
𝑰 𝒙, 𝒙′ = 𝒈(𝒙, 𝒙′) 𝝐 𝒙, 𝒙′ + න
𝑺

𝝆 𝒙, 𝒙′, 𝒙′′ 𝑰 𝒙′, 𝒙′′ 𝒅𝒙′′

INFOMAGR – Advanced Graphics
Jacco Bikker - November 2021 - February 2022

Lecture 5 - “The Perfect BVH”

Welcome!

Today’s Agenda:

▪ Building Better BVHs

▪ Refitting

▪ Fast BVH Construction

▪ The Top-level BVH

Better BVHs

Advanced Graphics – The Perfect BVH 3

Better BVHs

Advanced Graphics – The Perfect BVH 4

Better BVHs

Advanced Graphics – The Perfect BVH 5

What Are We Trying To Solve?

A BVH is used to reduce the number of
ray/primitive intersections.

But: it introduces new intersections.

The ideal BVH minimizes:

▪ # of ray / primitive intersections
▪ # of ray / node intersections.

Better BVHs

Advanced Graphics – The Perfect BVH 6

Better BVHs

Advanced Graphics – The Perfect BVH 7

BVH versus kD-tree

The BVH better encapsulates geometry.

➔ This reduces the chance of a ray hitting a
node.

➔ This is all about probabilities!

What is the probability of a ray hitting a
random triangle?

What is the probability of a ray hitting a
random node?

This probability is proportional to surface area.

Better BVHs

Advanced Graphics – The Perfect BVH 8

Route 1: 10% up-time, $1000 fine Route 2: 100% up-time, $100 fine

Better BVHs

Advanced Graphics – The Perfect BVH 9

Optimal Split Plane Position

The ideal split minimizes the expected cost of a
ray intersecting the resulting nodes.

This expected cost is based on:

▪ Number of primitives that will have to be
intersected

▪ Probability of this happening

The cost of a split is thus:

𝐴𝑙𝑒𝑓𝑡 ∗ 𝑁𝑙𝑒𝑓𝑡 + 𝐴𝑟𝑖𝑔ℎ𝑡 ∗ 𝑁𝑟𝑖𝑔ℎ𝑡

Better BVHs

Advanced Graphics – The Perfect BVH 10

Optimal Split Plane Position

The ideal split minimizes the expected cost of a
ray intersecting the resulting nodes.

This expected cost is based on:

▪ Number of primitives that will have to be
intersected

▪ Probability of this happening

The cost of a split is thus:

𝐴𝑙𝑒𝑓𝑡 ∗ 𝑁𝑙𝑒𝑓𝑡 + 𝐴𝑟𝑖𝑔ℎ𝑡 ∗ 𝑁𝑟𝑖𝑔ℎ𝑡

Better BVHs

Advanced Graphics – The Perfect BVH 12

Optimal Split Plane Position

Which positions do we consider?

Object subdivision may happen over
x, y or z axis.

The cost function is constant
between primitive centroids.

➔ For N primitives: 3(𝑁 − 1)
possible locations

➔ For a 2-level tree: (3(𝑁 − 1))2

configurations

Better BVHs

Advanced Graphics – The Perfect BVH 13

SAH and Termination

A split is ‘not worth it’ if it doesn’t yield
a cost lower than the cost of the parent
node, i.e.:

𝐴𝑙𝑒𝑓𝑡 ∗ 𝑁𝑙𝑒𝑓𝑡 + 𝐴𝑟𝑖𝑔ℎ𝑡 ∗ 𝑁𝑟𝑖𝑔ℎ𝑡 ≥ 𝐴 ∗ 𝑁

This provides us with a natural and
optimal termination criterion.

(and it solves the problem
of the Bad Artist)

Better BVHs

Advanced Graphics – The Perfect BVH 14

Optimal Split Plane Position

The surface area heuristic (SAH) is applied in a greedy manner*.

*: Heuristics for Ray Tracing using Space Subdivision, MacDonald & Booth, 1990.

