
𝑰 𝒙, 𝒙′ = 𝒈(𝒙, 𝒙′) 𝝐 𝒙, 𝒙′ + න
𝑺

𝝆 𝒙, 𝒙′, 𝒙′′ 𝑰 𝒙′, 𝒙′′ 𝒅𝒙′′

INFOMAGR – Advanced Graphics
Jacco Bikker - November 2021 - February 2022

Lecture 6 - “Path Tracing”

Welcome!

Today’s Agenda:

▪ Introduction

▪ Path Tracing

Introduction

Advanced Graphics – Path Tracing 3

Previously in Advanced Graphics

The Rendering Equation:

𝐿 𝑠 ← 𝑥 = 𝐿𝐸 𝑠 ← 𝑥 + න
𝐴

𝑓𝑟 𝑠 ← 𝑥 ← 𝑥′ 𝐿 𝑥 ← 𝑥′ 𝐺 𝑥 ↔ 𝑥′ 𝑑𝐴(𝑥′)

𝐴: all points 𝑥’ in the scene
𝑓𝑟: BRDF
L: radiance
G: ‘geometry factor’

s

𝑥

“The light that travels from x to s is the light
that x emits plus the light that x reflects.”

“three-point
formulation”

𝑩𝑹𝑫𝑭: takes irradiance (from
𝒙’), calculated by:

𝐿 𝑥 ← 𝑥′ 𝐺 𝑥 ↔ 𝑥′

returns radiance
(towards 𝒔).

Introduction

Advanced Graphics – Path Tracing 4

Previously in Advanced Graphics

The Rendering Equation (hemispherical formulation):

𝐿𝑜 𝑥, 𝜔𝑜 = 𝐿𝐸 𝑥, 𝜔𝑜 + න
𝛺

𝑓𝑟 𝑥, 𝜔𝑜, 𝜔𝑖 𝐿𝑖 𝑥, 𝜔𝑖 cos 𝜃𝑖 𝑑𝜔𝑖

…which models light transport as it happens in the real world, by summing:

▪ Direct illumination: 𝐿𝐸(𝑥, 𝜔𝑜)

▪ Indirect illumination, or reflected light: ׬𝛺
𝑓𝑟 𝑥, 𝜔𝑜, 𝜔𝑖 𝐿𝑖 𝑥, 𝜔𝑖 cos 𝜃𝑖 𝑑𝜔𝑖

We used quantities flux 𝛷 (joules per second), radiance 𝐿 (flux per 𝑚2 per sr)
and irradiance 𝐸 (flux per 𝑚2). Radiance and irradiance are continuous values.

Introduction

Advanced Graphics – Path Tracing 5

Previously in Advanced Graphics

Particle transport:

As an alternative to discrete flux / radiance / irradiance, we
can reason about light transport in terms of particle transport.

▪ Flux then becomes the number of emitted photons;
▪ Radiance the number of photons travelling through a unit

area in a unit direction;
▪ Irradiance the number of photons arriving on a unit area.

A BRDF tells us how many particles are absorbed, and how outgoing particles are
distributed. The distribution depends on the incident and exitant direction.

𝑓𝑟 𝜔𝑜, 𝜔𝑖 =
𝐿𝑜(𝜔𝑜)

𝐸𝑖(𝜔𝑖)

Introduction

Advanced Graphics – Path Tracing 6

Previously in Advanced Graphics

Probabilities:

We can also reason about the behavior of a single photon. In
that case, the BRDF tells us the probability of a photon being
absorbed, or leaving in a certain direction.

Introduction

Advanced Graphics – Path Tracing 7

Previously in Advanced Graphics

Turning physics into code:

▪ ‘Flux’ becomes ‘photons per second’
▪ Count becomes probability

To complicate things, radiance and irradiance are ‘continuous
values’ or ‘densities’:

“At point X we have a density of 50 photons per m2”

“In direction 𝜔𝑜, we have a flow of 10 photons per steradian”

Likewise, our probabilities are going to be densities.

