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Abstract

Importance sampling provides a practical, production-proven method for integrating
diffuse and glossy surface reflections with arbitrary image-based environment or area
lighting constructs. Here, functions are evaluated at random points across a domain to
produce an estimate of an integral. When using a large number of sample points, the
method produces a very accurate result of the integral and provides a strong basis for
simulating complex problems such as light transport.

Frequently, using the necessary number of samples to reach the exact result is too
computationally expensive and fewer samples are evaluated at the cost of visual noise, or
variance, within the image. Importance sampling offers a means to reduce the variance
by skewing the samples toward regions of the illumination integral that provide the most
energy. For instance, the direction of specular reflection or a bright light source within
an environment more likely represent the final value of the integral than a random
sample.

The variance can be reduced more efficiently by combining multiple components of
the illumination integral, such as the lighting and material function, to determine where
to sample, which is the principle of Multiple Importance Sampling (MIS).

As an alternative to the noise in importance sampling, Filtered Importance Sampling
(FIS) can provide fast integration, where the lighting environment look-ups are pre-
filtered to give a smoother result with a significantly smaller number of samples.

Importance sampling, MIS and FIS have various practical implications. In this
quarter-day course, we cover the necessary background for using Monte Carlo-based
techniques for direct lighting and explain how various visual effects companies use these
shading methods in their production pipelines.



Contents

Course Overview

Biographies

1

Introduction
1.1 Overview of Course Material . . . . . . . . . . . ... .. ... .....

Monte Carlo Methods

2.1 Estimators. . . . . . . . ..

2.2 Monte Carlo Integration . . . . . . ... ... ... ... ..

2.3 Variance Reduction Techniques . . . . . . . .. ... ... ... ... ..
2.3.1 Importance Sampling . . . . ... .. ... ... ...
2.3.2  Stratified Sampling . . . . . ... L o
2.3.3 Control variates . . . . . . . . . . ...
2.3.4 Defensive importance sampling . . . . . .. ... ... ... ..
2.3.5  Multiple Importance Sampling . . . . .. ... ... ... ...,

Direct Illumination Formulation

Importance Sampling for Direct Illumination

4.1 BRDF-based Importance Sampling . . . . . . ... ... ... ......
4.1.1 Inverse Transform Sampling . . . . . .. ... ... ... .. ...
4.1.2 Phong BRDF Sampling . . . ... ... ... ... ......
4.1.3 Exponential Distribution Sampling . . . . . . ... ... ... ..

4.2 TImage-Based Environment Importance Sampling . . . . . ... ... ..

4.3 Quasi-Random Low-Discrepancy Sequences . . . . . ... ... .....

BRDF Proportional Filtered Importance Sampling

5.1 Foundation . . . . . . ... ..
5.2 Environment Lights . . . . . . ... ... ... . o .
5.3 AreaLights . . . . . . ...
5.4 Analysis . . . ...

Multiple Importance Sampling

Practical Notes on Monte Carlo Sampling

7.1 Choosing Sampling Density . . . . .. .. ... ... ... ...
7.2 Filtered Importance Sampling For Area Lights . . . .. ... ... ...
7.3 What About Visibility? . . . . ... .. ...
7.4 Resampled Importance Sampling . . . . . . .. ... ... ... ...

Importance Sampling Framework at MPC

8.1 Image Based Lighting Constraints . . . . . .. . ... ... ... ....
8.1.1 Energy Conserving BRDFS and Albedo Pump-up . .. ... ..
8.1.2 Dealing with Number of Samples . . . . .. .. .. ... ... ..
8.1.3 Raytracing Strategies in Clash of the Titans . . . . . . .. .. ..

8.2  Quick Implementation of Iridescence and Color Shifts with Filtered Im-
portance Sampling . . . . .. ...

8.3 Sampling Strategies . . . . . . .. ... L o o

Conclusion

12

13
14
14
15
16
19
22

22
23
24
27
29

32

35
35
36
37
38



10 Acknowledgements

References

55

56



Course Overview

Format: Quarter-Day (1.75 hr) Course Outline
e Introduction (1 minute) Mark Colbert
e Background (20 minutes)
— Overview of the Illumination Integral and Monte Carlo Rendering
— Importance Sampling
— Phong BRDF Sampling
— Exponential Distribution Sampling
— Quasi-Random Low-Discrepancy Sequences
e Filtered Importance Sampling (FIS) (15 minutes)
— Motivation for a Smoother but Biased Estimator
— BRDF Proportional Filtered Importance Sampling with Image-based Envi-
ronment Lights
* MIP-map Filtering
* Ptex-based Cube Map Filtering
— Analysis and Convergence
FIS for Area Lights in “A Christmas Carol” (10 minutes)
Decoupled Lighting Model
— Ray Differentials
Filter Selection
— Slide Map
Aliasing Artifacts
— Real-time Interactive Setup for Lighters
Importance Sampling Framework at MPC (25 minutes) Guillaume Frangois
— Image-based Environment Importance Sampling
— Image-based Lighting Constraints
x Energy Conserving BRDFs and Albedo Pump-up
% Dealing with Number of Samples
* Raytracing strategies in “Clash of the Titans”
— Quick Implementation of Iridescence with Filtered Importance Sampling
— Stochastic versus Quasi-Random Sequences
Multiple Importance Sampling (MIS) (30 minutes) Simon Premoze
— Overview of MIS
* Mixture Sampling
* Control Variates
* Defensive Importance Sampling
* Mixture Sampling
— Practical MIS
* Sampling Strategies
* Correlated Sampling
— FIS and MIS
e Questions (5 minutes) All Presenters



Biographies
Mark Colbert

Software Engineer

Google

mark.c.colbert@gmail.com
http://www.cs.ucf.edu/~colbert

Mark is a Software Engineer at Google working within on the Street View project. He
was a Research and Development Engineer at ImageMovers Digital where he worked
in the render development group writing shaders and pipeline tools. He was the lead
developer for the real-time lighting pre-visualization tool chain. His film credits include
A Christmas Carol and the upcoming movie Mars Needs Moms. In 2008, he graduated
with a Ph.D. in Computer Science from the University Central Florida.

Simon Premoze

simon 'DOT’ premoze AT’ gmail 'DOT’ com

Simon Premoze received a B.S. in Computer Science from the University of Colorado
at Boulder and was granted a Ph.D. in Computer Science from the University of Utah.
He was a postdoctoral research associate at Columbia University where he worked on
volume rendering and global illumination. He has been an R&D engineer at Industrial
Light and Magic where he worked on a variety of rendering problems in production. His
current research interests include global illumination and rendering algorithms, mod-
eling natural phenomena and reflectance models. Previously he worked on computer
simulation and visualization of liquid crystal phase transitions and dynamics of liquid
crystals.

Guillaume Francois

Shader Writer
Weta Digital
guillaume.francois@gmail.com

Guillaume Francois was a Shader Writer at the Moving Picture Company where he
is responsible for the Image Based Lighting shading pipeline. His interests and work
also include atmospheric scattering, skin modeling and rendering and other rendering
challenges. His film credits include G.I. Joe: The Rise of Cobra, Prince of Persia: The
Sands of Time and Clash of the Titans. In 2008, he graduated with a Ph.D. in Computer
Science from the University of Rennes I.


http://www.cs.ucf.edu/~colbert

ACL_2000_Sep0d_t

(©2009 ImageMovers Digital.

1 Introduction

As the visual effects and game industries strive for increasing realism, more complex
lighting and material models are being tested and applied to achieve high fidelity images.
As one approach, area and image-based lighting models are being combined with diffuse
and glossy surface models to provide rich reflection detail (Figure 1). Unfortunately,
the computation time required for brute force integration of these models is rather
expensive. The cost can have a strong impact on the effectiveness and benefit of complex
lighting models in a production pipeline. For visual effects, this implies the iteration
time expands as the render times increase for an artist tweaking the appearance of
a synthesized image. For games, the large computation may drop game performance
below an acceptable level preventing the use of the model all together.

