
Exercises NP-completeness

Exercise 1 Knapsack problem
Consider the Knapsack problem. We have n items, each with weight aj (j = 1, ..., n)
and value cj (j = 1, ..., n) and an integer B. All aj and cj are positive integers. The
question is to find a subset of the items with total weight at most B and maximal value.

a) Formulate the decision problem corresponding to Knapsack.

b) Show that Knapsack belongs to NP.

c) Show that Knapsack is NP-complete.

(a) The decision problem corresponding to Knapsack is defined as follows. Given an
instance of Knapsack and a threshold y, does there exist a valid solution of Knapsack
with objective value ≥ y?

(b) A ‘yes’ solution can be encoded in an array in O(n) space: just put a ‘1’ if the item
is present in the solution, and a ‘0’ otherwise. Checking the feasibility requires adding the
sizes of the items in the solution and comparing this to B; this can be done in O(n) time.
Checking whether the answer is ‘yes’ requires adding the values of the items in the solution
and comparing this to y; this can be done in O(n) time.

(c) Consider any instance of Subset Sum; it consists of t nonnegative integers b1, . . . , bt
and a target value Q. We construct the following special instance of Knapsack: each
integer bj (j = 1, . . . , t) corresponds to an item j with size aj = bj and value cj = bj; we
choose the size B of the knapsack equal to Q. Remark here that, since the sizes and values
of the items are equal, it is optimal to fill the knapsack as much as possible. To obtain
the decision variant, we add the threshold y and make it equal to Q. We will show that
there exists a feasible solution to the instance of Subset Sum if and only if there exists a
feasible solution to the instance of Knapsack with value ≥ y.

First suppose that there exists a subset S of {1, . . . , t} such that∑
j∈S

bj = Q.

Consider the solution of Knapsack in which we put the items in S in the knapsack. Since∑
j∈S

aj =
∑
j∈S

bj = Q = B and
∑
j∈S

cj =
∑
j∈S

bj = Q = y,

we find that this solution is a ‘yes’ solution of the decision variant of Knapsack.
Suppose now that we have a ‘yes’ solution of the decision variant of Knapsack; let S

be the corresponding subset of {1, . . . , t}. Then we know that∑
j∈S

aj =
∑
j∈S

bj ≤ B = Q and
∑
j∈S

cj =
∑
j∈S

bj ≥ y = Q,

1



which implies that
∑

j∈S bj = Q, and hence we can find a ‘yes’ solution for Subset Sum
by taking the integers bj for which j ∈ S.

Exercise 2. NP-completeness of Vertex Cover
We are given an undirected graph (V,E). A vertex cover is a subset W ⊆ V such that for
each (v, w) ∈ E we have v ∈ W or w ∈ W . We consider the following problem.

Vertex Cover
Instance: Undirected graph G = (V,E), integer K.
Question: Does G have a vertex cover of at most K vertices?

a) Show that Vertex cover belongs to the class NP.

b) Proof that the Vertex Cover problem is NP-complete by a reduction from Inde-
pendent Set.

a) A solution is a subset V ′ of the nodes and can be encoded in O(n). Checking if a
solution is a ‘yes’-solution, you have to check for each edge if it has an endpoint in V ′,
this requires O(n2) time.

b) Let graph G = (V,E) and integer K be an instance of Independent set. The question
is if there is a independent set of size a least K. We define the following instance G′, K ′

of Vertex Cover. G′ = G and K ′ = n−K. You can prove that G has an independent
set of size at least K if and only of G′ has a vertex cover of size at most K ′ by showing
that in the graph G, W is an independent set G if and only V \W is a vertex cover.
(detail to be filled in).

Exercise 3 Hamilton

a) You first have to show that Hamiltoncycle is in NP (you have to write down the
details yourself). Then we can prove that Hamiltoncycle is NP-complete by a re-
duction from Hamiltonpath. Let graph G = (V,E) be an instance of Hamiltonpath
Construct the following, instance of Hamiltoncycle. The graph G′ consists of a copy
of G, where we add node v0 and an edge from v0 to every other node v ∈ V . The idea
is that if there is an Hamiltonian path in G then this corresponds to a Hamilton cycle
by connecting the end nodes through v0.

Suppose G is a yes instance in Hamiltonpath. Then we can construct a tour in G′

by connecting the end points of the path through v0.
Now suppose G′ is a yes instance in Hamiltoncycle. Construct a Hamilton path by
removing v0 and the edges connected to v0. Hence the answer to Hamilton path is also
yes.

