
𝑰 𝒙, 𝒙′ = 𝒈(𝒙, 𝒙′) 𝝐 𝒙, 𝒙′ + න
𝑺

𝝆 𝒙, 𝒙′, 𝒙′′ 𝑰 𝒙′, 𝒙′′ 𝒅𝒙′′

INFOMAGR – Advanced Graphics
Jacco Bikker - November 2021 - February 2022

Lecture 8 ,9- “Variance Reduction”

Welcome!

Today’s Agenda:

▪ Introduction

▪ Random Samples

▪ Next Event Estimation

▪ Importance Sampling

▪ Russian Roulette

Introduction

Advanced Graphics – Variance Reduction 3

Previously in Advanced Graphics

Introduction

Advanced Graphics – Variance Reduction 4

Introduction

Advanced Graphics – Variance Reduction 5

Today in Advanced Graphics:

▪ Stratification
▪ Blue Noise
▪ Next Event Estimation
▪ Importance Sampling
▪ Multiple Importance Sampling
▪ Resampled Importance Sampling

Aim:

▪ to get a better image with the same number of samples
▪ to increase the efficiency of a path tracer
▪ to reduce variance in the estimate

Requirement:

▪ produce the correct image

Today’s Agenda:

▪ Introduction

▪ Random Samples

▪ Next Event Estimation

▪ Importance Sampling

▪ Russian Roulette

Stratification

Advanced Graphics – Variance Reduction 7

Uniform Random Sampling

To sample a light source, we draw two random values in
the range 0..1.

The resulting 2D positions are not uniformly distributed
over the area.

We can improve uniformity using stratification:
one sample is placed in each stratum.

Stratification

Advanced Graphics – Variance Reduction 8

Randomness

By the way…

What is a good random number?

BAD. What if RAND_MAX is 65535, and we
want a number in the range 0..50000? The
range 50000..65535 will overlap 0..15535…

Stratification

Advanced Graphics – Variance Reduction 9

Randomness

By the way…

What is a good random number?

Stratification

Advanced Graphics – Variance Reduction 10

Randomness

By the way…

What is a good random number?

Consider Marsaglia’s xor32*:

uint xorshift32(uint& state)
{

state ^= state << 13;
state ^= state >> 17;
state ^= state << 5;
return state;

}

*: Marsaglia, 2003. "Xorshift RNGs". Journal of Statistical Software.

Xor32, plus:

float RandomFloat(uint& s)
{ return xorshift32(s) * 2.3283064365387e-10f; }

Seeding:
Try the ‘WangHash’.

Stratification

Advanced Graphics – Variance Reduction 11

Uniform Random Sampling

To sample a light source, we draw two random values in
the range 0..1.

The resulting 2D positions are not uniformly distributed
over the area.

We can improve uniformity using stratification:
one sample is placed in each stratum.

For 4x4 strata:

stratum_x = (idx % 4) * 0.25 // idx = 0..15
stratum_y = (idx / 4) * 0.25
r0 = Rand() * 0.25
r1 = Rand() * 0.25
P = vec2(stratum_x + r0, stratum_y + r1)

Stratification

Advanced Graphics – Variance Reduction 12

Stratification

Advanced Graphics – Variance Reduction 13

Use Cases

Stratification can be applied to any Monte Carlo process:

▪ Anti-aliasing (sampling the pixel)
▪ Depth of field (sampling the lens)
▪ Motion blur (sampling time)
▪ Soft shadows (sampling area lights)
▪ Diffuse reflections (sampling the hemisphere)

However, there are problems:

▪ We need to take one sample per stratum
▪ Stratum count: higher is better, but with diminishing returns
▪ Combining stratification for e.g. depth of field and soft shadows leads to

correlation of the samples, unless we stratify the 4D space - which leads
to a very large number of strata: the curse of dimensionality.

Blue Noise

Advanced Graphics – Variance Reduction 14

Uniform Random Numbers

Stratification helps, because it improves the uniformity
of random numbers.

Other approaches to achieve this:

Poisson-disc distributions

Also known as: blue noise.

https://www.arnoldrenderer.com/research/dither_abstract.pdf

https://www.arnoldrenderer.com/research/dither_abstract.pdf

Stratification

Advanced Graphics – Variance Reduction 18

Troubleshooting Path Tracing Experiments

When experimenting with stratification and other variance
reduction methods you will frequently produce incorrect
images.