Introduction

Advanced Graphics – Path Tracing 10

Bidirectional Reflectance Distribution Function

BRDF: function describing the relation between radiance emitted in direction 𝜔𝑜

and irradiance arriving from direction 𝜔𝑖:

𝑓𝑟 𝜔𝑜, 𝜔𝑖 =
𝐿𝑜(𝜔𝑜)

𝐸𝑖(𝜔𝑖)
=

𝐿𝑜(𝜔𝑜)

𝐿𝑖 𝜔𝑖 cos θ𝑖
=

𝑜𝑢𝑡𝑔𝑜𝑖𝑛𝑔 𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒

𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔 𝑖𝑟𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒

Or, if spatially variant:

𝑓𝑟 𝑥, 𝜔𝑜, 𝜔𝑖 =
𝐿𝑜(𝑥, 𝜔𝑜)

𝐸𝑖(𝑥, 𝜔𝑖)
=

𝐿𝑜(𝑥, 𝜔𝑜)

𝐿𝑖 𝑥, 𝜔𝑖 cos θ𝑖

Properties:

▪ Should be positive: 𝑓𝑟 𝜔𝑜, 𝜔𝑖 ≥ 0
▪ Helmholtz reciprocity should be obeyed: 𝑓𝑟 𝜔𝑜, 𝜔𝑖 = 𝑓𝑟 𝜔𝑖 , 𝜔𝑜

▪ Energy should be conserved: ׬𝛺
𝑓𝑟 𝜔𝑜, 𝜔𝑖 cos 𝜃𝑜 𝑑𝜔𝑜 ≤ 1

Introduction

Advanced Graphics – Path Tracing 11

Bidirectional Reflectance Distribution Function

The diffuse BRDF is:

𝑓𝑟 𝜔𝑜, 𝜔𝑖 =
𝑎𝑙𝑏𝑒𝑑𝑜

π

So, for a total irradiance 𝐸 at surface point 𝑥, the

outgoing radiance 𝐿𝑜 = 𝐸𝑖
𝑎𝑙𝑏𝑒𝑑𝑜

𝜋
. Why the 𝜋?

Energy conservation: 𝐸𝑜 ≤ 𝐸𝑖

Suppose we have a directional light parallel to 𝑛, with

intensity 1. Then: 𝐸𝑖 = 𝐿𝑖 = 1. Suppose our BRDF =
𝑎𝑙𝑏𝑒𝑑𝑜

1
.

Then, for albedo = 1 we get: 𝐸𝑜 = 𝛺׬
𝐿𝑖 𝑓𝑟(𝜔𝑜 , 𝜔𝑖) cos 𝜔𝑜 𝑑𝜔𝑜 = 𝛺׬

cos 𝜔𝑜 𝑑𝜔𝑜

Now: ׬𝛺
cos 𝜔𝑜 𝑑𝜔𝑜 = 𝜋 ➔ 𝐸𝑜 = 𝜋 𝐸𝑖 .

𝒏
𝝎𝒊

Introduction

Advanced Graphics – Path Tracing 12

Bidirectional Reflectance Distribution Function

Mirror / Perfect specular:
Reflects light in a fixed direction.

For a given incoming direction 𝜔𝑖 , all light is emitted
in a single infinitesimal set of directions. The specular
BRDF is a Dirac function:

𝑓𝑟 𝑥, 𝜔𝑜, 𝜔𝑖 = ቊ
∞, along reflected vector
0, otherwise.

This is not practical, and therefore we will handle the pure specular case
(reflection and refraction) separately.

𝒏
𝝎𝒐 𝝎𝒊

https://en.wikipedia.org/wiki/Dirac_delta_function

Introduction

Advanced Graphics – Path Tracing 13

Previously in Advanced Graphics

Monte Carlo integration:

Complex integrals can be approximated by replacing them by the expected value of a
stochastic experiment.

