
𝑰 𝒙, 𝒙′ = 𝒈(𝒙, 𝒙′) 𝝐 𝒙, 𝒙′ + න
𝑺

𝝆 𝒙, 𝒙′, 𝒙′′ 𝑰 𝒙′, 𝒙′′ 𝒅𝒙′′

INFOMAGR – Advanced Graphics
Jacco Bikker - November 2021 - February 2022

Lecture 3 - “Acceleration Structures”

Welcome!

Today’s Agenda:

▪ Problem Analysis

▪ Early Work

▪ BVH Up Close

Analysis

Advanced Graphics – Acceleration Structures 3

“Cornell Box” Voxel game

Analysis

Advanced Graphics – Acceleration Structures 4

Unreal 5 Tech Demo Avengers Endgame

Characteristics

Rasterization:

▪ Games
▪ Fast
▪ Realistic
▪ Consumer hardware

Ray Tracing:

▪ Movies
▪ Slow
▪ Very Realistic
▪ Supercomputers

Analysis

Advanced Graphics – Acceleration Structures 5

Heaven7, Exceed, 2000 LOTR: The Return of the King, 2003

Mirror’s Edge, DICE, 2008

Crysis, 2007

Analysis

Advanced Graphics – Acceleration Structures 6

Crysis, 2007

Characteristics

Reality:

▪ everyone has a budget
▪ bar must be raised
▪ we need to optimize.

Analysis

Advanced Graphics – Acceleration Structures 7

Cost Breakdown for Ray Tracing:

▪ Pixels
▪ Primitives
▪ Light sources
▪ Path segments

Mind scalability as well as constant cost.

Example: scene consisting of 1k spheres and 4 light
sources, diffuse materials, rendered to 1M pixels:

1𝑀 × 5 × 1𝑘 = 5 ∙ 109 ray/prim intersections.

(multiply by desired framerate for realtime)

Optimizing Ray Tracing

Options:

1. Faster intersections (reduce constant cost)
2. Faster shading (reduce constant cost)
3. Use more expressive primitives (trade constant cost for algorithmic complexity)
4. Fewer of ray/primitive intersections (reduce algorithmic complexity)

Note for option 1:

At 5 billion ray/primitive intersections, we will have to bring down the cost of a single
intersection to 1 cycle on a 5Ghz CPU – if we want one frame per second.

Analysis

Advanced Graphics – Acceleration Structures 8

Crysis, 2007

Today’s Agenda:

▪ Problem Analysis

▪ Early Work

▪ BVH Up Close

Complex Primitives

More expressive than a triangle:

▪ Sphere
▪ Torus
▪ Teapotahedron
▪ Bézier surfaces
▪ Subdivision surfaces*
▪ Implicit surfaces**
▪ Fractals***

*: Benthin et al., Packet-based Ray Tracing of Catmull-Clark Subdivision Surfaces. 2007.
**: Knoll et al., Interactive Ray Tracing of Arbitrary Implicits with SIMD Interval Arithmetic.
RT’07 Proceedings, Pages 11-18
***: Hart et al., Ray Tracing Deterministic 3-D Fractals. In Proceedings of SIGGRAPH ’89, pages 289-296.

Early Work

Advanced Graphics – Acceleration Structures 10

Utah Teapot, Martin Newell, 1975

Meet the Robinsons, Disney, 2007

Rubin & Whitted*

“Hierarchically Structured Subspaces”

Proposed scheme:

▪ Manual construction of hierarchy
▪ Oriented parallelepipeds

A transformation matrix allows efficient
Intersection of the skewed / rotated
boxes, which can tightly enclose actual
geometry.

*: S. M. Rubin and T. Whitted. A 3-Dimensional Representation for Fast Rendering of Complex Scenes. In:
Proceedings of SIGGRAPH ’80, pages 110–116.

Early Work

Advanced Graphics – Acceleration Structures 11

Amanatides & Woo*

“3DDDA of a regular grid”

The grid can be automatically generated.

Considerations:

▪ Ensure that an intersection happens in the current
grid cell

▪ Use mailboxing to prevent repeated intersection
tests

*: J. Amanatides and A. Woo. A Fast Voxel Traversal Algorithm for Ray
Tracing. In Eurographics ’87, pages 3–10, 1987.

