
𝑰 𝒙, 𝒙′ = 𝒈(𝒙, 𝒙′) 𝝐 𝒙, 𝒙′ + න
𝑺

𝝆 𝒙, 𝒙′, 𝒙′′ 𝑰 𝒙′, 𝒙′′ 𝒅𝒙′′

INFOMAGR – Advanced Graphics
Jacco Bikker - November 2021 - February 2022

Lecture 15 - “Filtering”

Welcome!

Today’s Agenda:

▪ Introduction

▪ Ingredients

▪ Future Work

Previously in Advanced Graphics…

Towards Noise-free Path Tracing

“Work smarter, not harder”: generate better samples / send rays
where they matter.

Extreme case: ReSTIR, which spends a lot of effort on deciding
where to send a shadow ray.

Last Time

Advanced Graphics – Filtering 5

“Rearchitecting Spatiotemporal Resampling for Production”, Wyman & Panteleev, 2021.

We tried everything

…But with an 8spp budget, it’s still noisy.

▪ There is somewhat uniform noise left
▪ ‘Fireflies’ indicate presence of ‘improbable paths’.

Last Time

Advanced Graphics – Filtering 7

We tried everything

…But with an 8spp budget, it’s still noisy.

▪ There is somewhat uniform noise left
▪ ‘Fireflies’ indicate presence of ‘improbable paths’.

Last Time

Advanced Graphics – Filtering 8

Suppressing Fireflies

“A firefly is easily recognized in the final image: it is a pixel with a value
that differs significantly from its neighbors.”

▪ Is this always true?
▪ How to fix it?
▪ Is that still correct?

Firefly suppression introduces bias in our estimator.

▪ Spread out the removed energy over the image / neighborhood
▪ Just wait it out (additional samples will improve the average)
▪ Do some adaptive sampling (detect high variance)
▪ Just accept it.

Advanced Graphics – Filtering 9

Last Time

Suppressing Fireflies

“A firefly is easily recognized in the final image: it is a pixel with a value
that differs significantly from its neighbors.”

Better approach: clamp*.

e.g., in Lighthouse 2:

#define CLAMPINTENSITY(E) \
if (dot(E, E) > 25) E = 5 * normalize(E);

*: The Iray Light Transport Simulation and Rendering System, Section 5.5. Keller et al., 2017.

Advanced Graphics – Filtering 10

Last Time

Advanced Graphics – Filtering 11

Last Time

Today’s Agenda:

▪ Noise

▪ Ingredients

▪ Future Work

Reducing the Problem - Filtering

Core idea:

Exploit the fact that illumination is typically low-frequent:
Nearby pixels tend to converge to similar values, so we should
be able to use information gathered for one pixel to improve
the estimate of the next.

Essentially, we are increasing the number of samples per pixel,
by including the neighbors.

Note:

Unless neighboring pixels actually converge to
the same value, filtering introduces bias.

Filtering thus trades variance for bias.

Ingredients

Advanced Graphics – Filtering 13

Filter kernels

For the actual filtering, we apply a kernel.

Pixel FilteredValue(𝑖𝑥, 𝑖𝑦, ℎ𝑎𝑙𝑓𝑊𝑖𝑑𝑡ℎ)

𝑠𝑢𝑚 = 0
𝑠𝑢𝑚𝑚𝑒𝑑𝑊𝑒𝑖𝑔ℎ𝑡 = 0
for 𝑗𝑥 = 𝑖𝑥 - ℎ𝑎𝑙𝑓𝑊𝑖𝑑𝑡ℎ to 𝑖𝑥 + ℎ𝑎𝑙𝑓𝑊𝑖𝑑𝑡ℎ

for 𝑗𝑦 = 𝑖𝑦 - ℎ𝑎𝑙𝑓𝑊𝑖𝑑𝑡ℎ to 𝑖𝑦 + ℎ𝑎𝑙𝑓𝑊𝑖𝑑𝑡ℎ

𝑠𝑢𝑚 += ReadPixel(𝑗𝑥, 𝑗𝑦) * weight(𝑗𝑥, 𝑗𝑦)

𝑠𝑢𝑚𝑚𝑒𝑑𝑊𝑒𝑖𝑔ℎ𝑡 += weight(𝑗𝑥, 𝑗𝑦)

return 𝑠𝑢𝑚 / 𝑠𝑢𝑚𝑚𝑒𝑑𝑊𝑒𝑖𝑔ℎ𝑡

Ingredients

Advanced Graphics – Filtering 14

Ƹ𝑐𝑖 =
σ𝑗∈𝒩𝑖

𝑐𝑗𝑤(𝑖, 𝑗)

σ𝑗∈𝒩𝑖
𝑤(𝑖, 𝑗)

1kernels

Filter kernels

For the actual filtering, we apply a kernel.

