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Lecture 10 - “GPU Ray Tracing (2)”

Welcome!



Today’s Agenda:

▪ State of the Art

▪ Wavefront Path Tracing
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Previously in Advanced Graphics

GPU Architecture

void mainImage( out vec4 fragColor, in vec2 fragCoord )
{

vec2 uv = (fragCoord-.5*iResolution.xy)/iResolution.y;
uv.y += .355;
vec2 mouse = iMouse.xy/iResolution.xy;
uv *= .29;
vec3 col = vec3(0);
uv.x = abs(uv.x);
uv.y += tan(((5./6.)*3.1415))*.68;
vec2 n = N((5./6.)*3.1415);
float d = dot(uv-vec2(.5, 0), n);
uv -= n*max(0., d)*2.;
n = N((2./3.)*3.1415);
float scale = 1.;
uv.x += .5;
for(int i=0; i < 1; i++) {

uv *= 3.;
scale *= 3.;
uv.x -= 1.5;
uv.x = abs(uv.x);
uv.x -= 2.1;
uv -= n*min(0., dot(uv, n))*1.;

https://www.shadertoy.com/view/wdcBW2

https://www.shadertoy.com/view/wdcBW2
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Previously in Advanced Graphics

A Brief History of GPU Ray Tracing

2002: Purcell et al., multi-pass shaders with stencil, grid, low efficiency
2005: Foley & Sugerman, kD-tree, stack-less traversal with kdrestart
2007: Horn et al., kD-tree with short stack, single pass with flow control
2007: Popov et al., kD-tree with ropes
2007: Günther et al., BVH with packets.

▪ The use of BVHs allowed for complex scenes on the GPU (millions of triangles);
▪ CPU is now outperformed by the GPU;
▪ GPU compute potential is not realized;
▪ Aspects that affect efficiency are poorly understood.
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Understanding the Efficiency of Ray Traversal on GPUs*

Observations on BVH traversal:

Ray/scene intersection consists of an unpredictable sequence of node traversal and 
primitive intersection operations. This is a major cause of inefficiency on the GPU.

Random access of the scene leads to high bandwidth requirement of ray tracing.

BVH packet traversal as proposed by Gunther et al. should alleviate bandwidth strain 
and yield near-optimal performance.

Packet traversal doesn’t yield near-optimal performance. Why not?

*: Understanding the Efficiency of Ray Tracing on GPUs, Aila & Laine, 2009.
and: Understanding the Efficiency of Ray Tracing on GPUs – Kepler & Fermi addendum, 2012.
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Understanding the Efficiency of Ray Traversal on GPUs

Simulator:

1. Dump sequence of traversal, leaf and triangle intersection operations 
required for each ray.

2. Use generated GPU assembly code to obtain a sequence of instructions 
that need to be executed for each ray.

3. Execute this sequence assuming ideal circumstances:

▪ Execute two instructions in parallel;
▪ Make memory access ‘free’.

The simulator reports on estimated execution speed and SIMD efficiency.

➔ The same program running on an actual GPU can never do better;
➔ The simulator provides an upper bound on performance.
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Understanding the Efficiency of Ray Traversal on GPUs

Test setup

Scene: “Conference”, 282K tris, 164K nodes

Ray distributions:

1. Primary: coherent rays

2. AO: short divergent rays

3. Diffuse: long divergent rays

Hardware: NVidia GTX285.
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Understanding the Efficiency of Ray Traversal on GPUs

Simulator results, in MRays/s:

Packet traversal as proposed by Gunther et al. is a factor 1.7-2.4 off from 
simulated performance:

Simulated Actual %

Primary 149.2 63.6 43
AO 100.7 39.4 39
Diffuse 36.7 16.6 45

(this does not take into account algorithmic inefficiencies)

Hardware: NVidia GTX285.



STAR

Advanced Graphics – GPU Ray Tracing (2) 12

Simulating Alternative Traversal Loops

Variant 1:  ‘while-while’

while ray not terminated
while node is interior node

traverse to the next node
while node contains untested primitives

perform ray/prim intersection

Results:

Simulated Actual %

Primary 166.7 88.0 53
AO 160.7 86.3 54
Diffuse 81.4 44.5 55

Here, every ray has its own stack;
This is simply a GPU implementation 
of typical CPU BVH traversal.