Better BVHs

Advanced Graphics – The Perfect BVH 15

Optimal Split Plane Position

Comparing naïve versus SAH:

▪ SAH will cut #intersections in half;
▪ expect ~2x better performance.

SAH & kD-trees:

▪ Same scheme applies.

Better BVHs

Advanced Graphics – The Perfect BVH 16

Median Split

Better BVHs

Advanced Graphics – The Perfect BVH 17

Surface Area Heuristic

Better BVHs

Advanced Graphics – The Perfect BVH 18

Better BVHs

Advanced Graphics – The Perfect BVH 19

Better BVHs

Advanced Graphics – The Perfect BVH 20

Today’s Agenda:

▪ Building Better BVHs

▪ Refitting

▪ Fast BVH Construction

▪ The Top-level BVH

Refitting

Advanced Graphics – The Perfect BVH 22

Summary of BVH Characteristics

A BVH provides significant freedom compared to e.g. a kD-tree:

▪ No need for a 1-to-1 relation between bounding boxes and primitives
▪ Bounding boxes may overlap
▪ Bounding boxes can be altered, as long as they fit in their parent box
▪ A BVH can be very bad but still valid

Some consequences / opportunities:

▪ We can rebuild part of a BVH
▪ We can combine two BVHs into one
▪ We can refit a BVH

Refitting

Advanced Graphics – The Perfect BVH 23

Refitting

Q: What happens to the BVH of a tree model, if we make it
bend in the wind?

A: Likely, only bounds will change; the topology of the BVH
will be the same (or at least similar) in each frame.

Refitting:

Updating the bounding boxes stored in a BVH to match
changed primitive coordinates.

Refitting

Advanced Graphics – The Perfect BVH 24

Refitting

Updating the bounding boxes stored
in a BVH to match changed primitive
coordinates.

Algorithm:

1. For each leaf, calculate the bounds
over the primitives it represents

2. Update parent bounds

Refitting

Advanced Graphics – The Perfect BVH 25

Refitting - Suitability

Refitting

Advanced Graphics – The Perfect BVH 26

Refitting – Practical

Order of nodes in the node array:

We will never find the parent of node X
at a position greater than X.

Therefore:

for(int i = N-1; i >= 0; i--)
nodeArray[i].AdjustBounds();

0 N-1

BVH node array

Root node

Level 1

Today’s Agenda:

▪ Building Better BVHs

▪ Refitting

▪ Fast BVH Construction

▪ The Top-level BVH

Binning

Advanced Graphics – The Perfect BVH 28

Rapid BVH Construction

Refitting allows us to update hundreds of thousands of primitives in real-
time. But what if topology changes significantly?

Rebuilding a BVH requires 3𝑁𝑙𝑜𝑔𝑁 split plane evaluations.

Options:

1. Do not use SAH (significantly lower quality BVH)
2. Do not evaluate all 3 axes (minor degradation of BVH quality)
3. Make split plane selection independent of 𝑁

Binning

Advanced Graphics – The Perfect BVH 29

Binning

Advanced Graphics – The Perfect BVH 30

Binned BVH Construction*

Binned construction:
Evaluate SAH at N discrete intervals.

*: On fast Construction of SAH-based Bounding Volume Hierarchies, Wald, 2007

Binning

Advanced Graphics – The Perfect BVH 32

Binned BVH Construction

Performance evaluation:

472ms 7.88M triangles (12 cores @ 2Ghz)*.

*: Parallel BVH Construction using Progressive Hierarchical Refinement, Henrich et al., 2016.

Today’s Agenda:

▪ Building Better BVHs

▪ Refitting

▪ Fast BVH Construction

▪ The Top-level BVH

Top-level BVH

Advanced Graphics – Real-time Ray Tracing 35

Top-level BVH

Advanced Graphics – Real-time Ray Tracing 36

Top-level BVH

Advanced Graphics – Real-time Ray Tracing 37

Top-level BVH

Advanced Graphics – Real-time Ray Tracing 38

Combining BVHs

Top-level BVH

Advanced Graphics – Real-time Ray Tracing 39

Combining BVHs

Two BVHs can be combined into a single BVH, by simply
adding a new root node pointing to the two BVHs.