Importance sampling provides a means to reduce the cost of brute force integration
by selectively evaluating elements of the integrand based on prior knowledge, i.e. an
educated guess. However, determining the prior knowledge is tricky since the illumi-
nation integral contains the product of the incoming light and the material reflectance
function. Methods such as Multiple Importance Sampling (MIS) provide a way to ac-
count for the various components and solve for the reflectance with a relatively small
number of samples.

Another method of reducing this computational burden is through Filtered Impor-
tance Sampling (FIS) [CKO07, KC08]. Although the method was originally intended for
GPU-based material design, the algorithm’s flexibility and simple parallelization makes
it amenable for rendering directly illuminated glossy surfaces in a production context.
To that end, the approach has been used in movies such as Iron Man 2, A Christmas
Carol, Terminator 4, Clash of the Titans, and Percy Jackson and the Olympians: The
Lightning Thief.

The goal of this course is to provide the audience with the necessary nuts and bolts
in theory and code to understand and implement an importance sampling-based shading
system. To that end, the following is presented as a tutorial for the reader.

n7

Figure 1: The broad glossy and diffuse reflections from an area light source were required to simulate
the soft appearance of Belle in Disney’s A Christmas Carol. Here, filtered importance sampling was
used to provide an efficient and effective result for the soft reflections.



1.1 Overview of Course Material

In the following course notes, we discuss Monte Carlo (MC) numerical integration and
how importance sampling can provide a computationally cheaper solution than brute
force MC (Section 2). We overview the underlying theory and math for integrating area
and image-based lighting environments with material reflectance models (Section 3)
and apply the importance sampling theory to rendering (Section 4). In the process,
the formula and code for material-based and image-based environment sampling will be
derived as reference for the reader.

Next, we explain how the importance sampling framework can be adapted to support
filtering and demonstrate how to improve computational efficiency for area and image-
based environment lighting with FIS (Section 5). We also provide empirical analysis on
the various artifacts associated with FIS.

We discuss other means to reduce the cost associated with importance sampling by
using a technique called Multiple Importance Sampling (Section 6). Last, practical notes
are provided for implementing importance sampling in a production pipeline (Section 7).
This includes describing some solutions and tricks to efficiently render large and complex
scenes when using the techniques presented in this course (Section 8).

2 Monte Carlo Methods

The term Monte Carlo refers to all methods that use a statistical sampling processes
to approximate solutions to quantitative problems. It can be used for a wide variety
of probabilistic problems ranging from numerical integration to optimization. These
methods are used in many application domains such as economics, robotics and nuclear
engineering.

In this section, we describe some basic concepts of Monte Carlo integration. After a
brief overview of the Monte Carlo methods, we introduce the principle of Monte Carlo
integration and look at some of the basic statistical properties. Then, we describe some
basic variance reduction techniques, such as importance sampling, control variates, and
mixture sampling, that we use in later sections in the context of light transport. This
section is only a brief summary, but it does provide some insights and intuition about
why some methods perform better than other and describes the circumstances one
should use a particular method. We encourage interested readers to learn more about
Monte Carlo methods and probability in many excellent books [KW86, SG69, HH64]
and papers that exist on the topic.

Readers who are mostly interested in the practical implementation Monte Carlo
methods for rendering can skip this section.

2.1 Estimators

A continuous random variable X is a quantity that randomly takes on a value z that
lies on the real line (—oo,00). The values of z can be quantitatively described by the
probability density function (PDF) p. The probability that x will take a value on some
interval between a and b is then

b
Pr{ia <X <b} = / p(z)dz. (1)
The probability density function p(z) must satisfy two conditions:

1. It is always positive:
p(x) >0



2. Tt is normalized: -
/ p(x)dr =1
— 00

It is important to understand the difference between probability and the probability
density function. The probability, or likelihood, of an event takes values strictly between
0 (émpossible event, it never happens) and 1 (certain event, it always occurs). On the
other hand, the probability density function describes the relative likelihood of a random
variable (or event) having a certain value. For instance, if p(x1) = 10 and p(z3) = 100,
then the random variable with the PDF p is ten times more likely to have a value near
21 than near x5. The relationship between the probability density function p and the
probability Pr is defined in Equation (1).

Other important concepts to understand are expected value and variance of a ran-
dom variable. The ezpectation (or expected value) of a random variable Y = f(X)
is

B[] = / f(@)p(a)da 2)

and its variance is
VY] = E[(Y - E[Y])*]. (3)

Intuitively, expected value (or mean value) is just the average value of the random
variable. Note that expected value should not be confused with the most probable
value. On the other hand, variance measures how much the values of some random
variable deviate from its mean or expected value. The higher the variance, the more
values differ from the average value.

The expected value has a few useful properties:

1. The expected value of the sum of two random variables X and Y is the sum of

the expected values of those variables:

E[X +Y]=E[X]+ E[Y]

Since functions of random variables are also random variables, this principle ap-
plies to the sum of functions of random variables:

E[f(X) +9(Y)] = E[f(X)] + E[g(Y)]

The above holds true even if variables X and Y are correlated.
2. For any constant a, the expected value and variance for a X are

E[aY] =aFE[Y]
ViaY] =d*V[Y]

If we want to compute an approximation to some unknown quantity @ (i.e.the
estimand or quantity of interest), a function F' of random variables Xi,..., Xy is
called an estimator if its mean (expected value) E[F] is a usable approximation to Q:

Fy=Fn(X1,...,XnN) (4)

A particular numerical value of Fy is called an estimate. @ can be any function that
we might be interested in. In rendering, () can be the amount of light that reaches a
point on a surface or the amount of light reflected from the surface.

There are many possible estimators. In general, we want Monte Carlo estimators to
provide good estimates as fast as possible. How do we choose a good estimator?
First, we need to establish some criteria for what good means by looking at the properties
of Monte Carlo estimators:



e Error

error = Fy — @

Mean Square Error (MSE) of an estimator F' is then

MSE = E[(Fy — Q)’] (5)
e Bias
Bias [ is the expected value of the error:
BlFx] = BlFy - Q) (©
The estimator is unbiased if G[Fy] = 0 for sample size N:
E[FN]=Q for allN > 1. (7)

An obvious advantage of the unbiased estimator is that we are guaranteed to get
the correct value of quantity of interest @) if enough samples are taken. Fur-
thermore, the expected value of an unbiased estimator will be the correct value
after any number of samples. The mean square error of the estimator can be also
written as

MSE[Fy] = V[Fy] + B[Fx]*. (8)

For unbiased estimators, the MSE is the same as the variance. For biased esti-
mators, the error is much more difficult to estimate. It is also important to know
that a biased estimator may not give a correct estimate for () even if an infinite
number of samples are taken. In practice, a biased estimator may have some de-
sirable properties, such as lower variance, which makes it very appealing for use in
computer graphics. For example, in rendering, noise is a manifestation of variance.
While taking more samples reduces the amount of noise, rendering using a biased
estimator may have less noise for the same number of samples albeit producing
different images.
e Consistency
An estimator is consistent if the error goes to zero as the number of samples grows:

Pr{ lim Fy=Q}=1. (9)

The above equation is essentially saying that if we use a consistent estimator, we
are one hundred percent certain that the answer is correct if we increase the num-
ber of samples. Consistency is a stronger condition than requiring the estimator
to be unbiased. It is still possible that an unbiased estimator is not consistent,
in which case its variance is infinite. A biased estimator is consistent if its bias 3
decreases to 0 as the number of samples N increases.

