
𝑰 𝒙, 𝒙′ = 𝒈(𝒙, 𝒙′) 𝝐 𝒙, 𝒙′ + න
𝑺

𝝆 𝒙, 𝒙′, 𝒙′′ 𝑰 𝒙′, 𝒙′′ 𝒅𝒙′′
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Lecture 4 - “Light Transport”

Welcome!



Today’s Agenda:

▪ Introduction

▪ The Rendering Equation

▪ Light Transport
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Whitted

Missing:

▪ Area lights
▪ Glossy reflections
▪ Caustics
▪ Diffuse interreflections

▪ Diffraction
▪ Polarization
▪ Phosphorescence
▪ Temporal effects

▪ Motion blur
▪ Depth of field
▪ Anti-aliasing
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Anti-aliasing

Adding anti-aliasing to a Whitted-style ray tracer:

Send multiple primary rays through each pixel, 
and average their result.

Problem:

▪ How do we aim those rays?
▪ What if all rays return the same color?
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Anti-aliasing – Sampling Patterns

Adding anti-aliasing to a Whitted-style ray tracer:

Send multiple primary rays through each pixel, 
and average their result.

Problem:

▪ How do we aim those rays?
▪ What if all rays return the same color?
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Anti-aliasing – Sampling Patterns
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Anti-aliasing – Sampling Patterns
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Anti-aliasing – Sampling Patterns
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Anti-aliasing – Sampling Patterns

Adding anti-aliasing to a Whitted-style ray tracer:

Send multiple primary rays through each pixel, 
and average their result.

Problem:

▪ How do we aim those rays?
▪ What if all rays return the same color?

More info: https://mynameismjp.wordpress.com/2012/10/24/msaa-overview

https://mynameismjp.wordpress.com/2012/10/24/msaa-overview
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Whitted

Missing:

▪ Area lights
▪ Glossy reflections
▪ Caustics
▪ Diffuse interreflections

▪ Diffraction
▪ Polarization
▪ Phosphorescence
▪ Temporal effects

▪ Motion blur
▪ Depth of field
✓ Anti-aliasing
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Distribution Ray Tracing*

*: Distributed Ray Tracing, Cook et al., 1984

Soft shadows
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Distribution Ray Tracing*

*: Distributed Ray Tracing, Cook et al., 1984

Glossy reflections
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Distribution Ray Tracing*

*: Distributed Ray Tracing, Cook et al., 1984

?
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Distribution Ray Tracing*

*: Distributed Ray Tracing, Cook et al., 1984
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Distribution Ray Tracing

Whitted-style ray tracing is a point sampling algorithm:

▪ We may miss small features
▪ We cannot sample areas

Area sampling:

▪ Anti-aliasing: one pixel
▪ Soft shadows: one area light source
▪ Glossy reflection: directions in a cone
▪ Diffuse reflection: directions on the hemisphere
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Area Lights

Visibility of an area light source:

𝑉𝐴 = න
𝐴

𝑉 𝑥, ꙍ𝑖 𝑑ꙍ𝑖

Analytical solution case 1:

𝑉𝐴 = 𝐴𝑙𝑖𝑔ℎ𝑡 − 𝐴𝑙𝑖𝑔ℎ𝑡⋂𝑠𝑝ℎ𝑒𝑟𝑒

Analytical solution case 2:

𝑉𝐴 = ?
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Approximating Integrals

An integral can be approximated as a Riemann sum:

𝑉𝐴 = න
𝐴

𝐵

𝑓(𝑥) 𝑑𝑥 ≈ ෍

𝑖=1

𝑁

𝑓 𝑡𝑖 𝛥𝑖 , where ෍

𝑖=1

𝑁

𝛥𝑖 = 𝐵 − 𝐴

Note that the intervals do not need to be uniform, as long as we 
sample the full interval. If the intervals are uniform, then

෍

𝑖=1

𝑁

𝑓 𝑡𝑖 𝛥𝑖 = 𝛥𝑖 ෍

𝑖=1

𝑁

𝑓 𝑡𝑖 =
𝐵 − 𝐴

𝑁
෍

𝑖=1

𝑁

𝑓 𝑡𝑖 .