Pixel FilteredValue(𝑖𝑥, 𝑖𝑦, ℎ𝑎𝑙𝑓𝑊𝑖𝑑𝑡ℎ)

𝑠𝑢𝑚 = 0
𝑠𝑢𝑚𝑚𝑒𝑑𝑊𝑒𝑖𝑔ℎ𝑡 = 0
for 𝑗𝑥 = 𝑖𝑥 - ℎ𝑎𝑙𝑓𝑊𝑖𝑑𝑡ℎ to 𝑖𝑥 + ℎ𝑎𝑙𝑓𝑊𝑖𝑑𝑡ℎ

for 𝑗𝑦 = 𝑖𝑦 - ℎ𝑎𝑙𝑓𝑊𝑖𝑑𝑡ℎ to 𝑖𝑦 + ℎ𝑎𝑙𝑓𝑊𝑖𝑑𝑡ℎ

𝑠𝑢𝑚 += ReadPixel(𝑗𝑥, 𝑗𝑦) * weight(𝑗𝑥, 𝑗𝑦)

𝑠𝑢𝑚𝑚𝑒𝑑𝑊𝑒𝑖𝑔ℎ𝑡 += weight(𝑗𝑥, 𝑗𝑦)

return 𝑠𝑢𝑚 / 𝑠𝑢𝑚𝑚𝑒𝑑𝑊𝑒𝑖𝑔ℎ𝑡

Ingredients

Advanced Graphics – Filtering 15

Ƹ𝑐𝑖 =
σ𝑗∈𝒩𝑖

𝑐𝑗𝑤(𝑖, 𝑗)

σ𝑗∈𝒩𝑖
𝑤(𝑖, 𝑗)

0 0 0
0 1 0
0 0 0

1

9

1 1 1
1 1 1
1 1 1

1

22

1 3 1
3 6 3
1 3 1

1kernels

Filter kernels

For the actual filtering, we apply a kernel.

Pixel FilteredValue(𝑖𝑥, 𝑖𝑦, ℎ𝑎𝑙𝑓𝑊𝑖𝑑𝑡ℎ)

𝑠𝑢𝑚 = 0
𝑠𝑢𝑚𝑚𝑒𝑑𝑊𝑒𝑖𝑔ℎ𝑡 = 0
for 𝑗𝑥 = 𝑖𝑥 - ℎ𝑎𝑙𝑓𝑊𝑖𝑑𝑡ℎ to 𝑖𝑥 + ℎ𝑎𝑙𝑓𝑊𝑖𝑑𝑡ℎ

for 𝑗𝑦 = 𝑖𝑦 - ℎ𝑎𝑙𝑓𝑊𝑖𝑑𝑡ℎ to 𝑖𝑦 + ℎ𝑎𝑙𝑓𝑊𝑖𝑑𝑡ℎ

𝑠𝑢𝑚 += ReadPixel(𝑗𝑥, 𝑗𝑦) * weight(𝑗𝑥, 𝑗𝑦)

𝑠𝑢𝑚𝑚𝑒𝑑𝑊𝑒𝑖𝑔ℎ𝑡 += weight(𝑗𝑥, 𝑗𝑦)

return 𝑠𝑢𝑚 / 𝑠𝑢𝑚𝑚𝑒𝑑𝑊𝑒𝑖𝑔ℎ𝑡

Here, weight or 𝑤 is the weight function. We could simply use the Gaussian kernel:

𝑤 𝑖, 𝑗 = exp
− 𝑝𝑖−𝑝𝑗

2

2𝜎𝑑
2 ,

Ingredients

Advanced Graphics – Filtering 16

where 𝑝𝑖 and 𝑝𝑗 are screen space positions and 𝜎𝑑 is

the spatial standard deviation of the Gaussian kernel.

1kernels

Filter kernels

A Gaussian filter (as well as other low-pass filters) blurs out
high frequency details.

We can improve on this using a non-linear bilateral filter*.

𝑤 𝑖, 𝑗 = exp
− 𝑝𝑖 − 𝑝𝑗

2

2𝜎𝑑
2 × exp

− 𝑐𝑖 − 𝑐𝑗
2

2𝜎𝑟
2

*: Tomasi & Manduchi, Bilateral filtering for gray and color images. ICCV ’98.