2.2 Monte Carlo Integration

The basic idea behind Monte Carlo integration is evaluation of the integral

I:/Qf(a:)dx (10)

using random sampling. Here, N random points Xi, Xo,..., Xy are independently
sampled from some density function p and used to approximate I,

. 1 X
Iy = NZf(Xz) (11)

7



Notation note: A realization of an estimator F', namely Fl, is the same as In. The
subscript N emphasizes that I is still a random variable and therefore its properties
depend on how many samples were chosen.

As N increases, the expected error of this estimate decreases. We want to choose
N such that we have confidence that the estimate I n~ is good. The estimator I N IS a
crude but unbiased estimator for I and its variance is

N
Vit = Vig S0 F(X0] = VAL (12
i=1

From this variance estimate V[f ~] we can conclude the following:

1. The standard error of the estimator decreases with the square root of the sample
size N. Recall that the standard error of Iy is V[Iy]?, so while the variance
of the estimate is proportional to 1/N the standard deviation is proportional to
1/ V/N. Therefore, to reduce the error in half, we have to quadruple the number
of samples.

2. The statistical error is independent of the dimensionality of the integral. This
simply means that the computation does not increase exponentially when the
dimensionality of the integral increases.

So far, we have not made any assumptions about function f(z) we are trying to
integrate. On the other hand, in the above discussion we have assumed that our random
variable X is uniformly distributed over the integration domain 2. Loosely speaking,
a uniform distribution implies that the probability of choosing each sample is equal.
Unfortunately, real problems are rarely this simple. For example, function f(x) can be
zero in many regions and have very high values in other. If uniformly sampling the
domain 2, we may get very large variance. Also, sometimes it may not be possible
to sample a space uniformly. In order to alleviate these problems, we can rewrite the
estimator from Equation (11) as

/ f(z)dz
Q

- [ L8y,
o p(@)
where p(x) is a probability density function in 2. We can now generate N samples from
distribution p(z) (instead of uniformly sampling §2) to get

. 1 Y
Ipzﬁz
=1

The simple Monte Carlo estimator was saw in Equation (11) is just a special case of
the more general estimator in Equation (13) with p(x) being a uniform distribution in
Q. This estimator has the same variance properties we have seen above.

One major advantage of Monte Carlo integration is that it is easy to understand
and simple to use. If we can generate random samples using some density p(z) and
have the ability to compute the sample weights, w; = igg; ,4#=1,..., N, then we can
evaluate the integral. Monte Carlo methods are also flexible, robust and work well in

higher dimensions where other numerical methods might fail.

1

f(Xi)
p(Xi) (13)

2.3 Variance Reduction Techniques

One of the biggest disadvantages of Monte Carlo methods is a relatively slow convergence
rate. As we have already discussed above, the root mean square (RMS) error converges



slowly at a rate of O(1/v/N), so we need to quadruple number of samples N to halve
the error.

Ideally, we would like to use an estimator which has both small variance and is
computationally efficient. Efficiency of a Monte Carlo estimator F' is

i [—— (14)

where V[F] is the variance and T[F] is the time needed to evaluate F. Therefore, the
more efficient the estimator is the lower the variance in a given (fixed) amount of time.

One of the fundamental goals in researching Monte Carlo methods is to find or design
efficient estimators. These techniques are often called wvariance reduction techniques
and include importance sampling, control variates, and adaptive sampling. We briefly
review some of these techniques. In later sections, we apply these techniques to the
direct illumination rendering problem.

2.3.1 Importance Sampling

Recall that a Monte Carlo estimator for some function f(z) over domain 2 is

1= [ pe

and the estimator is

R 1 Y
I,,:NZ
i=1

The variance of the estimator fp depends on the density p(x) from which random samples
are drawn. If we choose the density p(z) intelligently, the variance of the estimator is
reduced. This is called importance sampling. p(x) is called the importance density and

w; = % is the importance weight.

[(Xy)
P(Xi).

The best possible sampling density is p*(z) = cf(x) where ¢ is proportionality

constant
1

N fsz f(z)dz

Here, the constant ensures that p* is normalized (i.e., it integrates to 1). The density
p*(x) yields an estimator with zero variance. In practice, we cannot use this density,
because we must know the value of the integral we want to compute to evaluate c.
However, if we choose an importance density p(z) that has a similar shape to f(x), the
variance can be reduced. It is also important to choose an importance density p such
that it is simple and efficient to evaluate. In practice, p can be designed by doing some
of the following:

1. Discard or approximate some parts of f(z) such that function g(z) = f(z)p(x)

can be integrated analytically.

2. Construct a low dimensional discrete approximation of f(x).

3. Approximate f(x) by using Taylor expansion.
After g(z) is designed with any of the above methods, the density is then set to p(z)
g(z). We show in next sections how to choose and compute densities in practice.
Note: If the sampling density is not chosen carefully, the variance can be increased and
can actually be infinite. Importance sampling is very effective when function f(x) has
large values on small portions of the domain. Another common problem that happens
in importance sampling is when the sampling density has a similar shape to f(z) except

c (15)



that f(x) has longer (wider) tails. In this case, the variance can become infinite. While
importance sampling is a useful and powerful technique it should be used with care.
Inappropriate importance density can result in poor estimates of the integral.

2.3.2 Stratified Sampling

If we partition integration domain ) into a set of m disjoint subspaces €1,...,Q,
(strata), we can evaluate the integral as a sum of integrals over the stratum ;. If we
generate n; samples in each stratum (subspace €);), the estimator becomes

F=3 37X (16)

whose variance is

(17)

where V; is the variance of f(z) in stratum §2,. The expected error of this method, strat-
ified sampling, is never higher than variance of ordinary unstratified sampling [Mit96].
However, stratified sampling is often better than importance sampling. The two meth-
ods can be combined to lower variance even further. Stratified sampling works well for
low-dimensional integration, but it does not scale well for integrals of high dimensional-
ity. The number of samples must also be chosen such that there is at least one sample
drawn from each stratum.

2.3.3 Control variates

If we can rewrite the estimator as
1= [ s+ [ (1) = gla)ia (18)

where function g(z) can be analytically integrated and has the following property:

VIf(z) —g(z)] < V[f(z)] (19)
then a new estimator is
B 1 o f(X) — g(X)
F/Qg(x)derN; ox) (20)

The variance of this new estimator will be lower than the original estimator.

How do we decide whether to use importance sampling or control variates?
Given function g(z) that is an approximation of f(z), then g(z) can be used either
as an importance density or a control variate. If f(x) — g(x) is approximately uni-
form (constant), then using g(z) as a control variate is more efficient. If f(x)/g(x) is
approximately constant, then using importance sampling is more efficient. Note that
if g is proportional to p then the two estimators differ only by a constant, and have
therefore the same variance. If g is already used as the importance density, it would
not be useful as a control variate, because the variance would not be reduced. Another
criteria for choosing between importance sampling and control variates is whether g(z)
can be integrated analytically (control variates may be preferable) or g can be sampled
analytically (importance sampling).

10



2.3.4 Defensive importance sampling

We already mentioned in Section 2.3.1 that even if a sampling density p(x) has roughly
the same shape as a target function f(z), but f(z) has longer tails, importance sampling
will fail. When we draw a sample from the tails of p(x), the importance weight can be
many times larger than weights in other parts of p(x). This causes high variance and in
extreme cases the variance can be infinite. This deficiency can be address with defensive
importance sampling [Hes95] which uses a defensive mizture distribution p,(x) instead
of only the density p(z):

Pa(r) = aq(z) + (1 — a)p(z). (21)
Here, 0 < a < 1 and ¢(x) is the target distribution. If we want to compute the integral

1= /Q f(@)a(w)de (22)

where ¢(z) is the target density on the integration domain. The defensive mixture
distribution p,(z) guarantees that the variance is bounded by 1/a times the variance
of the uniform distribution estimator. It also bounds the importance weight to 1/a.
However, oftentimes it may not be easy or possible to sample from the target density
q(z). If g(x) can be decomposed into a product of several (simpler) densities, ¢(z) =
q1(x),...,qn(z) and each g;(x) can be easily sampled, then a more general mixture
distribution of m densities can be used:

m
Pa = cop(x) + Y ajg;(x). (23)
j=1
Here, the sum of all weights o is one and each weight is greater than zero.