Compared to packet traversal, 
memory access is less coherent.

One would expect a larger gap 
between simulated and actual 
performance. However, this is not the 
case (not even for divergent rays).

Conclusion: bandwidth is not the 
problem.

149.2 63.6 43

100.7 39.4 39

36.7 16.6 45

numbers in green: Packet traversal, Gunther-style (from previous slide).

Hardware: NVidia GTX285.
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Simulating Alternative Traversal Loops

Variant 2:  ‘if-if ’

while ray not terminated
if node is interior node

traverse to the next node
if node contains untested primitives

perform a ray/prim intersection

Results:

Simulated Actual %

Primary 129.3 90.1 70
AO 131.6 88.8 67
Diffuse 70.5 45.3 64

This time, each loop iteration either 
executes a traversal step or a 
primitive intersection.

Memory access is even less coherent 
in this case.

Nevertheless, it is faster than while-
while. Why?

While-while leads to a small number 
of long-running warps. Some threads 
stall while others are still traversing, 
after which they stall again while 
others are still intersecting.

166.7 88.0 53

160.7 86.3 54

81.4 44.5 55

numbers in green: while-while.

Hardware: NVidia GTX285.
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Simulating Alternative Traversal Loops

Variant 3:  ‘persistent while-while’

Idea: rather than spawning a thread per ray, we spawn the 
ideal number of threads for the hardware.

Each thread increases an atomic counter to fetch a ray from 
a pool, until the pool is depleted*.

Benefit: we bypass the hardware thread scheduler.

Results:

Simulated Actual %

Primary 166.7 135.6 81
AO 160.7 130.7 81
Diffuse 81.4 62.4 77

This test shows what the limiting 
factor was: thread scheduling. By 
handling this explicitly, we get much 
closer to theoretical optimal 
performance.

*: In practice, this is done per warp: the 
first thread in the warp increases the 
counter by 32. This reduces the number of 
atomic operations.

Hardware: NVidia GTX285.

129.3 90.1 70

131.6 88.8 67

70.5 45.3 64

numbers in green: if-if.
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Simulating Alternative Traversal Loops

Variant 4:  ‘speculative traversal’

Idea: while some threads traverse, threads that want to 
intersect prior to (potentially) continuing traversal may just 
as well traverse anyway – the alternative is idling.
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Simulating Alternative Traversal Loops

Variant 4:  ‘speculative traversal’

Idea: while some threads traverse, threads that want to 
intersect prior to (potentially) continuing traversal may just 
as well traverse anyway – the alternative is idling.

Drawback: these threads now fetch nodes that they may not 
need to fetch*. However, we noticed before that bandwidth 
is not the issue.

Results for persistent speculative while-while:

Simulated Actual %

Primary 165.7 142.2 86
AO 169.1 134.5 80
Diffuse 92.9 60.9 66

For diffuse rays, performance starts 
to differ significantly from simulated 
performance. This suggests that we 
now start to suffer from limited 
memory bandwidth.

*: On a SIMT machine, we do not get 
redundant calculations using this 
scheme. We do however increase 
implementation complexity, which 
may affect performance.

Hardware: NVidia GTX285.

166.7 135.6 81

160.7 130.7 81

81.4 62.4 77

numbers in green: persistent while-while.
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Understanding the Efficiency of Ray Traversal on GPUs

- Three years later* -

In 2009, NVidia‘s Tesla architecture was used (GTX285).
Results on Tesla (GTX285), Fermi (GTX480) and Kepler (GTX680):

Tesla Fermi Kepler

Primary 142.2 272.1 432.6
AO 134.5 284.1 518.2
Diffuse 60.9 126.1 245.4

*: Aila et al., 2012. Understanding the efficiency of ray traversal on GPUs - Kepler and Fermi Addendum.
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The graph confirms: GPU ray tracing is 
compute-bound. On newer hardware, it 
scales with FLOPS, not GB/s.
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Latency Considerations of Depth-first GPU Ray Tracing*

A study of GPU ray tracing performance in the spirit of Aila & Laine has been 
published in 2014 by Guthe. Three optimizations are proposed:

1. Using a shallower hierarchy;
2. Loop unrolling for the while loops;
3. Loading data at once rather than scattered over the code.

