
𝑰 𝒙, 𝒙′ = 𝒈(𝒙, 𝒙′) 𝝐 𝒙, 𝒙′ + න
𝑺

𝝆 𝒙, 𝒙′, 𝒙′′ 𝑰 𝒙′, 𝒙′′ 𝒅𝒙′′
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Lecture 7 - “GPU Ray Tracing (1)”

Welcome!



Today’s Agenda:

▪ Exam Questions: Sampler

▪ Introduction

▪ Survey: GPU Ray Tracing

▪ Practical Perspective
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We use the Surface Area Heuristic to determine a good position for a split 

plane during BVH construction. 

a) One version of the SAH looks as follows:

𝐶𝑠𝑝𝑙𝑖𝑡 = 𝐶𝑇 + 𝐴𝑙𝑒𝑓𝑡𝑁𝑙𝑒𝑓𝑡𝐶𝐼 + 𝐴𝑟𝑖𝑔ℎ𝑡𝑁𝑟𝑖𝑔ℎ𝑡𝐶𝐼

What are 𝐶𝑇 and 𝐶𝐼 for?

How would you modify this formula if your BVH supports 

spheres and tori? 

b) Explain why we use surface area (rather than e.g. bounding box 

volume) in the cost function.

c) The Surface Area Heuristic is a ‘greedy’ heuristic. What is the 

meaning of ‘greedy’ in this context?

d) What is the algorithmic complexity of the greedy SAH-guided 

BVH construction algorithm (without binning), and what would 

be the algorithmic complexity of the non-greedy version?
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Behold the Rendering Equation:

𝐿𝑜 𝑥, 𝜔𝑜 = 𝐿𝐸 𝑥, 𝜔𝑜 + න
𝛺

𝑓𝑟 𝑥, 𝜔𝑜, 𝜔𝑖 𝐿𝑖 𝑥, 𝜔𝑖 cos 𝜃𝑖 𝑑𝜔𝑖

a) What does cos 𝜃𝑖 do?

b) Why is the above formulation missing the ‘visibility factor’?

c) Another formulation of the RE is the three-point formulation:

𝐿 𝑠 ← 𝑥 = 𝐿𝐸 𝑠 ← 𝑥 + න
𝐴

𝑓𝑟 𝑠 ← 𝑥 ← 𝑥′ 𝐿 𝑥 ← 𝑥′ 𝐺 𝑥 ↔ 𝑥′ 𝑑𝐴 𝑥′

What is 𝐴 in this equation?

Explain what 𝐺 𝑥 ↔ 𝑥′ does.
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Transferring Ray Tracing to the GPU

Platform characteristics:

▪ Massively parallel
▪ SIMT
▪ High bandwidth
▪ Massive compute potential
▪ Slow connection to host

Challenges:

▪ Thread state must be small
▪ Efficiency requires coherent control flow



Introduction
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Transferring Ray Tracing to the GPU

Survey

▪ Understand evolution of graphics hardware
▪ Understand characteristics of modern GPUs
▪ Investigate algorithms designed with these characteristics in mind
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Ray Tracing on Programmable Graphics Hardware*

Graphics hardware in 2002:

▪ Vertex and fragment shaders only
▪ Simple instruction sets
▪ Integer-only (fixed-point) fragment shaders
▪ Limited number of instructions per program
▪ Limited number of inputs and outputs
▪ No loops, no conditional branching

Expectations:

▪ Floating point fragment shaders
▪ Improved instruction sets
▪ Multiple outputs per fragment shader

*: Ray tracing on programmable graphics hardware, Purcell et al., 2002.

NVidia GeForce 3

ATi Radeon 8500

No branching

2002
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Ray Tracing on Programmable Graphics Hardware

Challenge: to map ray tracing to stream processing*.

Stage 1: Produce a stream of primary rays.

Stage 2: For each ray in the stream, find a voxel 
containing geometry.

Stage 3: For each voxel in the stream, intersect the
ray with the primitives in the voxel.