2.3.5 Multiple Importance Sampling

Many times we have to integrate a complex function whose target distribution has
multiple modes (peaks or bright regions) and sampling with a single importance density
may not capture all regions of the integrand. For example, this is a very common
problem in rendering. If our scene contains diffuse and glossy surfaces illuminated by
small and large area lights, we face a difficult decision about what sampling strategy
to use. For diffuse surfaces, one sampling strategy might be preferable to another.
However, the opposite might be true for glossy surfaces.

Suppose that we have n different densities, p1(z),...,pn(z), and generate n; sam-
ples for each p;(z). Now, we have many different sampling strategies that work well
in different regions of the integrand, but are not good over the entire domain. The
question is how to combine multiple strategies that minimize the overall variance with-
out introducing bias. As a naive approach, one could average the sampling strategies.
However, this will not produce optimal results [VG95].

Instead, we combine all n sampling strategies giving the estimator

DS (24)
i=1 """ j=1 LAY

where weight w;, wy, ..., w,, provide weight for each sample drawn from some sampling
strategy p;. All weights must be non-zero and the total sum must be 1 to ensure that
the estimator remains unbiased. An obvious weighting function would be

11



where
q(z) = cipr(x) + - + cppr () (26)

and all coefficients ¢; are nonzero and sum to 1.
In general, the best choice of weights turns out to be

wilx) = n;pi(x)
Z( ) ankpk(x).

If we take exactly one sample, n; = 1 from each sampling density, the weight w; will be
set according to current sampling strategy at x compared to the rest of the strategies:

(27)

oy - Nipi(@)

This weighting strategy is called the balance heuristic and is nearly optimal. It is
possible to design better strategies for special cases, but universally the balance heuristic
out performs most other stratigies.

What is the difference between MIS and Defensive Importance Sampling?
Multiple importance sampling (MIS) is optimal for a given set of sampling strategies.
However, if we have chosen a bad or inadequate sampling strategy, MIS will not reduce
variance. For example, if one of the strategies takes too many samples from low-valued
regions and not enough from high-valued regions, the variance will increase. On the
other hand, defensive importance sampling (DIS) can improve variance when a sampling
strategy p is inadequate. When combined with a uniform density, DIS guarantees that
the integrand will be sampled over entire domain. MIS with balance heuristic can be
viewed as a special case of DIS (see Equation (21), and factor a coming from balance
heuristic weights).

We will show in later sections how to use MIS in practice and how to design sampling
strategies for rendering.

3 Direct Illumination Formulation

The goal in direct illumination rendering is to compute for each shading point how much
light from the surrounding environment is reflected toward the virtual camera (Figure 2).
To convert the incoming light from one particular direction and position, L;(w;,x), into
reflected light toward the direction of the camera, w,, we use the material function
f, known as the Bidirectional Reflectance Distribution Function (BRDF). Common
BRDFs are the the Lambert [Lam60] and Cook-Torrance [CT82| reflection models that
resemble the diffuse and specular functions in Pixar’s RenderMan. To compute the
total reflected light, L,(w,,X), the contributions from every incident direction w; must
be summed (or integrated, in the limit) over the hemisphere H,

Lo(we,x) = /Q Li(ws, %) f(wo, w;) cos Osdus. (29)

This equation is referred to as the reflectance equation or the illumination integral.
Here, 0; is the angle between the surface normal and the incoming light direction w;.
In image-based lighting, the incoming light L; is approximated by an environment
map, where each pixel corresponds to an incoming direction w; and occlusion of the
light can be computed using techniques such as ray tracing or shadow mapping. Even
if ignoring occlusion, the numerical integration of Equation (29) for one shading point

12



Figure 2: Components of the Illumination Integral. Here, the incoming hemisphere of light rays are
multiplied by the BRDF f and reflected towards the camera w, at a given shading point.

in the image requires thousands of pixels in the environment map to be multiplied with
the BRDF and summed. Similarly when using an area light, the light’s surface can be
discretized into many small elements. Each element is considered a point light source
whose contribution is subtended by the orientation and distance of the element to the
shading point. The elements’ emissions are attenuated by the BRDF and summed
together to estimate the original area light’s reflection. In both cases, these operations
are too computationally expensive for real-time rendering and often too slow for offline
rendering.

Since we cannot afford evaluating the illumination integral for all incident directions,
we randomly choose a number of directions and evaluate the integrand,
Li(w;, X) f (wo, wi) cos B;, at these directions to obtain samples of the integral. The
average of these samples produces an estimate of the integral, which is the essence of
Monte Carlo quadrature discussed in Section 2. If we had an infinite set of samples,
the average of the samples would equal the true value of the integral. This is denoted
as the expected value of the estimator. However, using only a practical, finite set of
samples, the estimate varies from the actual solution and introduces noise, or variance,
in the image. One way to reduce this noise is by choosing the most important samples
that best approximate the integral.

4 Importance Sampling for Direct Illumination

Generating uniform random directions is not the best approach for approximating the
illumination integral, Equation (29), if we have a rough idea about the behavior of
the integrand. For instance, if we are reflecting an environment on a glossy material,
it seems intuitively more effective to sample directions around the specular direction
(i.e. the mirror reflection direction), since much of the reflected light originates from
these directions. As discussed in Section 2, we represent this mathematically using
a probability density function (PDF) that defines the optimal directions for sampling.
Recall, the PDF is a normalized function, where the integration over the entire domain
of the function is equal to 1, and the peaks represent important regions for sampling.
However, by skewing sample directions, not all estimates of the integral are equal
and thus we must weigh them accordingly when averaging all the samples. For instance,
one sample in the trough of the PDF is representative of what would be many samples if
uniform sampling was used. Similarly, one sample around the peak of a PDF represents
only a few samples with uniform sampling. To compensate for this property of the
PDF-proportional sampling, we multiply each sample by the inverse of the PDF. This
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Figure 3: PDF proportional mapping. In this case, if a random number is chosen, where there exists
an equal likelihood that any value between 0 and 1 will be produced, then more numbers will map
to the important sample S2 and thus that direction will be sampled more often.

yields a Monte Carlo estimator that uses the weighted average of all the samples,

N

1 Li(w;, x) f(wi, wo) cos b;

Lo(wo,x) ~ L, (we,x) = i E ( )piw-) ) .
i=1 g

(30)
Defining an optimal PDF for the illumination integral requires an accurate approxima-
tion of the product between the material BRDF and the incident lighting. In practice,
if the BRDF has higher frequencies than the environment, such as a glossy surface re-
flection with a blurry environment light source, the BRDF alone is sufficient to sample.
Conversely, if the BRDF is low frequency, such as with diffuse reflection, then the en-
vironment is ideal to use for sampling. In the following sections, we will cover how to
sample solely from the BRDF and solely from an image-based environment. Sampling
from both distributions simultaneously is discussed in Section 2.3.5.

