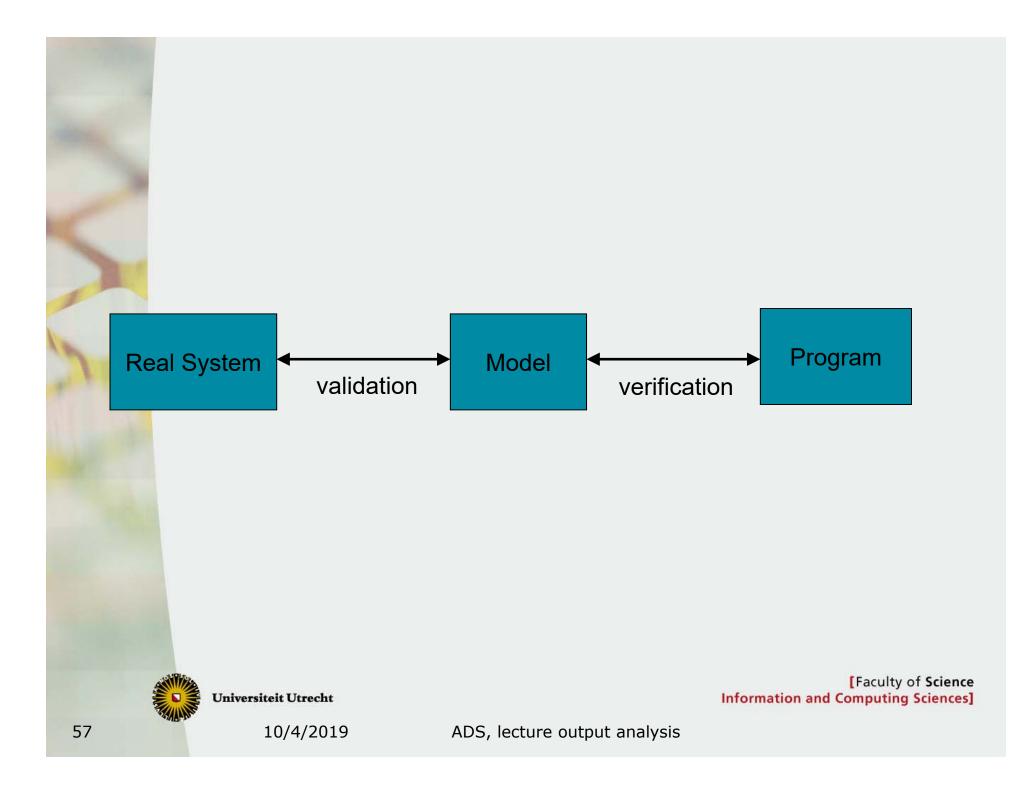
We reject H_0 if p < 0.05

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

10/4/2019





58

Validate output

 $\mu_{s} : system$ $\mu_{m} : model$ $\hat{\mu}_{m} : result of simulation$ $|\hat{\mu}_{m} - \mu_{s}| \le |\hat{\mu}_{m} - \mu_{m}| + |\mu_{m} - \mu_{s}|$ $|\hat{\mu}_{m} - \mu_{m}| : good experimentation$ $|\mu_{m} - \mu_{s}| : validation$

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

Wrap-up example

Service desk of CoolGreen is opened 8AM-9PM
5 simulation runs to measure average waiting time

run	Avg waiting time
X ₁	10
X ₂	7
X ₃	9
X ₄ X ₅	12
X ₅	12

Find 95% confidence interval?

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

10/4/2019

Recall: Terminating simulations Estimate for average $\overline{X}(n) = \frac{1}{n} \sum_{i=1}^{n} X_i$ $\sum_{i=1}^{n} (X_i - \overline{X}(n))^2$ Sample variance $S^2(n) = \frac{i=1}{n-1}$

(1-a)100 % confidence interval; $\mu=E(X)$ is in the interval with probability 1-a:

$$\overline{X}(n) - t_{n-1,1-\frac{\alpha}{2}}\sqrt{\frac{S^2(n)}{n}}, \overline{X}(n) + t_{n-1,1-\frac{\alpha}{2}}\sqrt{\frac{S^2(n)}{n}}$$

So from the simulation results X_1, X_2 , ...we can conclude that with probability $(1 - \alpha)$ the average of the measure X is in the above interval

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

Wrap up example

The estimate of the average $\overline{X}(5) = 10$.