▪ Soft shadows: randomly sample the area of a light source;
▪ Glossy reflections: randomly sample the directions in a cone;
▪ Depth of field: randomly sample the aperture;
▪ Motion blur: randomly sample frame time.

In the case of the rendering equation, we are dealing with a recursive integral .

Path tracing: evaluating this integral using a random walk.

Today’s Agenda:

▪ Introduction

▪ Path Tracing

Path Tracing

Advanced Graphics – Path Tracing 15

Solving the Rendering Equation

Let’s start with direct illumination:

For a screen pixel, diffuse surface point 𝑝 with normal 𝑁 is directly visible.
What is the radiance travelling via 𝑝 towards the eye?

Answer:

𝐿𝑜 𝑝, 𝜔𝑜 = න
𝛺

𝑓𝑟 𝑝, 𝜔𝑜, 𝜔𝑖 𝐿𝑑 𝑝, 𝜔𝑖 cos 𝜃𝑖 𝑑𝜔𝑖

p

𝜔𝑜

𝜔𝑖
𝑁

Path Tracing

Advanced Graphics – Path Tracing 16

Solving the Rendering Equation

Let’s start with direct illumination:

For a screen pixel, diffuse surface point 𝑝 with normal 𝑁 is directly visible.
What is the radiance travelling via 𝑝 towards the eye?

Answer:

𝐿𝑜 𝑝, 𝜔𝑜 = න
𝛺

𝑓𝑟 𝑝, 𝜔𝑜, 𝜔𝑖 𝐿𝑑 𝑝, 𝜔𝑖 cos 𝜃𝑖 𝑑𝜔𝑖

p

𝜔𝑜

𝜔𝑖
𝑛

𝐿𝑜 𝑝, 𝜔𝑜 = න
𝛺

𝑓𝑟 𝑝, 𝜔𝑜, 𝜔𝑖 𝐿𝑑 𝑝, 𝜔𝑖 cos 𝜃𝑖 𝑑𝜔𝑖

= න
𝛺

𝑎𝑙𝑏𝑒𝑑𝑜

𝜋
𝐿𝑑 𝑝, 𝜔𝑖 cos 𝜃𝑖 𝑑𝜔𝑖

=
𝑎𝑙𝑏𝑒𝑑𝑜

𝜋
න

𝛺

𝐿𝑑 𝑝, 𝜔𝑖 cos 𝜃𝑖 𝑑𝜔𝑖

In other words: the sum of radiance (scaled by cos 𝜃𝑖 to
convert to irradiance) arriving from all directions over
the hemisphere, divided by 𝜋.

Q: What about distance attenuation?

A: A far-away light is found by fewer directions
𝜔𝑖: it’s solid angle on the hemisphere is smaller.

Q: What happened to 𝜔𝑜?

A: The BRDF is independent of 𝜔𝑜 (it doesn’t
appear in the equation), but as 𝜔𝑖 approaches
the horizon, cos 𝜃𝑖 approaches zero.

Path Tracing

Advanced Graphics – Path Tracing 17

Direct Illumination

We can solve this integral using Monte-Carlo integration:

▪ Chose N random directions over the hemisphere for 𝑝
▪ Find the first surface in each direction by tracing a ray
▪ If the surface is light emitting: add it to the sum
▪ Divide the sum by N and multiply by 2π

𝐿𝑜 𝑝, 𝜔𝑜 ≈
2𝜋

𝑁
෍

𝑖=1

𝑁

𝑓𝑟 𝑝, 𝜔𝑜, 𝜔𝑖 𝐿𝑑 𝑝, 𝜔𝑖 cos 𝜃𝑖

p

𝜔𝑜

𝜔𝑖
𝑛

Path Tracing

Advanced Graphics – Path Tracing 18

Direct Illumination

𝐿𝑜 𝑝, 𝜔𝑜 ≈
2𝜋

𝑁
෍

𝑖=1

𝑁

𝑓𝑟 𝑝, 𝜔𝑜, 𝜔𝑖 𝐿𝑑 𝑝, 𝜔𝑖 cos 𝜃

Questions:

▪ Why do we multiply by 2𝜋?
▪ What is the radiance 𝐿𝑑(𝑝, 𝜔𝑖) towards 𝑝 for e.g. a 100W light?
▪ What is the irradiance 𝐸 at 𝑝 from this light?

p

𝜔𝑜

𝜔𝑖
𝑛

We integrate over the hemisphere, which
has an area of 2𝜋.