Regardless of uniformity, restrictions apply to 𝑁 when sampling 
multi-dimensional functions (ideally, 𝑁 = 𝑀𝑑 , 𝑀 ∈ ℕ). Also 
note that aliasing may occur if the intervals are uniform.

Image from Wikipedia

A B

VA
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Monte Carlo Integration

Alternatively, we can approximate an integral by taking random 
samples:

𝑉𝐴 = න
𝐴

𝐵

𝑓(𝑥) 𝑑𝑥 ≈
𝐵 − 𝐴

𝑁
෍

𝑖=1

𝑁

𝑓 𝑋𝑖

Here, 𝑋1. . 𝑋𝑁 ∈ [𝐴, 𝐵].
As 𝑁 approaches infinity, 𝑉𝐴 approaches the expected value of 𝑓(X).

Unlike in Riemann sums, we can use arbitrary 𝑁 for Monte Carlo 
integration, regardless of dimension.
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Monte Carlo Integration of Area Light Visibility

To estimate the visibility of an area light source, we take 𝑁
random point samples.

In this case, 5 out of 6 samples are unoccluded:

𝑉 ≈
1

6
1 + 1 + 1 + 0 + 1 + 1 =

5

6

Properly formulated using a MC integrator:

𝑉 = න
𝒮2

𝑉(𝑝) 𝑑𝑝 ≈
1

𝑁
෍

𝑖=1

𝑁

𝑉 𝑃

With a small number of samples, the variance in the estimate 
shows up as noise in the image. 

Q: Where did the 
𝑩−𝑨

𝑵
go? 

A: the domain of the 
visibility function is [0..1], 
so 𝑩 − 𝑨 = 𝟏.
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Monte Carlo Integration of Area Light Visibility

We can also use Monte Carlo to estimate the contribution of 
multiple lights:

1. Take the average of N samples from each light source;
2. Sum the averages.

𝐸 𝑥 ← =
1

𝑁
෍

𝑗=0

𝑁

෍

𝑖=1

2

𝐿𝑖 𝑉(𝑥 ↔ 𝑙𝑖)

𝑥

𝑙0

𝑙1

No averaging here: 
multiple lights are 
additive.
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Monte Carlo Integration of Area Light Visibility

Alternatively, we can just take 𝑁 samples, and pick a random 
light source for each sample.

𝐸 𝑥 ← =
2

𝑁
෍

𝑖=1

𝑁

𝐿𝑄 𝑉𝑄 𝑃 , 𝑄 ∈ {1,2}

=
1

𝑁
෍

𝑖=1

𝑁
𝐿𝑄 𝑉𝑄 𝑃

0.5

𝑥

Probability of 
sampling light 𝐿𝑄
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Monte Carlo Integration of Area Light Visibility

We obtain a better estimate with fewer samples if we do not 
treat each light equally.

In the previous example, each light had a 50% probability of 
being sampled. We can use an arbitrary probability, by dividing 
the sample by this probability.

𝐸 𝑥 ← =
1

𝑁
෍

𝑖=1

𝑁
𝐿𝑄 𝑉𝑄 𝑃

𝜌𝑄
, ෍ 𝜌𝑄 = 1, 𝜌𝑄 > 0

𝑥



Introduction

Advanced Graphics – Light Transport 25

Distribution Ray Tracing

Key concept of distribution ray tracing:

We estimate integrals using Monte Carlo integration.

Integrals in rendering:

▪ Area of a pixel
▪ Lens area (aperture)
▪ Frame time
▪ Light source area
▪ Cones for glossy reflections
▪ Wavelengths
▪ …
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Open Issues

Remaining issues:

▪ Energy distribution in the ray tree / efficiency
▪ Diffuse interreflections



Today’s Agenda:

▪ Introduction

▪ The Rendering Equation

▪ Light Transport



Rendering Equation

Advanced Graphics – Light Transport 28

Whitted, Cook & Beyond

Missing in Whitted:

▪ Area lights
▪ Glossy reflections
▪ Caustics
▪ Diffuse interreflections

▪ Diffraction
▪ Polarization
▪ Phosphorescence
▪ Temporal effects

▪ Motion blur
▪ Depth of field
▪ Anti-aliasing

Cook:

✓ Area lights
✓ Glossy reflections
× Caustics
× Diffuse interreflections

× Diffraction
× Polarization
× Phosphorescence
× Temporal effects

✓ Motion blur
✓ Depth of field
✓ Anti-aliasing
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Whitted, Cook & Beyond

Cook’s solution to rendering:

Sample the many-dimensional integral using Monte Carlo integration. 