Sample variance $S^2(5) = \frac{0+9+1+4+4}{4} = \frac{9}{2}$

From the statistical table <u>http://www.cs.uu.nl/docs/vakken/mads/tabelTandNormalD</u> <u>istribution.pdf</u> you obtain $t_{4 0.975} = 2.776$

The 95% confidence interval is

$$10 - 2.776\sqrt{\frac{9/2}{5}}, 10 + 2.776\sqrt{\frac{9/2}{5}} = [7.366, 12.634]$$

So from these simulation results we can conclude that with probability 95% the average waiting time is in the interval [7.366,12.634]

[Faculty of Science Information and Computing Sciences]

10/4/2019

Universiteit Utrecht

Wrap-up example (2)

CoolGreen considers new computer system.Simulation is performed again

Old		New		
run	Avg waiting time	run	Avg waiting time	
X_{11}	10	X ₂₁	6	
X ₁₂	7	X ₂₂	5	
X ₁₃	9	X ₂₃	7	
X ₁₄	12	X ₂₄	10	
X ₁₅	12	X ₂₅	11	

Is the new situation better?

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

10/4/2019

Recall: Comparing two systems: use paired t-confidence interval

$$Z_{j} = X_{1j} - X_{2j} \qquad \mu = \mathsf{E}(\mathsf{Z})$$
Assume X_{1j} and X_{2j} follow normal distribution.

$$\overline{Z}(n) = \frac{\sum_{j=1}^{n} Z_{j}}{n} \qquad S_{Z}^{2}(n) = \frac{\sum_{j=1}^{n} [Z_{j} - \overline{Z}(n)]^{2}}{n-1}$$

$$\frac{\overline{Z}(n) - \mu}{\sqrt{\frac{S_{Z}^{2}(n)}{n}}}$$
follows t-distribution with $n-1$ df

$$\sqrt{\frac{S_{Z}^{2}(n)}{n}}$$

Confidence interval: $\overline{Z}(n) \pm t_{n-1,1-\alpha/2} \sqrt{\frac{1}{2}}$

R [Faculty of Science Information and Computing Sciences]

Universiteit Utrecht

10/4/2019

AD

Wrap up example (2)

We obtain $Z_1 = 4, Z_2 = 2, Z_3 = 2, Z_4 = 2, Z_5 = 1$ The estimate of the average $\overline{Z}(5) = 2.2$.
Sample variance $S^2(5) = \frac{1.8^2 + 0.02^2 + 0.02^2 + 0.02^2 + 1.2^2}{4} = \frac{4.8}{4} = 1.2$ From the statistical table
<u>http://www.cs.uu.nl/docs/vakken/mads/tabelTandNormalD</u>
<u>istribution.pdf</u> you obtain $t_{4 \ 0.975} = 2.776$ The 95% confidence interval is $\left[2.2 - 2.776 \sqrt{\frac{1.2}{5}}, 2.2 + 2.776 \sqrt{\frac{1.2}{5}} \right] = [0.840, 3.559]$ Since this interval contains only positive values we can

conclude with confidence 95% that the average waiting time is scenario 1 is larger

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

Elements of output analysis required in simulation assignment

- Questions to be answered by the experiments
- Description of the investigated scenarios including all relevant parameter settings and performance measures
- Number of runs
- Tables (at least the most interesting ones)
- Graphs
- Observations from your tables and graphs
- Statistical analysis.
 - The minimum requirement is to find confidence intervals for comparing two different scenarios. You can make a selection of the most interesting combinations (select at least 10).
 - Additional analysis such as Comparisons with a standard', All pairwise comparisons, or Ranking and selection are optional.

[Faculty of Science Information and Computing Sciences]

10/4/2019

Universiteit Utrecht

There is no standard output analysis

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

10/4/2019

Learning some Dutch on graphs

Tuurplaatje:

Picture at which you stare for a long time wondering what is going on

Stuurplaatje:

Graph that gives you insight

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

10/4/2019

Last lecture:

My estimate: Some of you found last lecture a bit abstract and difficult

But you have to learn the material

- What can you do:
 - Self-study of material is a regular course activity
 - Do not hesitate to ask questions:
 - The most stupid question is the one you do not ask
 - You are never the only one with that question. Your fellow students will be grateful to you.
- What I will do to help:
 - Add reading material
 - Add some remarks (small examples) to the slides

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

10/4/2019

Welch confidence interval (modified two sample-t confidence interval)

 n_1 observations X_{1j} , n_2 observations X_{2j}

Not paired, independent

If both samples do not have the same variance

Assume Normally distributed

Examples

- CoolGreen has 5 runs for the old situation and 20 simulation runs for the new situation
- Airport wants to build new runway and want to compare the simulation of extended airport to real world observations. Case 1 gives a few real-worlds observations, e.g. $(n_1=5)$ but the number of simulations for the new situation is larger, e.g. $n_2=50$