Early Work

Advanced Graphics – Acceleration Structures 12

Glassner*

“Hierarchical spatial subdivision”

Like the grid, octrees can be automatically generated.

Advantages over grids:

▪ Adapts to local complexity: fewer steps
▪ No need to hand-tune grid resolution

Disadvantage compared to grids:

▪ Expensive traversal steps.

*: A. S. Glassner. Space Subdivision for Fast Ray Tracing. IEEE Computer Graphics and Applications, 4:15–22, 1984.

Early Work

Advanced Graphics – Acceleration Structures 13

BSP Trees

Early Work

Advanced Graphics – Acceleration Structures 14

root

BSP Tree*

“Binary Space Partitioning”

Split planes are chosen from the geometry.
A good split plane:

▪ Results in equal amounts of polygons on both sides
▪ Splits as few polygons as possible

The BSP tends to suffer from numerical instability
(splinter polygons).

*: K. Sung, P. Shirley. Ray Tracing with the BSP Tree. In: Graphics Gems III, Pages 271-274. Academic Press, 1992.

Early Work

Advanced Graphics – Acceleration Structures 15

Early Work

Advanced Graphics – Acceleration Structures 16

kD-Tree*

“Axis-aligned BSP tree”

*: V. Havran, Heuristic Ray Shooting Algorithms. PhD thesis, 2000.

Early Work

Advanced Graphics – Acceleration Structures 17

kD-Tree Construction*

Given a scene 𝑆 consisting of 𝑁 primitives:
A kd-tree over 𝑆 is a binary tree that recursively subdivides the space
covered by 𝑆.

▪ The root corresponds to the axis aligned bounding box (AABB)
of 𝑆;

▪ Interior nodes represent planes that recursively subdivide space
perpendicular to the coordinate axis;

▪ Leaf nodes store references to all the triangles overlapping the
corresponding voxel.

*: On building fast kD-trees for ray tracing, and on doing that in O(N log N), Wald & Havran, 2006

Early Work

Advanced Graphics – Acceleration Structures 18

function Build(triangles 𝑇, voxel 𝑉)
{

if (Terminate(𝑇, 𝑉)) return new LeafNode(𝑇)
Plane 𝑝 = FindPlane(𝑇, 𝑉)
Voxel 𝑉𝐿 , 𝑉𝑅 = Split 𝑉 with 𝑝
triangles 𝑇𝐿 = 𝑡 ∈ 𝑇 (𝑡 ځ 𝑉𝐿) ≠ 0
triangles 𝑇𝑅 = 𝑡 ∈ 𝑇 (𝑡 ځ 𝑉𝑅) ≠ 0
return new InteriorNode(

𝑝,
Build(𝑇𝐿, 𝑉𝐿),
Build(𝑇𝑅, 𝑉𝑅)

)
}

Function BuildKDTree(triangles 𝑇)
{

Voxel 𝑉 = 𝑏𝑜𝑢𝑛𝑑𝑠 𝑇
return Build(𝑇, 𝑉)

}

Early Work

Advanced Graphics – Acceleration Structures 19

Considerations

▪ Termination

minimum primitive count, maximum recursion depth

▪ Storage

primitives may end up in multiple voxels: required storage hard to predict

▪ Empty space

empty space reduces probability of having to intersect primitives

▪ Optimal split plane position / axis

good solutions exist – will be discussed later.

Early Work

Advanced Graphics – Acceleration Structures 20

Traversal*

1. Find the point 𝑃 where the ray enters the voxel
2. Determine which leaf node contains this point
3. Intersect the ray with the primitives in the leaf

If intersections are found:
▪ Determine the closest intersection
▪ If the intersection is inside the voxel: done

*: Space-Tracing: a Constant Time Ray-Tracer, Kaplan, 1994

Early Work

Advanced Graphics – Acceleration Structures 21

Traversal*

1. Find the point 𝑃 where the ray enters the voxel
2. Determine which leaf node contains this point
3. Intersect the ray with the primitives in the leaf

If intersections are found:
▪ Determine the closest intersection
▪ If the intersection is inside the voxel: done

4. Determine the point B where the ray leaves the voxel
5. Advance P slightly beyond B
6. Goto 1.

Note: step 2 traverses the tree repeatedly – inefficient.