2



b) You first have to show that Hamiltonpath is in NP (you have to write down the
details yourself). Then we can prove that Hamiltonpath is NP-complete by a reduc-
tion from Hamiltoncycle. Let graph G = (V,E) be an instance of Hamiltoncycle.
Construct the following, special instance of Hamiltonpath. We start with G′ = G, so
V ′ = V and E ′ = E. The idea is that we cut the tour into pieces such that we get a
Hamiltonpath. Select a node v ∈ V . We replace this node by four nodes: v′1, v

′
2, v
′′
1 , v
′′
2 ;

we replace each edge {v, w} ∈ E by the edges {v′1, w} and {v′′1 , w}, and finally we add
the edges {v′1, v′2} and {v′′1 , v′′2}.
Suppose G is a yes-instance in Hamiltoncycle. Then you can find a Hamiltonpath
by splitting the cycle in node v; you start with v′2, v

′
1, follow the cycle, and end with

v′′1 , v
′′
2 .

Now, suppose G′ is a yes-instance in Hamiltonpath, hence there exists a Hamiltonpath
in G′. Since the nodes v′2 and v′′2 only have one neighbour these must be end points.
the Hamiltonpath starts with v′2, v

′
1 and ends with v′′1 , v

′′
2 . You finds a Hamiltoncycle in

G by following the Hamiltonpath from v′1 to v′′1 , and then replacing v′1 and v′′1 by v.

Exercise 4 Task scheduling
We consider the following scheduling problem. There is one machine and a set of n tasks,
J1, . . . , Jn. Each task Ji (1 ≤ i ≤ n) has a processing time pj, a profit wj, and a deadline
dj. We must schedule the tasks on the machine, such that the machine carries out at
each moment at most one task; tasks run without interruption for pj time. Tasks that are
complete before their deadline give a profit of wj; other tasks give a profit 0. Suppose a
target profit W is given. Show that the problem to decide if a schedule with profit at least
W is NP-complete.

Consider the case where dj = d for all j = 1, . . . , n. If you look at this problem carefully,
then you see that it is just the decision variant of the Knapsack problem: the process-
ing time corresponds to the size, and the size of the knapsack is equal to d. Now it is
straightforward to give a reduction from Knapsack.

3



Exercise 5 Parcels and two trucks
A company has two trucks, and must deliver a number of parcels to a number of addresses.
They want both drivers to be home at the end of the day. This gives the following decision
problem.

Instance: Set V of locations, with for each pair of locations v, w ∈ V , a
distance d(v, w) ∈ N, a starting location s ∈ V , and an integer K.

Question: Are there two cycles, that both start in s, such that every location
in V is on at least one of the two cycles, and both cycles have length at
most K?

Show that this problem is NP-complete.

If there is only one driver, then the problem above boils down to the decision variant of
the Traveling Salesman Problem (TSP). This gives us the idea to use a reduction
from TSP or Hamiltonian Cycle. To be sure that the distances will become non-negative
integers, we use a reduction from Hamiltonian Cycle so that in the above problem we can
define the distances ourselves, depending on the presence of an adge. The only thing we
have to do is to keep the other driver busy, which is easily taken care of by including an
additional vertex with distance K/2 from s and distance K + 1 to all other addresses.

Hence, we find the following reduction. Given any instance of Hamiltonian Cycle with
n vertices, construct the following special instance of the above problem. Copy the graph
and make the distance d(v, w) equal to 2 if there is an edge in the graph, and 4, otherwise;
label one of these vertices as s. Add one vertex 0 such that d(s, 0) = d(0, s) = n and
d(v, 0) = d(0, v) = 2n + 1 for all v 6= s. The threshold K is equal to 2n.

You have to fill in the remaining details yourself.

Exercise 6 Partition
Subset Sum is defined as follows: given t nonnegative integers b1, . . . , bt and a nonnegative
integer Q, does there exist a subset S of {1, 2, . . . , n} such that∑

j∈S

bj = Q?

We assume that it is given that Subset Sum is NP-complete.

Partition is defined as follows: given n nonnegative integers a1, . . . , an, does there exist
a subset S of {1, 2, . . . , n} such that∑

j∈S

aj = (
∑
j∈S̄

aj)?

Here S̄ = {1, 2, . . . , n} \ S.

a) Show that Partition is in NP .

b) Prove that Partition is NP-complete by a reduction from Subset Sum.