Tip:

Keep a simple reference path tracer without any tricks.
Compare your output to this reference solution frequently.

Today’s Agenda:

▪ Introduction

▪ Random Samples

▪ Next Event Estimation

▪ Importance Sampling

▪ Russian Roulette

NEE

Advanced Graphics – Variance Reduction 20

Also recall that we had two ways
to sample direct illumination:

integrating over
the hemisphere

integrating
over the lights

Can we apply this to the full rendering equation, instead of just direct illumination?

Next Event Estimation

Recall the rendering equation:

…and the way we
sampled it using
Monte Carlo:

Vector3 L = RandomPointOnLight() - I;
float dist = L.Length();
L /= dist;
float cos_o = Dot(-L, lightNormal);
float cos_i = Dot(L, ray.N);
if (cos_o <= 0 || cos_i <= 0) return BLACK;
// trace shadow ray
Ray r = new Ray(…);
Scene.Intersect(r);
if (r.objIdx != -1) return BLACK;
// V(p,p’)=1; calculate transport
Vector3 BRDF = material.diffuse * INVPI;
float solidAngle = …;
return solidAngle * BRDF * lightColor * cos_i;

 න

NEE

Advanced Graphics – Variance Reduction 21

−½π +½π

Incoming direct light

𝑥

= න
𝛺

𝐿𝑑 𝑥, 𝜔𝑖 cos 𝜃𝑖 𝑑𝜔𝑖

≈
2𝜋

𝑁

𝑖=1

𝑁

𝐿𝑑 𝑝, 𝜔𝑖 cos 𝜃𝑖

NEE

Advanced Graphics – Variance Reduction 22

−½π +½π

Incoming direct light

𝑥

= න
𝛺

𝐿𝑑 𝑥, 𝜔𝑖 cos 𝜃𝑖 𝑑𝜔𝑖

≈
2𝜋

𝑁

𝑖=1

𝑁

𝐿𝑑 𝑝, Ω𝑖 cos 𝜃𝑖

= න
𝐴..𝐵

𝐿𝑑 𝑥, 𝜔𝑖 cos 𝜃𝑖 𝑑𝜔𝑖 + න
𝐶..𝐷

𝐿𝑑 𝑥, 𝜔𝑖 cos 𝜃𝑖 𝑑𝜔𝑖

A B C D

NEE

Advanced Graphics – Variance Reduction 23

−½π +½π

Incoming direct + indirect light

𝑥

A B C D

NEE

Advanced Graphics – Variance Reduction 24

−½π +½π

Incoming direct + indirect light

−½π +½π

NEE

Advanced Graphics – Variance Reduction 25

Next Event Estimation

Observation: light travelling via any vertex on the path consists of indirect light
and direct light for that vertex.

Next Event Estimation: sampling direct and indirect separately.

NEE

Advanced Graphics – Variance Reduction 26

Next Event Estimation

Per surface interaction, we trace two random rays.

▪ Ray A returns (via point 𝑥) the energy reflected by 𝑦 (estimates indirect light for 𝑥).
▪ Ray B returns the direct illumination on point 𝑥 (estimates direct light on 𝑥).
▪ Ray C returns the direct illumination on point 𝑦, which will reach the sensor via ray A.
▪ Ray D leaves the scene.

𝑥

𝑦

A

B

CD

NEE

Advanced Graphics – Variance Reduction 27

Next Event Estimation

When a ray for indirect illumination stumbles upon a light, the path is terminated and no
energy is transported via ray D:

This way, we prevent accounting for direct illumination on point 𝑦 twice.

𝑥

𝑦

A

B

C

D

NEE

Advanced Graphics – Variance Reduction 28

Next Event Estimation

We thus split the hemisphere into two distinct areas:

1. The area that has the projection of the light
source on it;

2. The area that is not covered by this projection.

We can now safely send a ray to each of
these areas and sum whatever we find there.

(or: we integrate over these non-overlapping
areas and sum the energy we receive via both
to determine the energy we receive over the
entire hemisphere)

𝑥

Area 1:

Send a ray directly to a random light
source. Reject it if it hits anything else
than the targeted light.

Area 2:

Send a ray in a random direction on the
hemisphere. Reject it if it hits a light
source.

NEE

Advanced Graphics – Variance Reduction 29

𝑥

Area 1:

Send a ray directly to a random light
source. Reject it if it hits anything else
than the targeted light.

