Advanced Graphics 2022/2023 — Assignment 1

L

L2

A

Introduction

First of all: this assignment is a preparation for Assighment 2. Without a successful assignment 1, you
will still be able to do assighment 2, but you will not have the benefit of a comfy testbed that you
know like the back of your hand (or, in Dutch, like your pants pocket).

We will soon move to the construction of a real-time renderer. For Assignment 1, you will be laying
the groundwork for this, in the form of a test bed for ray tracing and path tracing. This test bed
consists of the ingredients commonly required for ray tracing, plus two renderers for validation: a
deterministic Whitted-style ray tracer, and a stochastic Kajiya-style path tracer.

Right from the start you have two main options to pick from, as discussed in the first lecture. You
may implement this testbed either (1) using the provided ray tracing template, or (2) as a stand-
alone application, e.g. built on top of an empty C/C++ template, or in a different language than
C/C++. If you chose the first option, the framework takes care of a lot of mundane tasks, which

allows you to focus on the essence of the assignment. The second option forces you to do more low-
level work yourself - but may lead to a product that feels more like your own.

Architecture

In a nutshell, a ray tracer renders an image based on a scene description, given a camera and a
screen plane, using rays originating from the camera and extending through pixels on the screen
plane, which then find intersections with the geometry. So far so good; you'll basically find just that
in the ray tracing template.

Not in the template: a lot of needful things. For starters, you will need a user-configurable camera,
perhaps one that also supports depth of field. The framework also needs to support a currently
unavailable primitive: the triangle. Groups of triangles form meshes, support for which is needed for
assignment 2. For basic light transport you’ll need light sources, in various forms. Materials also
come in handy; these encapsulate surface properties: reflection, color, a texture perhaps.

For light transport itself some standard ingredients are required: handling reflection and
transmission, as well as paths that consist of ray segments.

If you're feeling adventurous it may be worthwhile to add “Dear ImGui” to your project, to control
settings at run-time. And perhaps GPGPU is your thing: this would obviously speed up rendering
significantly, especially if you have a decent GPU. This is all very optional, obviously.

https://github.com/jbikker/tmpl8rt_2022
https://github.com/jbikker/tmpl8

Ray Tracing

To demonstrate the suitability and completeness of your framework, implement a Whitted-style ray
tracer (also referred to as a recursive ray tracer in literature). The Whitted-style ray tracer must
correctly implement shadows, reflections and dielectrics. Dielectrics must support Beer’s law.
Support of nested dielectrics is optional. You may also ignore scenarios where the camera starts in a
medium other than air. Note that a Whitted-style ray tracer does not support area lights and glossy
reflections. lllumination from area lights is thus not supported, and neither is depth of field.

Path Tracing

With a working Whitted-style ray tracer, making the move to full path tracing should be straight-
forward: the two renderers share a lot of functionality. For the path tracing renderer, add support
for diffuse bounces and replace the point lights in your scene by area lights.

Practical Details

The deadline for this assighment is Wednesday December 7%, 17:00 (note the unusual time: this is
for your health). An extended deadline is also available: in exchange for a 1 point grade reduction
you can hand in materials until Thursday December 8", 17:00.

The materials to submit are:

= your project, including sources and build instructions (if these are not obvious);
= a brief report, detailing implemented functionality, division of work, references and other
information relevant to grading your submission.

Please clean your project before handing it in. For the provided templates, this is easily achieved by
executing clean.bat in the template directory or in the root of the project folder. Note that your

project must not be open in Visual Studio when you run this file. For sane file sizes: please exclude

.svn and .git folders from your submission. PROTIP: if the final package is more than 50MB, you did
it wrong. If there’s still a .vs folder, you did it wrong. I’ll not punish you, but it’s wrong.

You may work on this assignment alone, or with one other student. | recommend working together:
you learn more, it’s more fun and probably healthier as well. Note that you are not required to work
in the same team for all three assighnments. Do be gentle if you split up - but don’t stay in a non-
functional team: both of you will be held equally accountable if things go south.

You may implement your platform in C++ or C# or any other programming language that you may
prefer. Do note that support in working colleges may be limited if you chose an exotic programming
language (don’t let that discourage you!). You may also target other operating systems than
Windows, but again, support may be limited and | have to assume that you can support yourself.

Feel free to discuss practical details on Teams or elsewhere. You are not supposed to share complete
ray tracers or significant chunks of crucial code, but if everyone uses the same optimal ray/triangle
test, that would be considered ‘research’ and ‘smart’.

Tasks & Grading
Time for the formal details. A passing grade requires:

= Implementing a generic and extendible architecture for a ray tracer (mostly already there if
you go for the ray tracing template).

= a ‘free camera’ with configurable position, orientation, FOV and aspect ratio. ‘Configurable’
means: adjustable from code, or at runtime using some interface.

= A basic user interface, or keys / mouse input handling to control the camera position and
orientation at run-time.

= Support for (at least) planes, spheres and triangles.

= An extendible material class.

= A basic scene, consisting of a small set of these primitives. Use each primitive type at least
once.

= A Whitted-style ray tracing renderer, supporting shadows, reflections and refraction with
absorption (Beer’s law).

= A Kajiya-style path tracing renderer, supporting diffuse interreflections and area lights.

To obtain additional points, you may work on the following:

1. Support fortriangle meshes of arbitrary size, using ‘obj’, ‘gltf’ or ‘fbx’ files to import scenes
(max 1pt). The .obj file format is highly recommended for this assignment.

Support forcomplex primitives - complex being a torus or better (max 1pt).

Texturing on all supported primitives. Texture must be a bitmap loaded from a file (max 1pt).
Besides the point lights: Spot lights and directional lights (max 0.5 pts).

Anti-aliasing (max 0.5 pts).

A skydome, with a texture loaded from a HDR file format (max 0.5 pts).

Barrel distortion, a Panini-projection and/or a fish eye lens (max 0.5 pts).

Image postprocessing: gamma correction, vignetting and chromatic aberration (max 0.5 pts).

© N EWDN

IMPORTANT: The additional features will not be considered for grading if the requirements fora
passing grade are not met. Also note that your grade will be capped at a 10.

Additional bonuses may apply; please discus with me to be sure.

Academic Integrity

The work you hand in must be your own work. If you use materials from others (source code,
libraries) please state this clearly in your report. If your work is mostly a copy of online sources, it
cannot be graded.

Purpose

We will use the result of this assignment
in the second assignment. The code you
produce should therefore be reusable.

May the Light be with you,

- Jacco.