*: Space-Tracing: a Constant Time Ray-Tracer, Kaplan, 1994

Early Work

Advanced Graphics – Acceleration Structures 22

Traversal – Alternative Method*

For interior nodes:
1. Determine ‘near’ and ‘far’ child node
2. Determine if ray intersects ‘near’ and/or ‘far’

If only one child node intersects the ray:
▪ Traverse the node (goto 1)

Else (both child nodes intersect the ray):
▪ Push ‘far’ node to stack
▪ Traverse ‘near’ node (goto 1)

For leaf nodes:
1. Determine the nearest intersection
2. Return if intersection is inside the voxel.

*: Data Structures for Ray Tracing, Jansen, 1986.

Early Work

Advanced Graphics – Acceleration Structures 23

kD-Tree Traversal

Traversing a kD-tree is done in a strict order.

Ordered traversal means we can stop as soon as we find a
valid intersection.

Acceleration Structures

▪ Grid
▪ Octree
▪ BSP
▪ kD-tree
▪ BVH

▪ Tetrahedralization
▪ BIH
▪ …

Early Work

Advanced Graphics – Acceleration Structures 24

Partitioning

space
space
space
space
object

space
object

Construction

O(n)
O(n log n)
O(n2)
O(n log n)
O(n log n)

?
O(n log n)

Quality

low
medium
good
good
good

low
medium

Today’s Agenda:

▪ Problem Analysis

▪ Early Work

▪ BVH Up Close

BVH

Advanced Graphics – Acceleration Structures 26

Automatic Construction of Bounding Volume Hierarchies

BVH: tree structure, with:

▪ a bounding box per node
▪ pointers to child nodes
▪ geometry at the leaf nodes

BVH

Advanced Graphics – Acceleration Structures 27

Automatic Construction of Bounding Volume Hierarchies

BVH: tree structure, with:

▪ a bounding box per node
▪ pointers to child nodes
▪ geometry at the leaf nodes

struct BVHNode
{

AABB bounds;
bool isLeaf;
BVHNode*[] child;
Primitive*[] primitive;

};

BVH

Advanced Graphics – Acceleration Structures 28

Automatic Construction of Bounding Volume Hierarchies

root

left right

top bottom top bottom

BVH

Advanced Graphics – Acceleration Structures 29

Automatic Construction of Bounding Volume Hierarchies

1. Determine AABB for primitives in array
2. Determine split axis and position
3. Partition
4. Repeat steps 1-3 for each partition

Note:

Step 3 can be done ‘in place’.

This process is identical to
QuickSort: the split plane is
The ‘pivot’.

BVH

Advanced Graphics – Acceleration Structures 30

Automatic Construction of Bounding Volume Hierarchies

struct BVHNode
{

AABB bounds;
bool isLeaf;
BVHNode* left, *right;
Primitive** primList;

};

// 24 bytes
// 4 bytes
// 8 or 16 bytes
// ? bytes

0 12

BVH

Advanced Graphics – Acceleration Structures 31

Automatic Construction of Bounding Volume Hierarchies

struct BVHNode
{

AABB bounds;
bool isLeaf;
BVHNode* left, *right;
int first, count;

};

// 24 bytes
// 4 bytes
// 8 or 16 bytes
// 8 bytes

0 12

primitives

primitive indices0 1 2 3 4 5 6 7 8 9 10 11 12

BVH

Advanced Graphics – Acceleration Structures 32

Automatic Construction of Bounding Volume Hierarchies

void BVH::ConstructBVH(Primitive* primitives)
{

// create index array
indices = new uint[N];
for(int i = 0; i < N; i++) indices[i] = i;

// allocate BVH root node
root = new BVHNode();

// subdivide root node
root->first = 0;
root->count = N;
root->bounds = CalculateBounds(primitives, root->first, root->count);
root->Subdivide();

}

void BVHNode::Subdivide()
{

if (count < 3) return;
this.left = new BVHNode();
this.right = new BVHNode();
Partition();
this.left->Subdivide();
this.right->Subdivide();
this.isLeaf = false;