Area 2:

Send a ray in a random direction on the
hemisphere. Reject it if it hits a light
source.

−½π +½π

−½π +½π

NEE

Advanced Graphics – Variance Reduction 30

𝑥

Area 1:

Send a ray directly to a random light
source. Reject it if it hits anything else
than the targeted light.

Area 2:

Send a ray in a random direction on the
hemisphere. Reject it if it hits a light
source.

−½π +½π

−½π
+½π

+½π

NEE

Advanced Graphics – Variance Reduction 31

Next Event Estimation Color Sample(Ray ray)
{

// trace ray
I, N, material = FindNearest(ray);
BRDF = material.albedo / PI;
// terminate if ray left the scene
if (ray.NOHIT) return BLACK;
// terminate if we hit a light source
if (material.isLight) return BLACK;
// sample a random light source
L, Nl, dist, A = RandomPointOnLight();
Ray lr(I, L, dist);
if (N∙L > 0 && Nl∙-L > 0) if (!Occluded(lr))
{

solidAngle = ((Nl∙-L) * A) / dist2;
Ld = lightColor * solidAngle * BRDF *

N∙L * lightCount;
}
// continue random walk
R = DiffuseReflection(N);
Ray r(I, R);
Ei = Sample(r) * (N∙R);
return PI * 2.0f * BRDF * Ei + Ld;

}

NEE

Advanced Graphics – Variance Reduction 32

NEE

Advanced Graphics – Variance Reduction 33

NEE

Advanced Graphics – Variance Reduction 34

NEE

Advanced Graphics – Variance Reduction 35

Next Event Estimation

Some vertices require special attention:

▪ If the first vertex after the camera is emissive, its energy can’t
be reflected to the camera.

▪ For specular surfaces, the BRDF to a light is always 0.

Since a light ray doesn’t make sense for specular vertices, we will
include emission from a vertex directly following a specular
vertex.

The same goes for the first vertex after the camera: if this is
emissive, we will also include this.

This means we need to keep track of the type of the previous
vertex during the random walk.

NEE

Advanced Graphics – Variance Reduction 36

Color Sample(Ray ray, bool lastSpecular)
{

// trace ray
I, N, material = Trace(ray);
BRDF = material.albedo / PI;
// terminate if ray left the scene
if (ray.NOHIT) return BLACK;
// terminate if we hit a light source
if (material.isLight)

if (lastSpecular) return material.emissive;
else return BLACK;

// sample a random light source
L, Nl, dist, A = RandomPointOnLight();
Ray lr(I, L, dist);
if (N∙L > 0 && Nl∙-L > 0) if (!Trace(lr))
{

solidAngle = ((Nl∙-L) * A) / dist2;
Ld = lightColor * solidAngle * BRDF * N∙L;

}
// continue random walk
R = DiffuseReflection(N);
Ray r(I, R);
Ei = Sample(r, false) * (N∙R);
return PI * 2.0f * BRDF * Ei + Ld;

}

Further Reading

Advanced Graphics – Variance Reduction 37

https://jacco.ompf2.com/2019/12/11/probability-theory-for-physically-based-rendering

https://jacco.ompf2.com/2019/12/13/probability-theory-for-physically-based-rendering-part-2/

Part 1:

Part 2:

https://jacco.ompf2.com/2019/12/11/probability-theory-for-physically-based-rendering

Today’s Agenda:

▪ Introduction

▪ Random Samples

▪ Next Event Estimation

▪ Importance Sampling

▪ Russian Roulette

Importance Sampling

Advanced Graphics – Variance Reduction 39

Importance Sampling for Monte Carlo

Monte Carlo integration:

𝑉𝐴 = න
𝐴

𝐵

𝑓(𝑥) 𝑑𝑥 = 𝐵 − 𝐴 𝐸 𝑓 𝑋 ≈
𝐵 − 𝐴

𝑁

𝑖=1

𝑁

𝑓 𝑋

Example 1: rolling two dice 𝐷1 and 𝐷2, the outcome is 6𝐷1 + 𝐷2.
What is the expected value of this experiment?