4.1 BRDF-based Importance Sampling

As one of the components of the illumination integral, the BRDF can provide a strong
basis to guide the importance sampling for glossy surface reflection. While various ways
exist to create uniformly random samples, such as pseudo-random or quasi-random
numbers generators, we must convert the uniformly random values to be proportional
or nearly proportional to the BRDF. Two BRDFs discussed and commonly used in
production for glossy surface reflection include Phong’s reflectance model [Pho75] and
the Cook-Torrance model [CT82] (similar to specular in Pixar’s RenderMan). Since
the Cook-Torrance model is predominately driven by an exponential distribution, we
will look at a general sampling strategy for this distribution. Here, we ignore other
components of the reflectance model, such as the Fresnel term, since this can be handled
using techniques such as multiple importance sampling (Section 2.3.5). The following
provides a full derivation of these sampling formulas as reference for the reader.

4.1.1 Inverse Transform Sampling

As one method for warping the uniform distribution, we can convert the PDF into
a Cumulative Distribution Function (CDF). Intuitively, think of a CDF as a mapping
between a uniform distribution to a PDF-proportional distribution. In the discrete case,
where there are only a finite number of samples, we can define the CDF by stacking
each sample. For instance, if we divide all possible sampling directions for rendering
into 4 discrete directions, where one of the sample directions, S2, is known a priori to
be more important, then the probabilities of the 4 samples can be stacked together as
depicted in Figure 3.
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Figure 4: Illustration of the spherical coordinates (6, ¢,) for an arbitrary vector v.

For continuous one-dimensional PDF's;, we must map a uniform distribution of num-
bers to an infinite set of possible PDF proportional samples. This way, we can generate
a random number from a uniform distribution and be more likely to obtain an important
sample direction, just as more random values would map to the important sample S2.
We can obtain the position of a sample © within the CDF by stacking all the previous
samples before © on top of each other via integration,

[C]
P(©) = /0 p(0)d6 (31)

To obtain the PDF-proportional sample from a random number, we set P(0) equal to
a random value £ and solve for ©. In general, we denote the mapping from the random
value to the sample direction distributed according to the PDF as P~1(¢).

4.1.2 Phong BRDF Sampling

In the Phong BRDF, the glossy reflection is modeled by a cosine falloff centered around
the specular reflection direction. We can represent the glossy component mathemati-
cally as cos™ 0, where 6, is the angle between the sample direction and the specular
direction and n is the shininess of the surface,

Lo(wo,x) = / L;(w;,x) cos™ 05 cos 0;dw;. (32)
Q

To convert this material function into a PDF, we separate out the exponentiated cosine
lobe from the illumination integral. The other components of the integrand are ignored
for computational efficiency and mathematic simplicity. This results in a PDF that is
in terms of the angles around the specular direction, p(6s, ¢s). Here, 65 and ¢, are the
spherical coordinates of the sample direction in a coordinate frame where the specular
direction is the z-axis (Figure 4). To formulate this PDF, we must first normalize the
cosine lobe to integrate to one,

6, sin 6, 1
p(0s, ds) = cos" 6, sin 0 _nt cos™ 0 sin 6. (33)

fo% Oﬂ/Q cos™ @, sin 0,d0 2m

The extra sine appears when converting to spherical coordinates from solid angles. Often
times, this normalization term is also included in the BRDF to ensure the reflectance
model is energy conserving.
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Sample Directions. To generate the two-dimensional sample direction (6, ¢5) ac-
cording to this PDF, it is best to find each dimension of the sample direction sepa-
rately [PHO4b]. Therefore, we need a PDF for each dimension so we can apply Equa-
tion (31) to convert the PDF into a CDF and create a partial sample direction. To
accomplish this, the marginal probability of the 6, direction, p(6s), can be separated
from p(fs, ¢s) by integrating the PDF across the entire domain of ¢,

27
p(0s) = /0 p(bs, Ps)dps = (n+ 1) cos™ b sin O (34)

This one-dimensional PDF can now be used to generate 6. Given the value of 6, we find
the PDF for ¢ using the conditional probability p(¢s|0s) from Bayes’ theorem [Bis06]
defined as,
p(s,¢s) 1
s|fs) = —F——= = —. 35

(oo = 00 = o (3)
The two probability functions are converted into CDFs by Equation (31) and inverted
to map a pair of independent uniform random variables (£1,&2) to a sample direction

(0s, &s),

s = arccos( fil>, (36)
¢s = 2w (37)

Note that the integration for p(6,) is actually,(1 — &)Y ™D but because &; is a uni-
formly distributed random variable between 0 and 1, (1—¢;) is also uniformly distributed
between 0 and 1. Moreover, this sampling strategy works for various other BRDF's such
as the Lafortune reflectance model [LEFTG97].

4.1.3 Exponential Distribution Sampling

Distributions driven by exponentials, including the Ward [War92] and Cook-Torrance [CT82]
BRDF, cannot be analytically integrated like the Phong BRDF. Therefore, the inver-
sion method will not work as presented in Section 4.1.2. As an alternative, we can use
the Box-Muller transform [BM58] to sample the isotropic or anisotropic exponential
distribution. The following provides an intuitive interpretation of the transform.

Formulation. In the two aforementioned BRDFSs, the exponential distributions are
based around the halfway vector H between the incoming w; and outgoing w, direction,
where H = (w; + w,)/ ||wi + w,||- The BRDFs are then defined to be approximately
proportional to

cos? ¢, n sin? ¢h>) ’ (38)

f(Oh, dn) < exp (— tan? 0, ( 3 —

r Y

where ), and ¢;, represent the zenith and azimuthal angle respectively (Figure 5) be-
tween the normal and the halfway vector and «, and o, are the roughness parameters,
where o, = a, when the reflection is isotropic.

Sample Directions. We start by sampling ¢; uniformly, similar to the Phong
BRDF,
én = 2m&s. (39)
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Figure 5: Illustration of the halfway vector and the corresponding variables used for the exponential
distributions.

In the anisotropic case, this is insufficient since the distribution is elliptical instead of
circular. So, we scale the directions accordingly using the tangent and arc tangent,

@
¢y, = arctan (y tan(2ﬂ'§2)) . (40)
Qg
However, using the arc tangent requires special care for each quadrant and thus expen-
sive conditionals in the shader logic. As an alternative, we can look at the definition of
the tangent, and get cos ¢, and sin ¢y, directly,

tan ¢y, = % tan(2mes) (41)
sing, oy sin 2w (42)
Cos Py, o Qg cos 2o
21 2
sin ¢y, = 0y sin 2wy (43)
\/ai cos? 2méy + a2 sin? 27,
% COS 2
cos ¢p, = Oz CO8 2mE . (44)

-2
\/04926 cos? 2méy + a2 sin” 27y

This eliminates any unnecessary conditional logic in the shader. Please note that the
denominator is required to normalize the scaled values and ensure the cosine and sine
are on the unit circle.

Now that we have mapped the random value & to ¢y, we need to find a mapping
of & to 0. Assuming we want to sample all values of the distribution, i.e. sample the
range of f(0y, ¢p), we can set the equation equal to the uniformly random variable &;
and solve for 6,

cos? sin?
& = exp (— tan” 6y, < a2¢h + a2¢h)> (45)
x y
2 . 2
—log& = tan®6, <0022¢h + Sn;z(bh) (46)
x y
—1
0, = arctan o8 ?1 - (47)
cos? ¢, 4 sin on
a2 oz

However, this only lets us know the position of the halfway vector. To determine the
incoming light direction to use for sampling, we can convert 0, and ¢;, into a Cartesian
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coordinate representation of the halfway vector H and find w; using,

w; = 2(w, - HH — w,,. (48)

PDF Value. Given the sample direction w;, we still must evaluate Equation (30)
with a PDF value. As shown in [Wal05], this requires that the probability density of the
two-dimensional Gaussian sampling must be warped into the space of the illumination
integral. This warping operation can be done with using the Jacobian of the of the
mapping.