4



c) Suppose that we have a instance of Partition where the cardinality n of the set of
numbers is even. Prove that Partition remains NP-complete if we require that the
subset S contains exactly n/2 elements.

d) ∗ The problem Even-Odd Partition is defined as follows: given a set A of 2r non-
negative integers‘ {a1, . . . , a2r} with ai ≥ ai+1 (i = 1, . . . , 2r − 1), does there exist a
subset S of {1, 2, . . . , 2r} such that

∑
j∈S aj =

∑
j∈S̄ aj, where S contains exactly one

element from {2i− 1, 2i} for every i = 1, . . . , r? Prove that Even-Odd Partition is
NP-complete.

a) This is almost the same as Excercise (1b). A ‘yes’ solution consists of a subset S of
{1, . . . , n}; this subset can be encoded in an array in O(n) space by putting A[j] = 1 if
j ∈ S and A[j] = 0, otherwise. Checking whether the answer is ‘yes’ requires adding up
the integers, the index of which is in S and

∑
j=1 aj/2; this can be done in O(n) time.

b) Consider any instance of Subset Sum; it consists of t nonnegative integers b1, . . . , bt
and a target value Q. Define

Q̄ =
t∑

j=1

bj −Q.

The idea is that we construct a special instance of Partition that consists of the values
present in the instance Subset Sum with two additional values M − Q and M − Q̄,
where M is a big value such that (M −Q) + (M − Q̄) > M . If we have a ‘yes’ solution
to Partition, then we cannot have both additional values in the same subset. Hence,
the remaining integers (which are the integers from the instance of Subset Sum) must
be partitioned into two subsets, such that one has sum Q and the other one has sum
Q̄.

Working out the details: Construct the special instance of Partition that consists of
n = t + 2 integers a1, . . . , at+2. Define aj = bj (j = 1, . . . , t); define at+1 = M − Q en
at+2 = M − Q̄. Hence,

∑t+2
j=1 aj = 2M , which implies that you have to find a subset S

of {1, . . . , t + 2} such that
∑

j∈S aj = M .

Suppose that there exists a subest T of {1, . . . , t} such that∑
j∈T

bj = Q.

Then choose S equal to T ∪{t+ 1}; a quick computation shows that S leads to ‘yes’ to
Partition.

Conversely, suppose that there exists a subest S of {1, . . . , t + 2} such that∑
j∈S

aj = M.

5



Since at+1 + at+2 > M , S contains one of the indices in {t + 1, t + 2}. Suppose that S
contains index t + 1 (consider S̄, otherwise. Then take T ← S \ {t + 1}, and we find
that ∑

j∈T

bj =
∑
j∈S

aj − at+1 = M − (M −Q) = Q,

which implies that the answer to Subset Sum is ‘yes’ as well.

c) We call Partition with the extra requirement that S contain exactly n
2

elements
Partition with equal cardinality. This problem is in NP ; similar to partition.
We now give a reduction from Partition to Partition with equal cardinality.

Consider instance of Partition is given by n numbers b1, . . . , bn. Construct an instance
of Partitie with equal cardinality by adding n number bn+1 = bn+2 = . . . b2n = 0.
It is easy to show that we have a ‘yes’-instance in Partition if and only if we have a
‘yes’-instance in Partition with equal cardinality.

d) It is readily verified that Even-Odd Partition belongs to the classNP . We will
show thatPartition is a special case of Even-Odd Partition. Take any instance of
Partition; suppose it consists of n nonnegative integers a1, . . . , an.

The idea behind the reduction is that we choose the difference between the two integers
in pair i equal to ai (i = 1, . . . , n); choosing the larger of the two implies then that i
will be included in the subset S.

We construct the special instance of Even-Odd Partition consisting of 2n integers
b1, . . . , b2n, such that b2i−1− b2i = ai. Since we need that b1 ≥ b2 ≥ . . . ≥ b2n, we choose
b2n = 1 and compute the remaining bj (j = 1, . . . , 2n− 1) recursively according to the
following formulas

b2i−1 = b2i + ai for all i = 1, . . . , n,

b2i = b2i+1 for all i = 1, . . . , n− 1.

We will show for this instance that ‘yes’ to Partition leads to a ‘yes’ to Even-Odd
Partition and vice-versa. Suppose that the subset S of {1, . . . , n} leads to a ‘yes’ to
Partition. Define A1 as the set containing index 2j − 1 if j ∈ S and 2j if j 6= S, for
j = 1, . . . , n. This set leads to a ‘yes’ to Even-Odd Partition.

Conversely, given a set A1 leading to a ‘yes’ to Even-Odd Partition you can construct
a subset S of {1, . . . , n} that leads to ‘yes’ to Partition by putting all indices j in S
for which A1 contains index (2j − 1).

6