Ingredients

Advanced Graphics – Filtering 17

1kernels

Filter kernels

The bilateral filter takes the color of nearby pixels into account. We can
take this further, by taking an arbitrary set of features into account.

The cross bilateral filter*:

𝑤 𝑖, 𝑗 = exp
− 𝑝𝑖 − 𝑝𝑗

2

2𝜎𝑑
2 × ෑ

𝑘=1

𝐾

exp
− 𝑓𝑘,𝑖 − 𝑓𝑘,𝑗

2

2𝜎𝑘
2

Here, 𝑓𝑘,𝑖 is the 𝑘’th feature vector at pixel 𝑖 and 𝜎𝑘 is the bandwidth parameter for feature 𝑘.

Note that we can use noise-free features to smooth noisy features.
Example of a low-noise feature: normals at the primary intersection point.
Example of a noisy feature: indirect illumination at the primary intersection point.

*: Eisemann & Durand. Flash photography enhancement via intrinsic relighting. ACM Trans. Graph. 23, 3 (Aug. 2004).

Ingredients

Advanced Graphics – Filtering 18

1kernels

Filter kernels, digest

Filtering adds samples to a pixel by ‘borrowing’ them from neighbors.
Filtering trades variance for bias.

We can improve the quality of the borrowed samples using a weight:

▪ Further away = less relevant
▪ Different normal, different material, … = less relevant

Some considerations:

▪ Should we take accumulated or individual samples from neighbors?
▪ Depth of field and AA seriously affect our options.

Ingredients

Advanced Graphics – Filtering 19

1kernels

Indirect illumination as a feature:
A path tracer allows us to conveniently split
direct from indirect, and bounce 1 from bounce 2.

Separating illumination into layers allows us to
filter each layer separately. This prevents bleeding,
and allows for layer-specific kernel sizes.

We can also separate albedo from illumination.

Ingredients

Advanced Graphics – Filtering 20

1kernels

2split

Separating albedo from illumination

Adding this separation to an existing renderer:

▪ store albedo at the primary intersection (simple material property);
▪ at the end of the pipeline: illumination = sample / max(epsilon, albedo).

Ingredients

Advanced Graphics – Filtering 21

=X

1kernels

2split

Reprojection

Core idea:

In an animation, samples taken for the previous frame are meaningful for the
current frame. We can supply the filter with more data by looking back in time.

Ingredients

Advanced Graphics – Filtering 22

1kernels

2split

3temporal

Reprojection

Core idea:

In an animation, samples taken for the previous frame are meaningful for the
current frame. We can supply the filter with more data by looking back in time.

Problem: in an animation, the camera and/or the geometry moves. We need to find
the location of a pixel in the previous frame(s).

Solution: use the camera matrices.

𝑀4𝑥4

𝑥𝑤𝑜𝑟𝑙𝑑

𝑦𝑤𝑜𝑟𝑙𝑑
𝑧𝑤𝑜𝑟𝑙𝑑

1

=

𝑥𝑠𝑐𝑟𝑒𝑒𝑛

𝑦𝑠𝑐𝑟𝑒𝑒𝑛
𝑧𝑠𝑐𝑟𝑒𝑒𝑛

1

➔ 𝑀4𝑥4
−1

𝑥𝑠𝑐𝑟𝑒𝑒𝑛

𝑦𝑠𝑐𝑟𝑒𝑒𝑛
𝑧𝑠𝑐𝑟𝑒𝑒𝑛

1

=

𝑥𝑤𝑜𝑟𝑙𝑑

𝑦𝑤𝑜𝑟𝑙𝑑
𝑧𝑤𝑜𝑟𝑙𝑑

1

(finally, apply the matrix of the previous frame to obtain the screen location in the
previous frame.)

Ingredients

Advanced Graphics – Filtering 23

https://www.shadertoy.com/view/ldtGWl

1kernels

2split

3temporal

https://www.shadertoy.com/view/ldtGWl

Reprojection

Reprojection using camera matrices:

▪ fails if we have animation
▪ will not work with depth of field
▪ will not work with speculars.

A recent paper proposes an alternative*:

For each pixel (i,j), find the shift to similar pixels in the neighborhood by
comparing a small patch of pixels around (i,j) to pixels at some distance.

Note: this idea is not new, but the paper makes it efficient using a
hierarchical process, where down-sampled versions of the image are
used to increase the size of the search window.

*: Fast Temporal Reprojection without Motion Vectors. Hanika & Tessari, 2021.