The basic idea is that given two two-dimensional PDFs, p, and pp, where the
i*dimension of p, can be mapped from p, using the function a; and the measure
of probability from a region B in p; is equal to a the mapped region of Ag in p,,

/ pa(a17a2)da1da2:/pb(bth)dbldea (49)
Ap B

then the integrals can be related using the change of variables theorem from calculus.
Here, the determinate of the Jacobian is used to convert the the variables,

Oay day _ Daz Oav |y p  (50)

a s daydaz = a b ab ) b 7b
/ABP (al az) a1aa2 /BP (al( 1 2) 02( 1 2)) by Obs by Dby

In the case of the exponential distribution, we must first transform from the sample
space to the halfway vector angles that are generated, giving

081 08 0& 061

P = | e~ o

1
sin 6y’

where the sinf compensates for the conversion between the spherical coordinate and
solid angle space. This equation evaluates and simplifies to the the following PDF,

2 a2 . 2 2
(exp (- tan? 6 (ot 4 non ) ) ) (S2ajntn (coton 4 sinton))

oo, It
2m(a cos? ¢p+a2sin® ¢n) ) gip 0y,

exp [ tan? 0, cos? ¢y, N sin? ¢y, 1 vy cos? ¢y, + o sin’ @y,
a2 oz Tagry cos® Oy a2 cos? ¢y, + a2 sin® ¢y, | |

(51)

p(H) =

p(H) =

1 cos? sin?
p(H) = —————=——exp (— tan? 0, ( ;bh + ;bh)) .
Tl 0ty €OS3 G, o? ag
Last, we multiply the Jacobian from the transformation from the halfway vector space
to the sample direction space in Equation (48),

) = g (52)

Combining Equation (51) and Equation (52), we obtain the final PDF for the anisotropic
distribution for use in the illumination integral approximation,

1 cos? ¢y sin® ¢ ))

) = —tan? 6
p(ws) ATz cos® 0, (H - w;) exp( an h< a2 + oz

(53)
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4.2 Image-Based Environment Importance Sampling

As an alternative to BRDF sampling, we can also use an image-based environment to
direct illumination integration. Various methods have been researched for efficiently
integrating reflections from image-based environment light sources, such as the Voronoi
cell-based approach in [ARBJ03], median-cut method presented in [Deb05], and the
Penrose tiling-based approach in [ODJ04]. In the theme of this course and for code
simplicity, we will provide an importance sampling treatment of image-based environ-
ment sampling, as presented by [PHO04a]. Here, the sampling will be similar to the
approach presented in Section 4.1.2 for the Phong BRDF sampling.

Image to PDF Conversion. The underlying idea in importance sampling the
environment is to treat the image as a PDF. Sometimes this discrete version of a PDF
is referred to as a Probability Mass Function (PMF). The PDF requires a mapping
from the texture space of an image (u,v) to the spherical coordinate space (6, ¢). For
programmatic simplicity, a latitude-longitude map provides a good choice where the
texture coordinates are defined by linearly scaling the spherical coordinates,

2
0 = 5u
s T (54)
= v

Here, w and h are the width and height in pixels of the texture space. Since we used an
image where u is equally spaced with respect to v, there is a large warping around the
poles of the spherical map. This results from the radius diminishing around the azimuth
angle at a rate of sinf. When building the PDF, we compensate for this warping by
attenuating the PDF by sin 6.

Environment images are often in color and the PDF is a scalar function of density.
Thus, we need another mapping between the color of a texture element to a density
value. A popular choice is to use the luminance value of the element, defined by,

L(u,v) = 0.2126 R(u, v) + 0.7152G(u, v) + 0.0722B(u, v). (55)

The luminance value represents a perceptually-based metric for how various color inten-
sities are perceived by the human visual system [CIE31]. The basic idea behind using
this mapping for the density is that by assigning a higher probability of sampling to the
values with higher perceived intensity, the result will visually converge faster than using
an arbitrary metric. Putting it all together, we have a PDF for the texture element
(u,v) defined as,

p(u,v) < L(u,v)sin . (56)
Please note that the PDF is proportional and not equal to the right hand side since this

currently represents an unnormalized function.

Marginal and Conditional CDFs. Given the PDF of the environment, we can
now build the marginal and conditional CDFs as to sample the environment with two
independent and uniformly distributed random variables (1, &2). The conditional CDFs
are constructed by summing the PDF values for each column u,

P(v|u) x Zp(u,i). (57)
i=1
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The marginal CDF is then computed by summing the maximum conditional values for
each column u,

P(u) Z P(hli). (58)

Please note, this is not how conditional and marginal distributions are typically repre-
sented. Instead, these equations reflect how the CDF is computed in code. The CDFs
are stored unnormalized to maximize numerical precision. This is addressed explicitly
in the final sampling operation. Given a color image in latitude-longitude space, the fol-
lowing C++ code snippet produces the associated CDFs, given an image in the variable
m_pData and the width, height, and the number of channels are defined respectively as
m_width , m_height, and m_channels.

unsigned int k=0;

float angleFrac = M_PI / float(m_height);
float theta = angleFrac * 0.5f;

float sinTheta = 0.f;

float *pSinTheta = (float*) alloca(sizeof (float)*m_height);
for (unsigned int i=0; i < m_height; i++, theta += angleFrac)
{

pSinThetal[i] = sin(theta);
}

// convert the data into a marginal CDF along the columns
float *pBuffer = malloc(m_width*(m_height+1)*sizeof (float));
float #pUDist = &pBuffer[m_width*m_height];
for (unsigned int i=0,m=0; i < m_width; i++, m+=m_height)
{

float *pVDist = &pBuffer[m];

k = i*m_channels;

pVDist[0] = 0.2126f * m_pDatal[k+0] + 0.7152f * m_pDatalk+1] +
0.0722f * m_pDatalk+2];

pVDist [0] *= pSinThetal[0];

for (unsigned int j=1,k=(m_width+i)#*m_channels; j < m_height;
j++, k+=m_width*m_channels)

{
float lum = 0.2126f * m_pData[k+0] + 0.7152f * m_pDatalk+1] +
0.0722f * m_pDatal[k+2];
lum *= pSinThetalj];
pVDist[j] = pVDist[j-1] + Llum;
}
if (i == 0)
{
pUDist[i] = pVDist[m_height-1];
}
else
{
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pUDist[i] = pUDist[i-1] + pVDist[m_height-1];

Using the marginal and conditional CDFs defined by pUDist and pVDists, random
variables are proportionally mapped to sample positions in the texture space (u, v) using
a binary search. The following snippet demonstrates how to sample the CDFs with the
C++ STL binary search function lower_bound. Here, the random values are accessible
in the vector m_samples.

float maxUVal = pUDist[m_width-1];

for (unsigned int i=0; i < m_samples.size(); i++)

{
float* pUPos = std::lower_bound(pUDist, pUDist+m_width,
m_samples[i] [0] * maxUVal);
int u = pUPos - pUDist;
float* pVDist = &pVDists[m_height*u];
float* pVPos = std::lower_bound(pVDist, pVDist+m_height,
m_samples[i] [1] * pVDist[m_height-1]);
int v = pVPos - pVDist;
// store u,v into appropriate data structure
X

Sample Space PDF. Last, given the sample position in texture space, we must
determine the PDF to evaluate the illumination integral in Equation (30). As in Sec-
tion 4.1.3, we must convert from the texture space to the space of the illumination
integral using the Jacobian of the mapping. Given the linear mapping in Equation (54),
the Jacobian is simply,
w-h
2
Since only the CDF is stored, the difference between the neighboring CDF values is
used to compute the value of the PDF. Moreover, since the CDF' is unnormalized, the
PDF is divided by the last and largest value in the marginal and conditional CDF.