Stage 4: For each intersection point in the stream,
apply shading and produce a new ray.

*: https://en.wikipedia.org/wiki/Stream_processing 

Generate Eye Rays

Traverse Accstruc

Intersect Prims

Shade and 
Generate Shadow 

Rays

Camera

Accstruc

Prims

Normals, 
materials

Survey

2002
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Ray Tracing on Programmable Graphics Hardware

Stream computing without flow control:

Assign a state to each ray.

1. Traversing;
2. intersecting;
3. shading;
4. done.

Now, for each program render a quad using a stencil based 
on the state; this enables the program only for rays in that 
state*.

*: Interactive multi-pass programmable shading, Peercy et al., 2000.

Generate Eye Rays

Traverse Accstruc

Intersect Prims

Shade and 
Generate Shadow 

Rays

Camera

Accstruc

Prims

Normals, 
materials

Survey

2002
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Ray Tracing on Programmable Graphics Hardware

Stream computing without flow control: Generate Eye Rays

Traverse Accstruc

Intersect Prims

Shade and 
Generate Shadow 

Rays

Camera

Accstruc

Prims

Normals, 
materials

Survey

Render two triangles, shader performs ray tracing

Use stencil to select functionality

2002



Advanced Graphics – GPU Ray Tracing (1) 14

Ray Tracing on Programmable Graphics Hardware

Acceleration structure (grid) traversal:

1. setup traversal;
2. one step using 3D-DDA*.

Note that each step through the grid requires one pass .

*: Accelerated ray tracing system. Fujimoto et al., 1986.

Generate Eye Rays

Traverse Accstruc

Intersect Prims

Shade and 
Generate Shadow 

Rays

Camera

Accstruc

Prims

Normals, 
materials

Survey

2002
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Ray Tracing on Programmable Graphics Hardware

Results

Here, ‘efficiency’ is the average ratio of active fragments during each pass.

2443
0.009

1198
0.061

1999
0.062

2835
0.062

1085
0.105

passes
efficiency

Survey

2002
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Ray Tracing on Programmable Graphics Hardware

Conclusions

▪ Ray tracing can be done on a GPU
▪ GPU outperforms CPU by a factor 3x (for triangle intersection only)
▪ Flow control is needed to make the full ray tracer efficient.

Survey

2002
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KD-Tree Acceleration Structures for a GPU Raytracer*

Observations on previous work:

▪ Grid only: doesn’t adapt to local scene complexity
▪ kD-tree traversal can be done on the GPU, but the stack is a 

problem.

Goal:

▪ Implement kD-tree traversal without stack.

*: KD-Tree Acceleration Structures for a GPU Raytracer, Foley & Sugerman, 2005

Survey

2005
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KD-Tree Acceleration Structures for a GPU Raytracer

Recall standard kD-tree traversal:

Setup:

1. tmax, tmin = intersect( ray, root bounds );

Root node:

2. Find intersection t with split plane
3. If tmin <= t <= tmax:

▪ Process near child with segment (tmin, t )
▪ Process far child with segment (t , tmax)

4. else if t > tmax:
▪ Process left child with segment (tmin,tmax)

5. else
▪ Process right child with segment (tmin,tmax)

Survey

2005
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KD-Tree Acceleration Structures for a GPU Raytracer

Recall standard kD-tree traversal:

Setup:

1. tmax, tmin = intersect( ray, root bounds );

Root node:

2. Find intersection t with split plane
3. If tmin <= t <= tmax:

▪ Push far child
▪ Continue with near child

4. else if t > tmax:
▪ Process left child with segment (tmin,tmax)

5. else
▪ Process right child with segment (tmin,tmax)

Survey

2005
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KD-Tree Acceleration Structures for a GPU Raytracer

Traversing the tree without a stack:

If we always pick the nearest child, the only value 
that will change is tmax.

Setup:

1. tmax, tmin = intersect( ray, root bounds );

2. Always pick the nearest child.
3. Once we have processed a leaf, restart with:

▪ tmin=tmax
▪ tmax= intersect( ray, root bounds )

This algorithm is referred to as kd-restart.