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

10/4/2019

Welch confidence interval

$$\frac{\bar{X}_1(n_1) - \bar{X}_2(n_2) - \mu_{12}}{S_{\bar{X}_1 - \bar{X}_2}} \quad \text{t-distribution with } q \text{ df}$$

$$S_{\bar{X}_1 - \bar{X}_2} = \sqrt{\frac{S_{X_1}^2}{n_1} + \frac{S_{X_2}^2}{n_2}}$$

confidence interval for $\mu_{12} = E (X_1 - X_2)$:

$$\bar{X}_1(n_1) - \bar{X}_2(n_2) \pm t_{q,1-\alpha/2} S_{\bar{X}_1-\bar{X}_2}$$

with
$$q = \frac{\left[\frac{S_{X_1}^2}{n_1} + \frac{S_{X_2}^2}{n_2}\right]^2}{\frac{\left[\frac{S_{X_1}^2}{n_1}\right]^2}{n_1 - 1} + \frac{\left[\frac{S_{X_2}^2}{n_2}\right]^2}{n_2 - 1}}$$

[Faculty of Science Information and Computing Sciences]

Universiteit Utrecht

10/4/2019

More than two systems: general idea

Based on the Bonferroni inequality:

k systems, s=1,2,...,k

Is confidence interval for μ_s with confidence level $1 - \alpha_s$ (s=1,2,...,k)

Then

$$P(\mu_s \in I_s \text{ for all } s = 1, 2, ..., k) \ge 1 - \sum_{s=1}^{k} \alpha_k$$

So

If we have c confidence interval with confidence level $1 - \frac{\alpha}{c}$ their combintation has confidence level $1 - \alpha$

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

10/4/2019

Comparison with a Standard

- Let 1 be the standard systems and 2,3,...,k the other variants.
- Construct k-1 confidence intervals for

 $\mu_2-\mu_1$, $\mu_3-\mu_1$, ... , $\mu_k-\mu_1$

Or alternatively $\mu_1 - \mu_2$, $\mu_1 - \mu_3$, ..., $\mu_1 - \mu_k$

each with confidence level

$$-\frac{\alpha}{k-1}$$

Overall confidence level $1 - \alpha$

Example

10/4/2019

CoolGreen has as other option: dedicated employee. This results in $X_{31}, X_{32}, ..., X_{35}$. If [1.5;6] is 95% confidence interval for $\mu_1 - \mu_3$, then overall confidence is 90%. Note that in the example we computed interval for $\mu_1 - \mu_2$. [Faculty of Science

Example we computed interval for $\mu_1 - \mu_2$. [Faculty of Science Universiteit Utrecht Information and Computing Sciences]

TABLE 10.5

Average total cost per month for five independent replications of each of the five inventory policies, with sample means and variances

j	X_{1j}	X_{2j}	X_{3j}	X_{4j}	X_{5j}
1	126.97	118.21	120.77	131.64	141.09
2	124.31	120.22	129.32	137.07	143.86
3	126.68	122.45	120.61	129.91	144.30
4	122.66	122.68	123.65	129.97	141.72
5	127.23	119.40	127.34	131.08	142.61
Mean	125.57	120.59	124.34	131.93	142.72
Variance	4.00	3.76	15.23	8.79	1.87

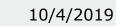
TABLE 10.6

Individual 97.5 percent confidence intervals for all comparisons with the standard system ($\mu_i - \mu_1$, i = 2, 3, 4, 5); * denotes a significant difference

		Paired-t		Welch		
i	$\overline{X}_i - \overline{X}_1$	Half-length	Interval	Half-length	Interval	
2	-4.98	5.45	(-10.44, 0.48)	3.54	(-8.52, -1.44)*	
3	-1.23	7.58	(-8.80, 6.34)	6.21	(-7.44, 4.97)	
4	6.36	6.08	(0.27, 12.46)*	4.55	(1.82, 10.91)*	
5	17.15	3.67	(13.48, 20.81)*	6.15	(14.07, 20.22)*	

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]



All pairwise comparisons

k alternatives

Construct $\frac{k(k-1)}{2}$ confidence intervals for all pairs

$$\mu_{i_2} - \mu_{i_1}$$

each with confidence level

$$1 - \frac{\alpha}{[k(k-1)]/2}$$

Overall confidence level
$$1 - \alpha$$

[Faculty of Science] Information and Computing Sciences]

Universiteit Utrecht

10/4/2019

Selecting the best of k systems

Section 10.4.1 of Law (see course website).Optional challenge

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

10/4/2019

Variance reduction

Use common random numbers for X₁ and X₂
 Apply standard (paired-t) confidence interval

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

10/4/2019

Wrap up

Output: A simulation determines the value of some performance measures, e.g. production per hour, average queue length etc...

In this lecture you learned basic statistical principles to analyse the output values of a simulation

After this lecture you understand:

- Terminating and non-terminating simulations
- Steady state
- Confidence intervals
- Comparison of different systems

Universiteit Utrecht

[Faculty of Science] Information and Computing Sciences]