Do not confuse this with the 1/ 𝜋 factor
in the BRDF, which doesn’t compensate
for the surface of the hemisphere, but the
integral of cos 𝜃 over the hemisphere (𝜋).

𝐿 is per sr; 𝐿𝑑(𝑝, 𝜔𝑖) is proportional
to the solid angle of the light as seen
from p, so: ~(𝐴𝑑𝑖𝑠𝑐/𝑟2).

Path Tracing

Advanced Graphics – Path Tracing 19

Direct Illumination

𝐿𝑜 𝑝, 𝜔𝑜 = න
𝛺

𝑓𝑟 𝑝, 𝜔𝑜, 𝜔𝑖 𝐿𝑑 𝑝, 𝜔𝑖 cos 𝜃𝑖 𝑑𝜔𝑖

In many directions, we will not find light sources. We can improve our estimate by
sampling the lights separately.

𝐿𝑜 𝑝, 𝜔𝑖 = ෍

𝑗=1

𝑙𝑖𝑔ℎ𝑡𝑠

න
𝛺

𝑓𝑟 𝑝, 𝜔𝑜, 𝜔𝑖 𝐿𝑑
𝑗

𝑝, 𝜔𝑖 cos 𝜃𝑖 𝑑𝜔𝑖

Obviously, sampling the entire hemisphere for each light
is not necessary; we can sample the area of the light instead:

𝐿𝑜 𝑝, 𝜔𝑖 = ෍

𝑗=1

𝑙𝑖𝑔ℎ𝑡𝑠

න
𝐴

𝑓𝑟 𝑝, 𝜔𝑜, 𝜔𝑖 𝐿𝑑
𝑗

𝑝, 𝜔𝑖 cos 𝜃𝑖 𝑑𝜔𝑖

Path Tracing

Advanced Graphics – Path Tracing 20

Direct Illumination

𝐿𝑜 𝑝, 𝜔𝑖 = ෍

𝑗=1

𝑙𝑖𝑔ℎ𝑡𝑠

න
𝐴

𝑓𝑟 𝑝, 𝜔𝑜, 𝜔𝑖 𝐿𝑑
𝑗

𝑝, 𝜔𝑖 cos 𝜃𝑖 𝑑𝜔𝑖

Using Monte-Carlo:

𝐿𝑜 𝑝, 𝜔𝑖 ≈
𝑙𝑖𝑔ℎ𝑡𝑠

𝑁
෍

𝑖=1

𝑁

𝑓𝑟 𝑝, 𝜔𝑜, 𝑃 𝐿𝑑
𝐽

𝑝, 𝑃 𝑉 𝑝 ↔ 𝑃
𝐴

𝐿𝑑
𝐽 cos 𝜃𝑖 cos 𝜃𝑜

∥ 𝑝 − 𝑃 ∥2

where

▪ 𝐿𝑑
𝐽 (𝑝, 𝑃) is the direct light towards p from random point 𝑃 on random light 𝐽

▪ 𝑉 𝑝 ↔ 𝑃 is the mutual visibility between 𝑝 and 𝑃
▪ 𝐴

𝐿𝑑
𝐽 is the area of this light source

▪ (𝐴
𝐿𝑑

𝐽 cos 𝜃𝑜)/(∥ 𝑝 − 𝑃 ∥2) is the area of the light source projected on the

hemisphere, which approximates the solid angle of the light.