න
𝐴𝑝𝑖𝑥𝑒𝑙

න
𝐴𝑙𝑒𝑛𝑠

න
𝑇𝑓𝑟𝑎𝑚𝑒

න
𝛺𝑔𝑙𝑜𝑠𝑠𝑦

න
𝐴𝑙𝑖𝑔ℎ𝑡

…

Ray optics are still used for specular reflections and refractions:
The ray tree is not eliminated.
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God’s Algorithm

1 room
1 bulb
100 watts
1020 photons per second

Photon behavior:

▪ Travel in straight lines
▪ Get absorbed, or change direction:

▪ Bounce (random / deterministic)
▪ Get transmitted

▪ Leave into the void
▪ Get detected
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God’s Algorithm - Mathematically

A photon may arrive at a sensor after travelling in a straight line 
from a light source to the sensor:

𝐿 𝑠 ← 𝑥 = 𝐿𝐸(𝑠 ← 𝑥)

Or, it may be reflected by a surface towards the sensor:

𝐿 𝑠 ← 𝑥 = න
𝐴

𝑓𝑟 𝑠 ← 𝑥 ← 𝑥′ 𝐿 𝑥 ← 𝑥′ 𝐺 𝑥 ↔ 𝑥′ 𝑑𝐴(𝑥′)

Those are the options.
Adding direct and indirect illumination together:

𝐿 𝑠 ← 𝑥 = 𝐿𝐸 𝑠 ← 𝑥 + න
𝐴

𝑓𝑟 𝑠 ← 𝑥 ← 𝑥′ 𝐿 𝑥 ← 𝑥′ 𝐺 𝑥 ↔ 𝑥′ 𝑑𝐴(𝑥′)



𝐿 𝑠 ← 𝑥 = 𝐿𝐸 𝑠 ← 𝑥 + න
𝐴

𝑓𝑟 𝑠 ← 𝑥 ← 𝑥′ 𝐿 𝑥 ← 𝑥′ 𝐺 𝑥 ↔ 𝑥′ 𝑑𝐴(𝑥′)
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God’s Algorithm - Mathematically

Emission

Hemisphere

Reflection

Indirect

Geometry factor
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𝐿 𝑠 ← 𝑥 = 𝐿𝐸 𝑠 ← 𝑥 + න
𝐴

𝑓𝑟 𝑠 ← 𝑥 ← 𝑥′ 𝐿 𝑥 ← 𝑥′ 𝐺 𝑥 ↔ 𝑥′ 𝑑𝐴(𝑥′)

The Rendering Equation*:

▪ Light transport from lights to sensor
▪ Recursive
▪ Physically based

The equation allows us to determine to which extend
rendering algorithms approximate real-world light
transport.

*: The Rendering Equation, Kajiya, 1986



Today’s Agenda:

▪ Introduction

▪ The Rendering Equation

▪ Light Transport
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Light Transport Quantities

Radiant flux - 𝛷 :

“Radiant energy emitted, reflected, transmitted or 
received, per unit time.”

Units: watts = joules per second
𝑊 = 𝐽 𝑠−1 .

Simplified particle analogy: 
number of photons.

Note: photon energy depends on electromagnetic wavelength: 

E =
hc

λ
, where h is Planck’s constant, c is the speed of light, 

and  λ is wavelength. At  λ = 550nm (yellow), a single photon 
carries 3.6 ∗ 10−19 joules.
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Light Transport Quantities

In a vacuum, radiant flux emitted by a point light 
source remains constant over distance:

A point light emitting 100W delivers 100W to the 
surface of a sphere of radius r around the light. This 
sphere has an area of 4𝜋𝑟2; energy per surface area 
thus decreases by 1/𝑟2.

In terms of photons: the density of the photon 
distribution decreases by  1/𝑟2.
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Light Transport Quantities

A surface receives an amount of light energy 
proportional to its solid angle: the two-dimensional 
space that an object subtends at a point.

Solid angle units: steradians (sr).