Note that the average ray intersects only a 
small number of leafs. Since restart only 
happens for each intersected leaf that didn’t 
yield an intersection point, the expected 
cost is still 𝑂(log 𝑛). 

Survey

2005
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KD-Tree Acceleration Structures for a GPU Raytracer

We can reduce the cost of a restart by storing node bounds 
and a parent pointer with each node.

Instead of restarting at the root, we now restart at the first 
ancestor that has a non-empty intersection with (tmin,tmax).

This algorithm is referred to as kd-backtrack.

Survey

2005
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KD-Tree Acceleration Structures for a GPU Raytracer

Implementation: each ray is assigned a state:

1. Initialize: finds tmin,tmax for each ray in the input stream
2. Down: traverses each ray down by one step
3. Leaf: handles ray/leaf intersection for each ray
4. Intersect: performs actual ray/triangle intersection
5. Continue: decides whether each ray is done or needs to restart / backtrack
6. Up: performs one backtrack step for each ray in the input stream.

As before, the state is used to mask rays in the input stream when executing each 
of the 6 programs.

Survey

2005
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KD-Tree Acceleration Structures for a GPU Raytracer

Results (ms*):

23
63
80
84

4620
357
701
690

4770
8344
968
946

7350
2687
992
857

brute force
grid

kd-restart
kd-backtrack

*: Hardware: 256MB ATI X800 XT PE (2004), rendering @ 512x512, time in milliseconds.

Survey

2005
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Interactive k-d tree GPU raytracing*
Stackless KD-tree traversal for high performance GPU ray tracing**

Observations on previous work:

▪ GPU ray tracing performance can’t keep up with CPU
▪ Kd-restart requires substantially more node visits
▪ Kd-backtrack increases data storage and bandwidth
▪ Looping and branching wasn’t available, but is now.

*: Interactive k-d tree GPU raytracing, Horn et al., 2007
**: Stackless KD-tree traversal for high performance GPU ray tracing, Popov et al., 2007

Survey

2007
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Interactive k-d tree GPU raytracing
Stackless KD-tree traversal for high performance GPU ray tracing

Ray tracing with a short stack:

By keeping a fixed-size stack we can prevent a restart in almost all cases.

slot 1

slot 2

slot 3

slot 4

base stackPtr

stackPtr

stackPtr

stackPtr

node A

node B

node C

node D

base

node E

Survey

2007
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kD-tree Traversal using Ropes*

“The main goal of any traversal algorithm is the efficient 
front-to-back enumeration of all leaf nodes pierced by a 
ray. From that point of view, any traversal of inner nodes 
of the tree (…) can be considered overhead that is only 
necessary to locate leafs quickly.”

Algorithm:

1. Traverse to a leaf;
2. If no intersection found:

▪ Follow rope;
▪ Goto 1.

*: Ray tracing with rope trees, Havran et al., 1998

Survey

2007
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Interactive k-d tree GPU raytracing
Stackless KD-tree traversal for high performance GPU ray tracing

Ray tracing with flow control:

25x performance of the previous paper
1.65x – 2.3x from algorithmic improvements
3.75x from hardware advances

➔ 2.9x from switching from multi-pass to single-pass.

Survey

2007
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Interactive k-d tree GPU raytracing
Stackless KD-tree traversal for high performance GPU ray tracing

Results*:

*: Hardware: GeForce 8800 GTX / Opteron @ 2.6 Ghz, performance in fps @ 1024x1024.