Titan (AL’09) Titan (Guthe) +%

Primary 605.7 688.6 13.7
AO 527.2 613.3 16.3
Diffuse 216.4 254.4 17.6

*: Latency Considerations of Depth-first GPU Ray Tracing, Guthe, 2014
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Shallow Bounding Volume Hierarchies*

Idea:

We can cut the number of traversal steps in half if our BVH nodes have 4 
instead of 2 child nodes.

Additional benefits: 

▪ A proper layout allows for SIMD intersection of all four child AABBs;
▪ We increase the arithmetic density of a single traversal step.

*: Shallow Bounding Volume Hierarchies for Fast SIMD Ray Tracing of Incoherent Rays, Dammertz et al., 2008
Getting Rid of Packets - Efficient SIMD Single-Ray Traversal using Multi-branching BVHs, Wald et al., 2008
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Building the MBVH

Collapsing a regular BVH

For each node 𝑛 : iterate over the children 𝑐𝑖:

1. See if we can ‘adopt’ the children of 𝑐𝑖:
𝑁𝑛 − 1 + 𝑁𝑐𝑖

≤ 4;

2. Select the child with the greatest area;
3. Replace node 𝑐𝑖 with its children;
4. Repeat until no merge is possible.

Repeat this process for the children of 𝑛.

Note that for this tree, the end result has one interior node with only 2 children, and 
one with only 3 children.
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Building the MBVH

Data structure:

struct SIMD_BVH_Node
{

__m128 bminx4, bmaxx4;
__m128 bminy4, bmaxy4;
__m128 bminz4, bmaxz4;
int child[4], count[4];

};

To traverse a regular BVH front-to-back, we 
can use a single comparison to find the nearest 
child. For an MBVH, this is not as trivial.

Pragmatic solution:

1. Obtain the four intersection distances in t4;
2. Overwrite the lowest bits of each float in t4 

with binary 00, 01, 10 and 11;
3. Use a small sorting network to sort t4;
4. Extract the lowest bits to obtain the correct 

order in which the nodes should be 
processed.



Today’s Agenda:

▪ State of the Art

▪ Wavefront Path Tracing
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Mapping Path Tracing to the GPU

The path tracing loop from lecture 8 is 
straight-forward to implement on the 
GPU.

However:

▪ Terminated paths become idling 
threads;

▪ A significant number of paths will 
not trace a shadow ray.

Color Sample( Ray ray )
{

T = ( 1, 1, 1 ), E = ( 0, 0, 0 );
while (1)
{

I, N, material = Trace( ray );
BRDF = material.albedo / PI;
if (ray.NOHIT) break;
if (material.isLight) break;
// sample a random light source
L, Nl, dist, A = RandomPointOnLight();
Ray lr( I, L, dist );
if (N∙L > 0 && Nl∙-L > 0) if (!Trace( lr ))
{

solidAngle = ((Nl∙-L) * A) / dist2;
lightPDF = 1 / solidAngle;
E += T * (N∙L / lightPDF) * BRDF * lightColor;

}
// continue random walk
R = DiffuseReflection( N );
hemiPDF = 1 / (PI * 2.0f);
ray = Ray( I, R );
T *= ((N∙R) / hemiPDF) * BRDF;

}
return E;

}
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Color Sample( Ray ray )
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Megakernels Considered Harmful*

Naïve path tracer:

*: Megakernels Considered Harmful: Wavefront Path Tracing on GPUs, Laine et al., 2013

KernelFunction

Generate
primary ray

Intersect

Shade

Trace 
shadow ray

Finalize

shadow?

terminate?

no

yes

Translating this to CUDA or OpenCL code 
yields a single kernel: individual functions 
are still compiled to one monolithic chunk 
of code.

Resource requirements (registers) - and 
thus parallel slack - are determined by 
‘weakest link’, i.e. the functional block that 
requires most registers.