}

BVH

Advanced Graphics – Acceleration Structures 33

Automatic Construction of Bounding Volume Hierarchies

void BVH::ConstructBVH(Primitive* primitives)
{

// create index array
indices = new uint[N];
for(int i = 0; i < N; i++) indices[i] = i;

// allocate BVH root node
pool = new BVHNode[N * 2 – 1];
root = &pool[0];
poolPtr = 2;

// subdivide root node
root->first = 0;
root->count = N;
root->bounds = CalculateBounds(primitives, root->first, root->count);
root->Subdivide();

}

void BVHNode::Subdivide()
{

if (count < 3) return;
this.left = &pool[poolPtr++];
this.right = &pool[poolPtr++];
Partition();
this.left->Subdivide();
this.right->Subdivide();
this.isLeaf = false;

}

BVH

Advanced Graphics – Acceleration Structures 34

Automatic Construction of Bounding Volume Hierarchies

struct BVHNode
{

AABB bounds;
bool isLeaf;
int left, right;
int first, count;

};

// 24 bytes
// 4 bytes
// 8 bytes
// 8 bytes, total 44 bytes

0 12

primitives

primitive indices0 1 2 3 4 5 6 7 8 9 10 11 12

BVH nodes

BVH

Advanced Graphics – Acceleration Structures 35

Automatic Construction of Bounding Volume Hierarchies

struct BVHNode
{

AABB bounds;
int left;
int first, count;

};

// 24 bytes
// 4 bytes
// 8 bytes, total 36

0 12

primitives

primitive indices0 1 2 3 4 5 6 7 8 9 10 11 12

BVH nodes

BVH

Advanced Graphics – Acceleration Structures 36

Automatic Construction of Bounding Volume Hierarchies

struct BVHNode
{

AABB bounds;
int leftFirst;
int count;

};

// 24 bytes
// 4 bytes
// 4 bytes, total 32 ☺

0 12

primitives

primitive indices0 1 2 3 4 5 6 7 8 9 10 11 12

BVH nodes

BVH

Advanced Graphics – Acceleration Structures 37

Automatic Construction of Bounding Volume Hierarchies

Optimal BVH representation:

▪ Partitioning of array of indices pointing to original triangles
▪ Using indices of BVH nodes, and assuming right = left + 1
▪ BVH nodes use exactly 32 bytes (2 per cache line)
▪ BVH node pool allocated in cache aligned fashion
▪ AABB splitted in 2x 12 bytes; 1st followed by ‘leftFirst’, 2nd by ‘count’.

Note: the BVH is now ‘relocatable’ and thus ‘serializable’.

BVH

Advanced Graphics – Acceleration Structures 38

BVH Traversal

root

left right

top bottom top bottom

BVH

Advanced Graphics – Acceleration Structures 39

BVH Traversal

Basic process:

BVHNode::Traverse(Ray r)
{

if (!r.Intersects(bounds)) return;
if (isleaf())
{

IntersectPrimitives();
}
else
{

pool[left].Traverse(r);
pool[left + 1].Traverse(r);

}
}

Ray:
vec3 O, D
float t

BVH

Advanced Graphics – Acceleration Structures 40

BVH Traversal

Ordered traversal, option 1:

▪ Calculate distance to both child nodes
▪ Traverse the nearest child node first

Ordered traversal, option 2:

▪ For each BVH node, store the axis along which it was split
▪ Use ray direction sign for that axis to determine near and far

Ordered traversal, option 3:

▪ Determine the axis for which the child node centroids are furthest apart
▪ Use ray direction sign for that axis to determine near and far.

BVH

Advanced Graphics – Acceleration Structures 41

BVH Traversal

Ordered traversal of a BVH is approximative.

▪ Nodes may overlap.

And:

▪ We may find a closer intersection in a node that we visit later.

However:

▪ We do not have to visit nodes beyond an already found
intersection distance.

Today’s Agenda:

▪ Problem Analysis

▪ Early Work

▪ BVH Up Close

INFOMAGR – Advanced Graphics
Jacco Bikker - November 2021 - February 2022

END of “Acceleration Structures”
next lecture: “Light Transport”