(Answer: average die value is 3.5, so the answer is 3.5 * 6 + 3.5 = 24.5)

Using Monte Carlo:

𝑉 =
1

𝑁

𝑖=1

𝑁

𝑓(𝐷1) + 𝑔(𝐷2) 𝑤ℎ𝑒𝑟𝑒: 𝐷1, 𝐷2 ∈ {1,2,3,4,5,6}, 𝑓 𝑥 = 6𝑥, 𝑔 𝑥 = 𝑥

Importance Sampling

Advanced Graphics – Variance Reduction 40

Importance Sampling for Monte Carlo

Changing the experiment slightly: each sample is one roll of one die.

Using Monte Carlo:

𝑉 =
1

𝑁

𝑖=1

𝑁
𝑓(𝑇, 𝐷)

0.5
𝑤ℎ𝑒𝑟𝑒: 𝐷 ∈ {1,2,3,4,5,6}, 𝑇 ∈ {0,1}, 𝑓 𝑡, 𝑑 = 5𝑡 + 1 𝑑

for(int i = 0; i < 1000; i++)
{

int D1 = IRand(6) + 1;
int D2 = IRand(6) + 1;
float f = (float)(6 * D1 + D2);
total += f;
rolls++;

}

for(int i = 0; i < 2000; i++)
{

int D = IRand(6) + 1;
int T = IRand(2);
float f = (float)((5 * T + 1) * D) / 0.5f;
total += f;
rolls++;

}

0.5: Probability of using die 𝑇.

Importance Sampling

Advanced Graphics – Variance Reduction 41

Importance Sampling for Monte Carlo

What happens when we don’t pick each die with the same probability?

▪ we get the correct answer;
▪ we get lower variance.

float D1_prob = 0.8f;

for(int i = 0; i < 1000; i++)
{

int D = IRand(6) + 1;
float r = Rand(); // uniform 0..1
int T = (r < D1_prob) ? 0 : 1;
float p = (T == 0) ? D1_prob : (1 – D1_prob);
float f = (float)((5 * T + 1) * D) / p;
total += f;
rolls++;

}

Importance Sampling

Advanced Graphics – Variance Reduction 42

Importance Sampling for Monte Carlo

Example 2: sampling two area lights.

Sampling the large light with a greater probability yields a better estimate.

Importance Sampling

Advanced Graphics – Variance Reduction 43

Importance Sampling for Monte Carlo

Example 3: sampling an integral.

Considering the previous experiments, which stratum should be sample more often?

1 2

Importance Sampling

Advanced Graphics – Variance Reduction 44

Importance Sampling for Monte Carlo

Example 3: sampling an integral.

Considering the previous experiments, which stratum should be sample more often?

1 2 3 4

Importance Sampling

Advanced Graphics – Variance Reduction 45

Importance Sampling for Monte Carlo

Example 3: sampling an integral.

Considering the previous experiments, which stratum should be sample more often?

1 2 3 4 5 6 7 8

When using 8 strata and a uniform random distribution, each stratum will be
sampled with a 0.125 probability. When using 8 strata and a non-uniform
sampling scheme, the sum of the sampling probabilities must be 1.
Good sampling probabilities are obtained by simply following the function we’re
sampling. Note: we must normalize.
We don’t have to use these probabilities; any set of non-zero probabilities will
work, but with greater variance. This includes any approximation of the function
we’re sampling, whether this approximation is good or not.

Importance Sampling

Advanced Graphics – Variance Reduction 46

Importance Sampling for Monte Carlo

Example 3: sampling an integral.

Considering the previous experiments, which stratum should be sample more often?

If we go from 8 to infinite strata, the probability of sampling a stratum
becomes 0.
This is where we introduce the PDF, or probability density function.
On a continuous domain, the probability of sampling a specific 𝑋 is 0
(just like radiance arriving at a point is 0).
However, we can say something about the probability of choosing 𝑋
in a part of the domain, by integrating the pdf over the subdomain.
The pdf is a probability density.

Importance Sampling

Advanced Graphics – Variance Reduction 47

Importance Sampling for Monte Carlo

Example 4: sampling the hemisphere.

½𝜋−½𝜋

Importance Sampling

Advanced Graphics – Variance Reduction 48

Importance Sampling for Monte Carlo

Example 4: sampling the hemisphere.

½𝜋−½𝜋

Importance Sampling

Advanced Graphics – Variance Reduction 49

Importance Sampling for Monte Carlo

Monte Carlo without importance sampling:

𝐸 𝑓 𝑋 ≈
1

𝑁

𝑖=1

𝑁

𝑓 𝑋

With importance sampling:

𝐸 𝑓 𝑋 ≈
1

𝑁

𝑖=1

𝑁
𝑓 𝑋

𝑝 𝑋

Here, 𝑝 𝑥 is the probability density function (PDF).