▪ This works regardless of the method used to build each BVH
▪ This can be applied repeatedly to combine many BVHs

Advanced Graphics – Real-time Ray Tracing 40

Scene Graph

Top-level BVH

Advanced Graphics – Real-time Ray Tracing 41

Scene Graph

world

car

wheel

wheel

wheel

wheel

turret

plane planecar

wheel

wheel

wheel

wheel

turret

buggy

wheel

wheel

wheel

wheel

dude

dudedude

Top-level BVH

Advanced Graphics – Real-time Ray Tracing 42

Scene Graph

If our application uses a scene graph, we can construct a
BVH for each scene graph node.

The BVH for each node is built using an appropriate
construction algorithm:

▪ High-quality SBVH for static scenery (offline)
▪ Fast binned SAH BVHs for dynamic scenery

The extra nodes used to combine these BVHs into a
single BVH are known as the Top-level BVH .

Top-level BVH

Advanced Graphics – Real-time Ray Tracing 43

Rigid Motion

Applying rigid motion to a BVH:

1. Refit the top-level BVH
2. Refit the affected BVH

Top-level BVH

Advanced Graphics – Real-time Ray Tracing 44

Rigid Motion

Applying rigid motion to a BVH:

1. Refit the top-level BVH
2. Refit the affected BVH

or:

2. Transform the ray, not the node

Rigid motion is achieved by transforming
the rays by the inverse transform upon
entering the sub-BVH.

(this obviously does not only apply to translation)

Top-level BVH

Advanced Graphics – Real-time Ray Tracing 45

The Top-level BVH - Construction

Input: list of axis aligned bounding boxes for transformed scene graph nodes

Algorithm:

1. Find the two elements in the list for which the AABB has the smallest
surface area

2. Create a parent node for these elements
3. Replace the two elements in the list by the parent node
4. Repeat until one element remains in the list.

Note: algorithmic complexity is 𝑂(𝑁3).

Top-level BVH

Advanced Graphics – Real-time Ray Tracing 46

The Top-level BVH – Faster Construction*

Algorithm:

Node A = list.GetFirst();
Node B = list.FindBestMatch(A);
while (list.size() > 1)
{

Node C = list.FindBestMatch(B);
if (A == C)
{

list.Remove(A);
list.Remove(B);
A = new Node(A, B);
list.Add(A);
B = list.FindBestMatch(A);

}
else A = B, B = C;

}
*: Fast Agglomerative Clustering for Rendering, Walter et al., 2008

A
B

C

A

B

A B

Top-level BVH

Advanced Graphics – Real-time Ray Tracing 47

The Top-level BVH – Traversal

The leafs of the top-level BVH contain the sub-BVHs.

When a ray intersects such a leaf, it is transformed by the inverted
transform matrix of the sub-BVH. After this, it traverses the sub-BVH.

Once the sub-BVH has been traversed, we transform the ray again, this
time by the transform matrix of the sub-BVH.

For efficiency, we store the inverted matrix with the sub-BVH root.

Top-level BVH

Advanced Graphics – Real-time Ray Tracing 48

Top-level BVH

Advanced Graphics – Real-time Ray Tracing 49

The Top-level BVH – Summary

The top-level BVH enables complex animated scenes:

▪ for static objects, it contains high-quality sub-BVHs;
▪ for objects undergoing rigid motion, it also contains high-quality

sub-BVHs, with a transform matrix and its inverse;
▪ for deforming objects, it contains sub-BVHs that can be refitted;
▪ for arbitrary animations, it contains lower quality sub-BVHs.

Combined, this allows for efficient maintenance of a global BVH.

INFOMAGR – Advanced Graphics
Jacco Bikker - November 2021 - February 2022

END of “The Perfect BVH”
next lecture: “Path Tracing”