Recall:

Path Tracing

Advanced Graphics – Path Tracing 21

Direct Illumination

We now have two methods to estimate direct illumination using Monte Carlo integration:

1. By random sampling the hemisphere:

𝐿𝑜 𝑝, 𝜔𝑜 ≈
2𝜋

𝑁
෍

𝑖=1

𝑁

𝑓𝑟 𝑝, 𝜔𝑜, Ω𝑖 𝐿𝑑 𝑝, Ω𝑖 cos 𝜃𝑖

2. By sampling the lights directly:

𝐿𝑜 𝑝, 𝜔𝑖 ≈
𝑙𝑖𝑔ℎ𝑡𝑠

𝑁
෍

𝑖=1

𝑁

𝑓𝑟 𝑝, 𝜔𝑜, 𝑃 𝐿𝑑
𝐽 𝑝, 𝑃 𝑉 𝑝 ↔ 𝑃

𝐴
𝐿𝑑

𝐽 cos 𝜃𝑖 cos 𝜃𝑜

∥ 𝑝 − 𝑃 ∥2

For 𝑁 = ∞, these yield the same result.

Path Tracing

Advanced Graphics – Path Tracing 22

Direct Illumination

We now have two methods to estimate direct illumination using Monte Carlo integration:

1. By random sampling the hemisphere:

𝐿𝑜 𝑝, 𝜔𝑜 ≈
2𝜋

𝑁
෍

𝑖=1

𝑁

𝑓𝑟 𝑝, 𝜔𝑜, Ω𝑖 𝐿𝑑 𝑝, Ω𝑖 cos 𝜃𝑖

2. By sampling the lights directly (three point formulation):

𝐿𝑜 𝑠 ← 𝑝 ≈
𝑙𝑖𝑔ℎ𝑡𝑠

𝑁
෍

𝑖=1

𝑁

𝑓𝑟 𝑠 ← 𝑝 ← 𝑄 𝐿𝑑
𝐽 𝑝 ← 𝑄 𝑉 𝑝 ↔ 𝑄

𝐴
𝐿𝑑

𝐽 cos 𝜃𝑖 cos 𝜃𝑜

∥ 𝑝 − 𝑄 ∥2

For 𝑁 = ∞, these yield the same result.

Path Tracing

Advanced Graphics – Path Tracing 23

Verification

Method 1 in a small C# ray tracing framework:

In: Ray ray, with members O, D, N, t.
Already calculated: intersection point I = O + t * D.

Vector3 R = RTTools.DiffuseReflection(ray.N);
Ray rayToHemisphere = new Ray(I + R * EPSILON, R, 1e34f);
Scene.Intersect(rayToHemisphere);
if (rayToHemisphere.objIdx == LIGHT)
{

Vector3 BRDF = material.diffuse * INVPI;
float cos_i = Vector3.Dot(R, ray.N);
return 2.0f * PI * BRDF * Scene.lightColor * cos_i;

}

𝐿𝑜 𝑝, 𝜔𝑜 ≈
2𝜋

𝑁
෍

𝑖=1

𝑁

𝑓𝑟 𝑝, 𝜔𝑜, Ω𝑖 𝐿𝑑 𝑝, Ω𝑖 cos 𝜃𝑖

Path Tracing

Advanced Graphics – Path Tracing 24

Verification

Method 2 in a small C# ray tracing framework:

// construct vector to random point on light
Vector3 L = Scene.RandomPointOnLight() - I;
float dist = L.Length();
L /= dist;
float cos_o = Vector3.Dot(-L, lightNormal);
float cos_i = Vector3.Dot(L, ray.N);
if ((cos_o <= 0) || (cos_i <= 0)) return BLACK;
// light is not behind surface point, trace shadow ray
Ray r = new Ray(I + EPSILON * L, L, dist - 2 * EPSILON);
Scene.Intersect(r);
if (r.objIdx != -1) return Vector3.Zero;
// light is visible (V(p,p’)=1); calculate transport
Vector3 BRDF = material.diffuse * INVPI;
float solidAngle = (cos_o * Scene.LIGHTAREA) / (dist * dist);
return BRDF * lightCount * Scene.lightColor * solidAngle * cos_i;