Importance Sampling

Advanced Graphics – Variance Reduction 50

Probability Density Function

Properties of a valid PDF 𝑝(𝑥):

1. 𝑝 𝑥 > 0 for all 𝑥 ∈ 𝐷 where 𝑓(𝑥) ≠ 0

2. 𝐷
𝑝 𝑥 𝑑𝜇 𝑥 = 1

Note: 𝑝(𝑥) is a density, not a probability; it can (and will) exceed 1 for some 𝑥.

Applied to direct light sampling:

𝑝 𝑥 = 𝐶 for the part of the hemisphere covered by the light source
➔ C = 1 / solid angle to ensure 𝑝(𝑥) integrates to 1

➔ Since samples are divided by 𝑝(𝑥), we multiply by 1/(1/solid angle)):

Importance Sampling

Advanced Graphics – Variance Reduction 51

Probability Density Function

Applied to hemisphere sampling:

Light arriving over the hemisphere is cosine weighted.
➔Without further knowledge of the environment, the ideal PDF is the cosine function.

𝑃𝐷𝐹: 𝑝 𝜃 = cos 𝜃

Question: how do we normalize this?

න
𝛺

𝑐𝑜𝑠𝜃𝑑𝜃 = 𝜋 ⇒ න
𝛺

𝑐𝑜𝑠𝜃

𝜋
𝑑𝜃 = 1

Question: how do we choose random directions using this PDF?

Importance Sampling

Advanced Graphics – Variance Reduction 52

Cosine-weighted Random Direction

Without deriving this in detail:

A cosine-weighted random distribution is obtained by generating points on the unit
disc, and projecting the disc on the unit hemisphere. In code:

float3 CosineWeightedDiffuseReflection()
{

float r0 = Rand(), r1 = Rand();
float r = sqrt(r0);
float theta = 2 * PI * r1;
float x = r * cosf(theta);
float y = r * sinf(theta);
return float3(x, y, sqrt(1 – r0));

}

Note: you still have to transform this to tangent space.

Importance Sampling

Advanced Graphics – Variance Reduction 53

Color Sample(Ray ray)
{

// trace ray
I, N, material = Trace(ray);
// terminate if ray left the scene
if (ray.NOHIT) return BLACK;
// terminate if we hit a light source
if (material.isLight) return emittance;
// continue in random direction
R = DiffuseReflection(N);
Ray r(I, R);
// update throughput
BRDF = material.albedo / PI;
PDF = 1 / (2 * PI);
Ei = Sample(r) * (N∙R) / PDF;
return BRDF * Ei;

}

Color Sample(Ray ray)
{

// trace ray
I, N, material = Trace(ray);
// terminate if ray left the scene
if (ray.NOHIT) return BLACK;
// terminate if we hit a light source
if (material.isLight) return emittance;
// continue in random direction
R = CosineWeightedDiffuseReflection(N);
Ray r(I, R);
// update throughput
BRDF = material.albedo / PI;
PDF = (N∙R) / PI;
Ei = Sample(r) * (N∙R) / PDF;
return BRDF * Ei;

}

Today’s Agenda:

▪ Introduction

▪ Random Samples

▪ Next Event Estimation

▪ Importance Sampling

▪ Russian Roulette

RR

Advanced Graphics – Variance Reduction 55

Color Sample(Ray ray)
{

// trace ray
I, N, material = Trace(ray);
BRDF = material.albedo / PI;
// terminate if ray left the scene
if (ray.NOHIT) return BLACK;
// terminate if we hit a light source
if (material.isLight) return BLACK;
// sample a random light source
L, Nl, dist, A = RandomPointOnLight();
Ray lr(I, L, dist);
if (N∙L > 0 && Nl∙-L > 0) if (!Trace(lr))
{

solidAngle = ((Nl∙-L) * A) / dist2;
Ld = lightColor * solidAngle * BRDF * N∙L;

}
// continue random walk
R = DiffuseReflection(N);
Ray r(I, R);
Ei = Sample(r) * (N∙R);
return PI * 2.0f * BRDF * Ei + Ld;