Conditional code leads to idling threads 
that wait until others are done.no
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Megakernels Considered Harmful

Solution: split the kernel.

Example:

Kernel 1: Generate primary rays.
Kernel 2: Trace paths.
Kernel 3: Accumulate, gamma correct, convert to ARGB32.

Consequence:

Kernel 1 generates all  primary rays, and stores the result. 
Kernel 2 takes this buffer and operates on it.

➔ Massive memory I/O.

KernelFunction

Generate
primary ray

Intersect

Shade

Trace 
shadow ray

Finalize

shadow?

terminate?

no

yes

no
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Megakernels Considered Harmful

Taking this further: streaming path tracing*.

Kernel 1: generate primary rays.
Kernel 2: extend.
Kernel 3: shade.
Kernel 4: connect.
Kernel 5: finalize.

Here, kernel 2 traces a set of rays to find the next path vertex 
(the random walk).
Kernel 3 processes the results and generates new path segments 
and shadow rays (2 separate buffers).
Kernel 4 traces the shadow ray buffer.
Kernel 1, 2, 3 and 4 are executed in a loop until no rays remain.

*: Improving SIMD Efficiency for Parallel Monte Carlo Light Transport on the GPU, van Antwerpen, 2011

KernelFunction

Generate
primary ray

Intersect

Shade

Trace 
shadow ray

Finalize

shadow?

terminate?

no

yes

no
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Megakernels Considered Harmful

Zooming in:

The generate kernel produces 𝑁 primary rays:

Buffer 1: path segments (𝑁 times O,D,t,primIdx)

The extend kernel traces extension rays and produces intersections*.
The shade kernel processes intersections, and produces new 
extension paths as well as shadow rays:

Buffer 2: generated path segments (𝑁 times O,D,t,primIdx)

Buffer 3: generated shadow rays (𝑁 times O,D,t, E,pixelIdx)

Finally, the connect kernel traces shadow rays.

generate

0, 1, … …, N-1

0, 1, … …, N-1

0, 1, … …, N-1

shade

connect

Note: here, the loop is 
implemented on the host. 
Each block is a separate 
kernel invocation.

*: An intersection is at least 
the t value, plus a primitive 
identifier.
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Megakernels Considered Harmful

Generate:

for each screen pixel i
{

O,D = GenerateRayDirection(i)
rayBuffer[i] = Ray( O, D, infinity, -1 )

}

generate

shade

connect
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Megakernels Considered Harmful

Extend:

for each buffered ray r
{

O,D,dist = rayBuffer[i]
dist, primIdx = FindNearestIntersection( O, D, dist )
rayBuffer[i].dist = dist
rayBuffer[i].primIdx = primIdx

}

generate

shade

connect



extend
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Megakernels Considered Harmful

Shade:

for each buffered ray r
{

O,D,dist,primIdx = rayBuffer[i]
I = IntersectionPoint( O, D, dist )
N = PrimNormal( primIdx, I )
if (NEE) {

si = atomicInc( shadowRayIdx )
shadowBuffer[si] = ShadowRay( … )

}
if (bounce) {

ei = atomicInc( extensionRayIdx )
newRayBuffer[ei] = ExtensionRay( … )

}
}

generate

shade

connect
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Megakernels Considered Harmful

Connect:

for each buffered shadowRay r
{

O,D,dist,E, pixelIdx = shadowBuffer[i]
if (!Occluded( O, D, dist ))
{

accumulator[pixelIdx] += E;
}

}

generate

shade

connect
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Megakernels Considered Harmful

Digest:

Streaming path tracing introduces seemingly costly operations:

▪ Repeated I/O to/from large buffers;
▪ A significant number of kernel invocations per frame;
▪ Communication with the host.

The Wavefront paper claims that this is beneficial for complex 
shaders. In practice, this also works for (very) simple shaders.

Also note that the megakernel paper (2013) presents an idea 
already presented by Dietger van Antwerpen (2011).



Today’s Agenda:

▪ State of the Art

▪ Wavefront Path Tracing
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END of “GPU Ray Tracing (2)”
next lecture: “Variance Reduction (2)”