𝐿𝑜 𝑝, 𝜔𝑖 ≈ 𝑙𝑖𝑔ℎ𝑡𝑠 ∗
1

𝑁
෍

𝑖=1

𝑁

𝑓𝑟 𝑝, 𝜔𝑜, 𝑃 𝐿𝑑
𝐽 𝑝, 𝑃 𝑉 𝑝 ↔ 𝑃

𝐴
𝐿𝑑

𝐽 cos 𝜃𝑖 cos 𝜃𝑜

∥ 𝑝 − 𝑃 ∥2

Path Tracing

Advanced Graphics – Path Tracing 25

0.1s

Path Tracing

Advanced Graphics – Path Tracing 26

0.5s

Path Tracing

Advanced Graphics – Path Tracing 27

2.0s

Path Tracing

Advanced Graphics – Path Tracing 28

30.0s

Path Tracing

Advanced Graphics – Path Tracing 29

Rendering using Monte Carlo Integration

In the demonstration, we sampled each light using only 1 sample. The (very noisy) result
is directly visualized.

To get a better estimate, we average the result of several frames (and thus: several
samples).

Observations:

1. The light sampling estimator is much better than the hemisphere estimator;
2. Relatively few samples are sufficient for a recognizable image;
3. Noise reduces over time, but we quickly get diminishing returns.

Path Tracing

Advanced Graphics – Path Tracing 30

Indirect Light

Returning to the full rendering equation:

We know how to evaluate direct lighting arriving at 𝑥 from all directions 𝜔𝑖:

What remains is indirect light.
This is the light that is not emitted by the surface in direction 𝜔𝑖 , but reflected.

Path Tracing

Advanced Graphics – Path Tracing 31

direct light on x

1st bounce

2nd bounce

≈…

Indirect Light

Let’s expand / reorganize this:

𝐿𝑜 𝑥, 𝜔𝑜
𝑥 = 𝐿𝐸 𝑥, 𝜔𝑜

𝑥

+ න
𝛺

𝐿𝐸 𝑦, 𝜔𝑜
𝑦

𝑓𝑟 𝑥, 𝜔𝑜
𝑥, 𝜔𝑖

𝑥 cos 𝜃𝑖
𝑥 𝑑𝜔𝑖

𝑥

+ න
𝛺

න
𝛺

𝐿𝐸 𝑧, 𝜔𝑜
𝑞

𝑓𝑟 𝑦, 𝜔𝑜
𝑞

, 𝜔𝑖
𝑞

cos 𝜃𝑖
𝑞

𝑓𝑟 𝑥, 𝜔𝑜
𝑥, 𝜔𝑖

𝑥 cos 𝜃𝑖
𝑥 𝑑𝜔𝑖

𝑥 𝑑𝜔𝑖
𝑞

+ න
𝛺

න
𝛺

න
𝛺

…

𝑥

𝑦

𝑞

𝑧

Path Tracing

Advanced Graphics – Path Tracing 32

Indirect Light

One particle finding the light via a surface:

I, N = Trace(ray);
R = DiffuseReflection(N);
lightColor = Trace(new Ray(I, R));

return dot(R, N) *
𝑎𝑙𝑏𝑒𝑑𝑜

𝜋
* lightColor * 2𝜋;

One particle finding the light via two surfaces:

I1, N1 = Trace(ray);
R1 = DiffuseReflection(N1);
I2, N2 = Trace(new Ray(I1, R1));
R2 = DiffuseReflection(N2);
lightColor = Trace(new Ray(I2, R2));

return dot(R1, N1) *
𝑎𝑙𝑏𝑒𝑑𝑜

𝜋
* 2𝜋 * dot(R2, N2) *

𝑎𝑙𝑏𝑒𝑑𝑜

𝜋
* 2𝜋 * lightColor;