12.7
-

10.6
3.6

36.0
6.6

16.7
3.9

GPU
CPU (1 core)

Survey

2007
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Interactive k-d tree GPU raytracing
Stackless KD-tree traversal for high performance GPU ray tracing

Conclusions

▪ Compared to kd-restart, approx. 1/3rd of the nodes is visited;
▪ The GPU now outperforms a quad-core CPU;
▪ NVidia GTX 8800 does 160 GFLOPS; cost per ray is 10.000 cycles…

Survey

2007
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Realtime Ray Tracing on GPU with BVH-based Packet Traversal*

Observations on previous work:

▪ kD-trees limit rendering to static scenes
▪ kD-trees with ropes are inefficient storage wise
▪ Popov et al.’s tracer achieves only 33% utilization due to register pressure
▪ Existing GPU ray tracers do not realize GPU potential
▪ Existing GPU ray tracers suffer from execution divergence.

Solution:

Use BVH instead of kD-tree.

*: Realtime ray tracing on GPU with BVH-based packet traversal, Günther et al., 2007

Survey

2007
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Realtime Ray Tracing on GPU with BVH-based Packet Traversal

Recall: thread state must be small*.

An important difference between kD-tree packet traversal and BVH packet 
traversal is that kD-tree traversal requires a stack for the packet plus (tmin, 
tmax) per ray, while the BVH packet only requires a stack.

*: To achieve maximum utilization of a G80 GPU, we need 768 threads per multiprocessor (i.e., 24 warps). 
Each multiprocessor has 16Kb shared memory and 32Kb register space ➔ for 24 warps we have 5 words 
plus 10 registers per thread available. Beyond that, we are forced to use global memory.

Survey

2007
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Realtime Ray Tracing on GPU with BVH-based Packet Traversal

GPU packet traversal for BVH:

1. A packet consists of 8x4 rays, 
handled by a single warp

2. The packet traverses the BVH 
using masked traversal
(where t is used as mask)

3. Storage:
1. Per ray: O, D, t (7 floats)
2. Per packet: stack

R=O,D ;  t=∞ ;  N=root
stack[] = empty

N is 
leaf?

intersect
update t

stack 
empty?

pop N

yes

no

no

yes

b1=any_intersect(R,left)
b2=any_intersect(R,right)

N=near
push far

b1&&b2: 

b1||b2: N=near

Survey

2007

yes

yes
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Realtime Ray Tracing on GPU with BVH-based Packet Traversal

Observations:

This is hardly a packet traversal scheme; we are essentially
traversing 32 independent rays.

However: 

the rays in the packet do share a single stack.

Question:

will rays ever visit a node they didn’t have to visit?
(i.e., do they visit a node they would not have visited using
a stack per ray?)

R=O,D ;  t=∞ ;  N=root
stack[] = empty

N is 
leaf?

intersect
update t

stack 
empty?

pop N

yes

no

no

yes

b1=any_intersect(R,left)
b2=any_intersect(R,right)

N=near
push far

b1⋀b2: 

b1⋁b2: N=near

Survey

2007

Answer: yes they will. The weakness of this 
algorithm is in determining the near and far child.
This is based on ‘the majority of rays’, and 
therefore an individual ray may visit nodes in a 
sub-optimal order.
The paper does not address this issue.
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Realtime Ray Tracing on GPU with BVH-based Packet Traversal

Results*:

*: Hardware: GeForce 8800 GTX, rendering at 1024x1024, performance in fps.

Survey

19.0
6.1

16.2
5.7

6.4
2.9

primary
+shadow

2007
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Digest

Challenges in GPU ray tracing:

▪ Utilizing GPU compute potential (getting it to work ➔ beating CPU ➔ efficient)
▪ Mapping an embarrassingly parallel algorithm to a streaming processor
▪ Tiny per-thread state (balancing utilization / algorithmic efficiency)
▪ Freedom in the choice of acceleration structure
▪ Tracing divergent rays

Survey

2002 - 2007
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Pragmatic GPU Ray Tracing*

Context:

▪ Real-time demo
▪ 50-100k triangles
▪ Fully dynamic scene
▪ Fully dynamic camera (no time to converge)
▪ Must “look good” (as opposed to “be correct”)

➔ Rasterize primary hit
➔No BVH / kD-tree

➔ Use a grid (or better: sparse voxel octree / brickmap).