(59)

float angleFrac = M_PI / float(m_height);
float invPdfNorm = (2.f * float(M_PI*M_PI) ) / float(m_width*m_height);
float* pVDist = &pVDists[m_height*u];

// compute the actual PDF
pdfU = (u == 0)7(pUDist [0]) : (pUDist [u]-pUDist [u-11);
pdfU /= pUDist[m_width-1];

pdfV = (v == 0)7(pVDist[0]): (pVDist [v]-pVDist[v-11);
pdfV /= pVDist[m_height-1];

float theta = angleFrac * 0.5 + angleFrac * y;
float invPdf = invPdfNorm / ( pdfU * pdfV ) * sin( theta );
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4.3 Quasi-Random Low-Discrepancy Sequences

The problem with generating uniformly random sample directions using pseudo-random
numbers is that the directions are not well distributed, leading to poor accuracy of the
estimator in Equation (30). We can improve the accuracy by replacing pseudo-random
numbers with quasi-random low-discrepancy sequences that intrinsically guarantee well-
distributed directions [Kel01]. One such sequence is known as the Hammersley sequence.
A random pair (£1,£2) in the two-dimensional Hammersley sequence with N values is
defined as,

(&1,&) = (;,@2(2')) , (60)

where the radical inverse function, ®5(7) returns the number obtained by reflecting the
digits of the binary representation of ¢ around the decimal point as illustrated in the
following table.

Binary | Inverse Binary | Value
111 0.1 0.5
2|10 0.01 0.25
3|11 0.11 0.75
4 1 100 0.001 0.125

As provided in [KK02], this can be coded by a simple bit swapping operator in C.

double HammersleyRadicallnverse(unsigned int bits)

{
bits = ( bits << 16 ) | (bits >> 16);
bits = ((bits & OxOOFFOOFF) << 8 ) | ((bits & OxFFOOFF00) >> 8 );
bits = ((bits & OxOFOFOFOF) << 4 ) | ((bits & OxFOFOFQF0) >> 4 );
bits = ((bits & 0x33333333) << 2 ) | ((bits & 0xCCCCCCCC) >> 2 );
bits = ((bits & 0x55555555) << 1 ) | ((bits & OxAAAAAAAA) >> 1 );
return (double) bits / (double) 0x100000000LL;

}

Another advantage of using low-discrepancy sequences is that we can reuse them
for each pixel. The deterministic sequence ensures that no matter how many times
the frame is rendered, the result will always be the same. Moreover, this makes the
algorithm amenable for GPU rendering since we can pre-compute the low-discrepancy
sequence and transfer them to the GPU using a constant buffer. Unfortunately, the
deterministic sample sequences will turn noise into replicated specular reflections, or
alias (Figure 6(a)). However, the aliasing can be suppressed using filtered importance
sampling as explained in Section 5.

5 BRDF Proportional Filtered Importance Sampling

While importance sampling and low discrepancy sequences reduce the variance of the
illumination integral, a large number of samples are still required to produce a smooth
solution. If using a deterministic sampling sequence, the noise will appear as aliasing
when performing BRDF proportional sampling. To remove the alias in the signal,
we borrow from a standard method in signal processing and pre-filter the incoming
signal (Figure 6(c)). However, to determine the support, or size, of the filter we need
a computationally efficient function capable of estimating the filtered region without
over-filtering and dulling the reflectance or under-filtering and leaving the alias.
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(b) ()

Figure 6: Deterministic importance sampling for every pixel causes an aliasing effect in the illumina-
tion integral estimate (a). Typically, random samples are used for each pixel providing a noisier, but
more visually acceptable result (b). With filtered importance sampling, we can use computationally
efficient, deterministic sampling while obtaining smooth results (c).

5.1 Foundation

If the PDF of a sample direction is small (that is to say, if the sample is not very proba-
ble), then it is quite unlikely that other samples will be generated in a similar direction.
In such a case, we want the sample to bring illumination from the environment filtered
over a large area, thereby providing a better approximation of the overall integration.
On the other hand, if the PDF of a direction is high, other samples are likely to be
generated in similar directions, thus multiple samples will help average out the error in
the integration estimation from this region. In this case, the sample should only average
a small area of the environment.

We define this relationship in terms of the solid angle associated with a sample
Qg, computed as the inverse of the product between the PDF and the total number of
samples, N,

1
N - p(wiy wo) ’

However, this only provides a scalar solid angle and not the shape of the filter region.
As an approximation, we assume that the filter region is circular around the incoming
light direction w;, i.e. the filter is isotropic.

This approximation may cause some samples to gather light from inappropriate
regions and thus over-filter the sample. However, the isotropy is simple and fast to
compute as seen in the following sections. Moreover, any over-filtering can be easily
addressed by adding more samples. For a theoretical foundation for this relationship
and filter approximation, we refer the reader to [KCO8].

Given Equation (61) and the BRDF importance sampling strategies discussed in Sec-
tion 4.1, we must determine how to filter the various light sources. Effectively, we must
determine a function that maps €2 to an area on a light source that can be efficiently
filtered. The following sections define this mapping for two illumination models, image-
based environment and area light sources.

Q. (61)
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Figure 7: A visualization of a MIP-mapped environment texture, where €,/Q, is shown on the oth
level of the environment map and the corresponding filtered sample is highlighted on level [.

5.2 Environment Lights

MIP-Map Filtering. When pre-filtering with environment lights, we should filter
all pixels of the map within the solid angle Qg from Equation (61) around the sample
direction. To make the filtering efficient, we use the MIP-map data structure [Wil83]
commonly used for anti-aliasing textures. A MIP-map is a pyramidal set of images,
where each pixel of level [ is the filtered result of the four corresponding pixels of level
I — 1 (Figure 7) and level zero is the original texture. Therefore, filtering all the pixels
within the solid angle 25 can be approximated by choosing an appropriate level of the
MIP-map.

First, we compute the number of environment map pixels in ;. Assuming the shape
is isotropic (or circular), this is given by the ratio of {25 to the solid angle subtended by
one pixel of the 0*® MIP-map level, ,,. This, in turn, is given by the texture resolution,
w - h, and the mapping distortion factor d(w;),

d(wl)
b= (62)

The distortion factor corresponds to the size of a mapping in a certain direction w;.
This term compensates for the stretching at the poles in a latitude-longitude map or
the outer edges of a dual paraboloid map. However, the distortion may be complex
to derive and compute. In practice, we found that equally weighting each direction
produces similar results to those obtained using correct distortion.

As aforementioned, we want the environment map lookup to correspond to averaging
05/, pixels, which yields the formula for the MIP-map level,

1 Qs 1 w-h 1
! = max {2 log, Qp,O} = max [2 log, <N) o logy (p(wi, wo)d(w;)),0] .  (63)

For each sample direction, the filtering operation is reduced to evaluating Equation (63),
and using [ in the corresponding texture call. In NVIDIA’s GPU language Cg, [ is
fed to the function tex2Dlod() as the level of detail parameter when looking-up the
environment map.
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Figure 8: The parameters of the spherical cap used as the isotropic filter region for area lights.

Ptex Filtering of Cube Maps for RenderMan. In production renderers,
such as Pixar’s RenderMan, other intrinsic data structures can be used to achieve better
filtering with less distortion than the proposed MIP-map filtering method. One option is
the Per-face Texture (Ptex) environment representation [BLOS]. Here, the Ptex format
will store the environment as a cube map. This mapping provides relatively minimal
distortion since the environment is projected onto each face of the cube, which is similar
to GPU cube maps. However, unlike GPU cube maps, the Ptex algorithm will filter
across the various faces of the cube map. This will provide a smooth, seamless transition
when filtering a region present on multiple faces of the cube.