Corresponding concept in 2D: radians; the length of the 
arc on the unit sphere subtended by an angle.
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Light Transport Quantities

Radiance - 𝐿 :

“The power of electromagnetic radiation 
emitted, reflected, transmitted or received 
per unit projected area per unit solid angle.”

Units: 𝑊𝑠𝑟−1𝑚−2

Simplified particle analogy: 
Amount of particles passing through a pipe 
with unit diameter, per unit time.

Note: radiance is a continuous value:
while flux at a point is 0 (since both area and solid angle are 0), 
we can still define flux per area per solid angle for that point.

𝐿
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Light Transport Quantities

Irradiance - 𝐸 :

“The power of electromagnetic radiation per 
unit area incident on a surface.”

Units: Watts per 𝑚2 = joules per second per 𝑚2

𝑊𝑚−2 = 𝐽𝑚−2𝑠−1 .

Simplified particle analogy: 
number of photons arriving per unit area per 
unit time, from all directions.

𝑁
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Light Transport Quantities

Converting radiance to irradiance:

𝐸 = 𝐿 cos 𝜃

𝐿

𝐿 𝑁

𝜃
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Light Transport

𝐿 𝑠 ← 𝑥 = 𝐿𝐸 𝑠 ← 𝑥 + න
𝐴

𝑓𝑟 𝑠 ← 𝑥 ← 𝑥′ 𝐿 𝑥 ← 𝑥′ 𝐺 𝑥 ↔ 𝑥′ 𝑑𝐴(𝑥′)

𝐿𝑜 𝑥, 𝜔𝑜 = 𝐿𝐸 𝑥, 𝜔𝑜 + න
𝛺

𝑓𝑟 𝑥, 𝜔𝑜, 𝜔𝑖 𝐿𝑖 𝑥, 𝜔𝑖 cos 𝜃𝑖 𝑑𝜔𝑖

Radiance Radiance Radiance

Irradiance

BRDF
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Bidirectional Reflectance Distribution Function

BRDF: function describing the relation between radiance emitted in direction 𝜔𝑜

and irradiance arriving from direction 𝜔𝑖:

𝑓𝑟 𝜔𝑜, 𝜔𝑖 =
𝐿𝑜(𝜔𝑜)

𝐸𝑖(𝜔𝑖)
=

𝐿𝑜(𝜔𝑜)

𝐿𝑖 𝜔𝑖 cos θ𝑖
=

𝑜𝑢𝑡𝑔𝑜𝑖𝑛𝑔 𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒

𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔 𝑖𝑟𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒

Or, if spatially variant:

𝑓𝑟 𝑥, 𝜔𝑜, 𝜔𝑖 =
𝐿𝑜(𝑥, 𝜔𝑜)

𝐸𝑖(𝑥, 𝜔𝑖)
=

𝐿𝑜(𝑥, 𝜔𝑜)

𝐿𝑖 𝑥, 𝜔𝑖 cos θ𝑖

Properties:

▪ Should be positive: 𝑓𝑟 𝜔𝑜, 𝜔𝑖 ≥ 0
▪ Helmholtz reciprocity should be obeyed: 𝑓𝑟 𝜔𝑜, 𝜔𝑖 = 𝑓𝑟 𝜔𝑖 , 𝜔𝑜

▪ Energy should be conserved: ׬𝛺
𝑓𝑟 𝜔𝑜, 𝜔𝑖 cos 𝜃𝑜 𝑑𝜔𝑜 ≤ 1
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𝐿 𝑠 ← 𝑥 = 𝐿𝐸 𝑠 ← 𝑥 + න
𝐴

𝑓𝑟 𝑠 ← 𝑥 ← 𝑥′ 𝐿 𝑥 ← 𝑥′ 𝐺 𝑥 ↔ 𝑥′ 𝑑𝐴(𝑥′)

Relation between real-world light transport and the RE:

1. Each sensor element registers an amount of photons arriving from the first surface visible 
though that pixel.

2. This surface may be emissive,  in which case it produced the sensed photons.
3. This surface may also reflect photons, arriving from “other surfaces” in the scene.
4. For the “other surfaces”: goto 2.



Today’s Agenda:

▪ Introduction

▪ The Rendering Equation

▪ Light Transport
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END of “Light Transport”
next lecture: “The Perfect BVH”