}

Color Sample(Ray ray)
{

T = (1, 1, 1), E = (0, 0, 0);
while (1)
{

I, N, material = Trace(ray);
BRDF = material.albedo / PI;
if (ray.NOHIT) break;
if (material.isLight) break;
// sample a random light source
L, Nl, dist, A = RandomPointOnLight();
Ray lr(I, L, dist);
if (N∙L > 0 && Nl∙-L > 0) if (!Trace(lr))
{

solidAngle = ((Nl∙-L) * A) / dist2;
lightPDF = 1 / solidAngle;
E += T * (N∙L / lightPDF) * BRDF * lightColor;

}
// continue random walk
R = DiffuseReflection(N);
hemiPDF = 1 / (PI * 2.0f);
ray = Ray(I, R);
T *= ((N∙R) / hemiPDF) * BRDF;

}
return E;

}

RR

Russian Roulette

Core idea:

The longer a path becomes, the less energy it transports.

Killing half of 16 rays is easy; what do we do with a single path?

➔ Kill it with a probability of 50%.

8 rays, returning 16 Watts of radiance each, 128 Watts in total.
= 4 rays, returning 32 Watts of radiance each, 128 Watts in total.

Advanced Graphics – Variance Reduction 77

RR

Russian Roulette

Russian roulette is applied to the random walk.

Most basic implementation: just before you start calculating the next
random direction, you decide if the path lives or dies.

8 rays, returning 16 Watts of radiance each, 128 Watts in total.
= 4 rays, returning 32 Watts of radiance each, 128 Watts in total.

Advanced Graphics – Variance Reduction 78

RR

Better Russian Roulette

The termination probability of 50% is arbitrary.
Any probability is statistically correct.

However: for 50% survival rate, survivors scale up by 2 =
1

50%
.

➔ In general, for a survival probability 𝜌, survivors scale up by
1

𝜌
.

We can choose the survival probability per path. It is typically linked to
albedo: the color of the last vertex. A good survival probability is:

𝜌𝑠𝑢𝑟𝑣𝑖𝑣𝑒 = 𝑐𝑙𝑎𝑚𝑝
𝑟𝑒𝑑 + 𝑔𝑟𝑒𝑒𝑛 + 𝑏𝑙𝑢𝑒

3
, 0.1, 0.9

Note that 𝜌𝑠𝑢𝑟𝑣𝑖𝑣𝑒 > 0 to prevent bias. Also note that 𝜌 = 1 is never a good
idea.

Better:
𝜌𝑠𝑢𝑟𝑣𝑖𝑣𝑒 = 𝑐𝑙𝑎𝑚𝑝(max 𝑟𝑒𝑑, 𝑔𝑟𝑒𝑒𝑛, 𝑏𝑙𝑢𝑒 , 0,1)

Advanced Graphics – Variance Reduction 79

RR

RR and Next Event Estimation

A path that gets terminated gets
to keep the energy accumulated
with Next Event Estimation.

We are applying Russian roulette
to indirect illumination only.

𝒑

Advanced Graphics – Variance Reduction 80

RR Color Sample(Ray ray)
{

T = (1, 1, 1), E = (0, 0, 0);
while (1)
{

I, N, material = Trace(ray);
BRDF = material.albedo / PI;
if (ray.NOHIT) break;
if (material.isLight) break;
// sample a random light source
L, Nl, dist, A = RandomPointOnLight();
Ray lr(I, L, dist);
if (N∙L > 0 && Nl∙-L > 0) if (!Trace(lr))
{

solidAngle = ((Nl∙-L) * A) / dist2;
lightPDF = 1 / solidAngle;
E += T * (N∙L / lightPDF) * BRDF * lightColor;

}
// Russian Roulette
p = SurvivalProb(material.albedo);
if (p < Rand()) break; else /* whew still alive */ T *= 1/p;
// continue random walk
R = DiffuseReflection(N);
hemiPDF = 1 / (PI * 2.0f);
ray = Ray(I, R);
T *= ((N∙R) / hemiPDF) * BRDF;

}
return E;

}

Advanced Graphics – Variance Reduction 81

Today’s Agenda:

▪ Introduction

▪ Random Samples

▪ Next Event Estimation

▪ Importance Sampling

▪ Russian Roulette

INFOMAGR – Advanced Graphics
Jacco Bikker - November 2021 - February 2022

END of “Variance Reduction (2)”
next lecture: “Various”