Ingredients

Advanced Graphics – Filtering 24

1kernels

2split

3temporal

Caching in world space

Instead of searching the current pixel in the previous frame in screen
space, we can also maintain a cache in world space*.

Path space filtering:

▪ Store information in a 3D grid
▪ Map the grid cells to a hash map
▪ Update grid cells for each vertex

that ‘visits’ it

Note that a single cell may still receive
shading information for surfaces with
different normals.

*: Binder et al., Massively Parallel Path Space Filtering, 2019.

Ingredients

Advanced Graphics – Filtering 26

1kernels

2split

3temporal

Adaptive Sampling

Some pixels need more samples than others.
(to reach a certain variance level)

Adaptive Sampling* aims to estimate which pixels still need work.

Note that reliable variance estimation requires more than
a few samples; adaptive sampling is generally not applicable
to realtime rendering.

*: A Survey of Adaptive Sampling in Realistic Image Synthesis,
M. Sik, 2013.

Ingredients

Advanced Graphics – Filtering 27

1kernels

2split

3temporal

4 adaptive

Variance-guided Filtering*

A variance estimate is also useful for steering the filter kernel size:

▪ A pixel with low variance can use a small kernel
(which prevents overblurring)

▪ A pixel with high variance needs a larger kernel
(to include more samples from neighbors)

SVGF combines bilateral filtering with variance guided kernel sizes and temporal reprojection.

*: Spatiotemporal Variance-Guided Filtering: Real-Time Reconstruction for Path-Traced Global
Illumination. Schied et al., 2017.

Ingredients

Advanced Graphics – Filtering 28

1kernels

2split

3temporal

4 adaptive

Ingredients

Advanced Graphics – Filtering 29

https://dspace.library.uu.nl/bitstream/handle/1874/366198/Beyond%20SVGF.pdf

1kernels

2split

3temporal

4 adaptive

Machine Learning

Neural networks can be used to filter path tracing noise.

E.g., by learning optimal filter parameters:
A Machine Learning Approach for Filtering Monte Carlo Noise. Kalantari et al., 2015.

Ingredients

Advanced Graphics – Filtering 30

1kernels

2split

3temporal

4 adaptive

5 learning

Machine Learning

Reinforcement Learning can be used to importance sample based on experience.

E.g., by learning light transport while rendering:
Learning Light Transport the Reinforced Way. Dahm & Keller, 2017.

Ingredients

Advanced Graphics – Filtering 31

1kernels

2split

3temporal

4 adaptive

5 learning

Machine Learning

Reinforcement Learning can be used to importance sample based on experience.

Reinforcement Learning for rendering is often referred to as path guiding:
Path Guiding in Production. Vorba et al., 2019 (SIGGRAPH 2019 course).

Ingredients

Advanced Graphics – Filtering 32

1kernels

2split

3temporal

4 adaptive

5 learning

Machine Learning

And finally: convolutional neural networks.

Kernel-Predicting Convolutional Networks for Denoising Monte Carlo Renderings. Disney / Pixar,
University of California: Bako et al., 2019.
Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising
Autoencoder. NVIDIA, several universities: Chaitanya et al., 2017.

Ingredients

Advanced Graphics – Filtering 33

1kernels

2split

3temporal

4 adaptive

5 learning

Today’s Agenda:

▪ Noise

▪ Ingredients

▪ Future Work

Digest

Advanced Graphics – Filtering 35

Filtering, practical

First of all, provide a high-quality render:

▪ Few samples can still be HQ samples
▪ Many filters get more expensive with high spp counts ➔ spend more time per sample

Prepare your input:

▪ Separate albedo and illumination
▪ Separate direct and indirect light
▪ Suppress outliers
▪ Supply ‘feature buffers’ for the bilateral kernels
▪ Use a pinhole camera - postpone AA / DOF
▪ Reproject; go temporal.

Filter:

▪ Some form of bilateral
▪ Steer kernel size with variance estimation
▪ Ideally: sample-based; pixel-based if this is too slow

Digest

Advanced Graphics – Filtering 36

Filtering, open problems

Not easy to do:

▪ DOF, AA
▪ Transparency

Considerations for real-time:

▪ Mind temporal stability
▪ Don’t make it too crisp
▪ Make some (uniform) noise a feature
▪ Consider using DLSS

Advanced Graphics – Filtering 37

Today’s Agenda:

▪ Noise

▪ Ingredients

▪ Future Work

INFOMAGR – Advanced Graphics
Jacco Bikker - November 2021 – February 2022

END of “Filtering”
next lecture: “Bits & Pieces, Exam Training”