*: Real-time Ray Tracing Part 2 – Smash / Fairlight, Revision 2013
https://directtovideo.wordpress.com/2013/05/08/real-time-ray-tracing-part-2 

2013
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Pragmatic GPU Ray Tracing

Grid traversal: 3D-DDA

Brickmap traversal:

▪ build in linear time
▪ locate ray origins in constant time
▪ skip some open space
▪ little flow divergence in shader
▪ simple thread state

2013
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Pragmatic GPU Ray Tracing

Filling the grid: using rasterization hardware.
➔ Determine which voxels a triangle overlaps.

Algorithm:

1. Determine for which plane (xy, yz, xz) the 
triangle has the greatest projected area.

2. Rasterize to that face; use interpolated x, y 
and depth to determine voxel coordinate.

3. Use conservative rasterization*, **.

*: GPU Gems 2, chapter 42: Conservative Rasterization. Hasselgren et al., 2005.
http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter42.html

**: The Basics of GPU Voxelization, Masaya Takeshige, 2015.
https://developer.nvidia.com/content/basics-gpu-voxelization

2013
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Pragmatic GPU Ray Tracing

In this case, we are not building a voxel set, but a grid
with pointers to the original triangles.

➔Add each triangle to a preallocated list per node.

From grid to brickmap:

▪ each brick consists of a small grid, e.g. 4x4x4.
▪ repeat the rasterization process at the higher resolution
▪ assign each triangle to cells in the fine grid.

Note that voxelization can be part of a rasterization-based rendering 
pipeline; it can e.g. be fed with triangles of a skinned mesh or even 
procedurally generated meshes.

2013
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Pragmatic GPU Ray Tracing

Pragmatic traversal:

▪ ‘Trace’ primary ray using rasterization
▪ Determine secondary ray origin from G-buffer

After this:

▪ Put a maximum on the number of traversal steps, regardless of 
bounce depth.

2013
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Pragmatic GPU Ray Tracing

Pragmatic diffraction:

Each ray represents 3 ‘wavelengths’, and each 
results in a different refracted direction.
However, only the direction of the first ray is 
actually used to find the next intersection for 
the triplet.

EXCEPT: when the rays exit the scene and 
returns a skybox color; only then the three 
directions are used to fetch 3 skybox colors 
which are then blended.

2013
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Pragmatic GPU Ray Tracing

Pragmatic depth of field:

Since primary rays are rasterized, the camera 
used is a pinhole camera.

Depth of field with bokeh is simulated using a 
postprocess. 

See for a practical approach:

Bokeh depth of field – going insane! part 1, Bart Wroński, 2014,
http://bartwronski.com/2014/04/07/bokeh-depth-of-field-going-insane-part-1

2013
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Pragmatic GPU Ray Tracing

Limitations:

▪ Doesn’t work well for ‘teapot in a stadium’
▪ Not suitable for very large scenes (area)
▪ Manual parameter tweaking

➔ The method is not good for a general purpose ray tracer, but really
clever for a special purpose renderer.

➔ Performance is very good, although hard to estimate:
Demo runs @ 60fps on a high-end GPU;
Traces ~1M primary rays;
Most rays make several bounces (very divergent!);
Guestimate: ~250M rays per second for a fully dynamic scene.

2013
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Other Real-time Ray Tracing Demos

For a brief history, see these links:
http://datunnel.blogspot.nl/2009/12/history-of-realtime-raytracing-part-1.html
http://datunnel.blogspot.nl/2009/12/history-of-realtime-raytracing-part-2.html
http://datunnel.blogspot.nl/2009/12/history-of-realtime-raytracing-part-3.html

Also check here: http://mpierce.pie2k.com/pages/108.php

2013
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Coming Soon in Advanced Graphics

GPU Ray Tracing Part 2:

▪ State of the art BVH traversal by Aila and Laine;

▪ Wavefront Path Tracing

▪ Heterogeneous Path Tracing: Brigade.
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END of “GPU Ray Tracing (1)”
next lecture: “Variance Reduction”