𝑥

𝑦

𝑦

𝑧

Path Tracing

Advanced Graphics – Path Tracing 33

Path Tracing Algorithm

Color Sample(Ray ray)
{

// trace ray
I, N, material = Trace(ray);
// terminate if ray left the scene
if (ray.NOHIT) return BLACK;
// terminate if we hit a light source
if (material.isLight) return material.emittance;
// continue in random direction
R = DiffuseReflection(N);
Ray newRay(I, R);
// update throughput
BRDF = material.albedo / PI;
Ei = Sample(newRay) * dot(N, R); // irradiance
return PI * 2.0f * BRDF * Ei;

}

𝑥

𝑦

𝑦

𝑧

Path Tracing

Advanced Graphics – Path Tracing 34

Path Tracing

Advanced Graphics – Path Tracing 35

Path Tracing

Advanced Graphics – Path Tracing 36

Path Tracing

Advanced Graphics – Path Tracing 37

Path Tracing

Advanced Graphics – Path Tracing 38

Particle Transport

The random walk is analogous to particle transport:

▪ a particle leaves the camera
▪ at each surface, energy is absorbed proportional to

1-albedo (‘surface color’)
▪ at each surface, the particle picks a new direction
▪ at a light, the path transfers energy to the camera.

In the simulation, particles seem to travel backwards.
This is valid because of the Helmholtz reciprocity.

Notice that longer paths tend to return less energy.

Color Sample(Ray ray)
{

// trace ray
I, N, material = Trace(ray);
// terminate if ray left the scene
if (ray.NOHIT) return BLACK;
// terminate if we hit a light source
if (material.isLight) return emittance;
// continue in random direction
R = DiffuseReflection(N);
Ray r(I, R);
// update throughput
BRDF = material.albedo / PI;
Ei = Sample(r) * (N∙R);
return PI * 2.0f * BRDF * Ei;

}

Path Tracing

Advanced Graphics – Path Tracing 39

Particle Transport - Mirrors

Handling a pure specular surface:

A particle that encounters a mirror continues in a
deterministic way.

Question:

▪ What happens at a red mirror?
▪ What happens if a material is only half reflective?

Color Sample(Ray ray)
{

// trace ray
I, N, material = Trace(ray);
// terminate if ray left the scene
if (ray.NOHIT) return BLACK;
// terminate if we hit a light source
if (material.isLight) return emittance;
// surface interaction
if (material.isMirror)
{

// continue in fixed direction
Ray r(I, Reflect(N));
return material.albedo * Sample(r);

}
// continue in random direction
R = DiffuseReflection(N);
BRDF = material.albedo / PI;
Ray r(I, R);
// update throughput
Ei = Sample(r) * (N∙R);
return PI * 2.0f * BRDF * Ei;

}

Path Tracing

Advanced Graphics – Path Tracing 40

Particle Transport - Glass

Handling dielectrics:

Dielectrics reflect and transmit light.
In the ray tracer, we handled this using two rays.

A particle must chose.

The probability of each choice is calculated using the
Fresnel equations.

Color Sample(Ray ray)
{

// trace ray
I, N, material = Trace(ray);
// terminate if ray left the scene
if (ray.NOHIT) return BLACK;
// terminate if we hit a light source
if (material.isLight) return emittance;
// surface interaction
if (material.isMirror)
{

// continue in fixed direction
Ray r(I, Reflect(N));
return material.albedo * Sample(r);

}
// continue in random direction
R = DiffuseReflection(N);
BRDF = material.albedo / PI;
Ray r(I, R);
// update throughput
Ei = Sample(r) * (N∙R);
return PI * 2.0f * BRDF * Ei;

}

Path Tracing

Advanced Graphics – Path Tracing 41

Path Tracing

Advanced Graphics – Path Tracing 42

Today’s Agenda:

▪ Introduction

▪ Path Tracing

INFOMAGR – Advanced Graphics
Jacco Bikker - November 2021 - February 2022

END of “Path Tracing”
next lecture: “GPU Ray Tracing (1)”