In Pixar’s RenderMan, the filtered cube maps are accessed using the environment ()
function call. Here, the environment is passed four three-dimensional vectors repre-
senting the filter region. However, generating the filter region cannot be analytically
computed as with the MIP-map level in the GPU approach.

Instead, we generate a spherical cap (Figure 8), and orient the filter vectors around
the cap. This once again represents our isotropic filter approximation. Here, we assume
the filter region lies within a spherical cap with an area of 23 and the entire cap is
above the horizon. The bounds of the spherical cap with respect to the angle between
the sample vector, 05, can be found by solving the equation for the area of a spherical
cap, Qs = 27(1 — cos ), for O giving,

Q
s = arccos (1 - 2s> . (64)

7r
The four vectors representing the filter region are then computed by rotating the sample
direction by 6, around two orthogonal directions (Figure 9). Given two orthogonal

vectors, tV and bV, and the sample direction wi the filter region can be computed using
the following RSL code snippet.

float cosThetaCap = 1.0-1.0/(pdf * numSamples * 2.0 x PI);
float sinThetaCap = sqrt( 1.0 - cosThetaCap*cosThetaCap );

vector cosThetaCapWi = cosThetaCap * wi;

vector wi_tp = cosThetaCapWi + sinThetaCap * tV;
vector wi_tn = cosThetaCapWi - sinThetaCap * tV;
vector wi_bp = cosThetaCapWi + sinThetaCap * bV;
vector wi_bn = cosThetaCapWi - sinThetaCap * bV;

color filteredValue = environment( ptexEnvironmentMap, wi_tp, wi_bp,
wi_tn, wi_bn,
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Figure 9: Tllustration of the rotation of w; around the orthogonal vectors t and b to generate the
filter region vectors or the ray differentials.

"filter", "gaussian" );

Please note that the filter is forced to be Gaussian to prevent any sharpening artifacts
from occurring by possible negative weight filters being set as the default in the renderer.
Moreover, orthogonal vectors tV, bV and wi, i.e. the coordinate frame, must be smooth
across the image. Since filtering is effectively adding bias to the simulation, any large
discontinuities in the coordinate frame will result in visual artifacts.

Smooth Coordinate Frame. When using the MIP-map based filtering, the coor-
dinate frame is implicitly defined to be oriented in the texture space of the environment.
When specifying the coordinate frame from an arbitrary sample vector, this requires
more care to ensure the orientation vectors are continuous and smooth across the ren-
dered image. To find these orthogonal vectors, denoted as t and b, we start with the
guess vector bguess. Given this guess vector, we build a coordinate system using the
orthogonality of the cross product operator,

t= bguess X Wy
b= w; X t.

As bguess becomes parallel to w;, a pole-like discontinuity artifact appears in the filtered
reflectance. A common solution is to use another guess vector that is orthogonal to
the degenerate case. This works well for stochastic sampling because the noise covers
the flip. When using a large number of samples, the results will converge on the exact
solution which will also mask the flip. Unfortunately, deterministic FIS introduces a
bias and this flip appears as a tear in the reflection. Since dPOu and OPJv contain
discontinuities between faces, the partial derivatives available in production renderers
such as Pixar’s RenderMan are also ineligible to be the guess vector. Similarly, texture
coordinate based differentials may have discontinuities depending on the layout of the
UVs. The key here is to recognize the discontinuity always exists due to the under-
determined nature of the single vector coordinate system problem. Therefore, the goal
is to hide the degenerate case from the camera.

One approach is to anchor the coordinate system to the camera-visible geometry.
This way, the surface curvature masks any artifacts due to a changing guess vector. As
an indicator of this curvature, we can use the camera space normals n.

However, the normals themselves do not make a good guess vector. Using n may
result in a degenerate case when wj; is parallel to n. Alternatively, we choose the partial
derivative of n with respect to the spherical direction ¢. If we convert n to spherical
coordinates such that n is equal to (cos ¢ sin 8, cos 6, sin ¢ sin §) and find the vector with
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Figure 10: The partial derivative of the normal in camera space, dn/d¢, is taken (a) and stretched
(b) to produce a guess vector for building coordinate frames that is smooth and anchored to the
geometry and viewing direction.

respect to d¢, we obtain the guess vector, (—sin ¢siné, 0, cos ¢sinf). When using this
guess vector with the reflection vector, a discontinuity commonly happens around the
silhouette edge of the object. In order to eliminate the discontinuity, we stretch the guess
directions such that the discontinuity occurs behind the silhouette edge. This is done by
simply scaling and offsetting 6 and ¢ via 8’ = 0/2+n/4 and ¢’ = 2(¢—n/2)+7/2. Using
this method, we obtain a geometry-anchored, temporally smooth coordinate frame for
isotropic surface reflection. Please note that this method would not work for anisotropic
surfaces since the coordinate frame depends on the viewing direction.

5.3 Area Lights

Area lights represent a higher dimensional mapping problem than the environment
lighting model. In this case, for each shading point, both the position and orientation
of the light determine the filter region. Instead of trying to find an analytical mapping
as with the environment lights, we opt for an approximate numerical solution similar
to the computed filter region used for image-based environments.

Mapping. The goal here is to find the region on the light that corresponds to Qg of
the BRDF sample from Equation (61). This can accurately be done by projecting the
shape of the sample region onto the light’s plane. However, this projected shape can
be computationally expensive to evaluate. As an approximation, we assume the filter
is isotropic. With respect to the hemisphere of incoming light directions, the isotropic
filter is a spherical cap centered in the sample direction and is entirely above the horizon
(Figure 8).

Ray Differentials. As an algorithmically simple approach for projecting the spher-
ical cap, we borrow from the texture filtering methods in ray tracing and use ray differ-
entials [Ige99]. Here, we send two rays alongside the sample ray to determine the filter
region on the area light. These supplemental rays are called ray differentials. The ray
differentials are rotated by 6, from the sample’s orientation in a direction orthogonal to
the original sample (Figure 9). In this case, the sample direction is the incoming light
direction w; and the ray differentials are w; rotated by 65 in the direction of the smooth
orthogonal vectors discussed in Section 5.2. We shoot the ray differentials and obtain
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Figure 11: In determining the filter region of an area light sample, the sample ray and ray differentials
intersect the plane of the area light (a). The intersecting area is used to build an isotropic filter
region, i.e. an area light aligned box (b). The region is clipped by the bounds of the area light and
used for filtering (c).

a rectangle in the plane of the light which represents the filter region. To provide an
isotropic filter response, the area of the filter region is computed and used to generate
an area light-aligned box (Figure 11).

Filtering. The simple box filter can be computed by taking the ratio of the area
of the clipped filter region over the area of the light source. The clipping can become
moderately complex to compute if the rectangle is not aligned with the area light co-
ordinate system. To minimize the computation, the rectangle from the ray differentials
is axis aligned thereby reducing the clipping operation to a series of min and max op-
erations. However, this low quality filter produces noticeable artifacts that stem from
the approximations made to compute the filter region. As a better filter and estimate
of the projected elliptical shape of €, we use a Gaussian filter kernel.

Due to the axis aligned approximations made for fast clipping, we perform a rela-
tively cheap integration of the filter region with the Gaussian kernel. For instance, if
the filter region is translated such that the center of the clipped rectangle is at zero and
if the clipped region is scaled by the width and height of the entire filter region, the
problem can be formulated as,

1 +x +y ) )
by / exp(—x” — y*)dxdy, (65)
R

where —x, +x, —y, and 4y represent the scaled bounds of the clipped filter region. The
function then has an analytical integral in terms of the error function erf ,

i(erf(—x) —erf(+x)) - (erf(—y) — erf(+y)). (66)

Thus, the filtering convolution is reduced to four erf function calls, which has approx-
imately the same computational complexity as four exp calls.

Slide Maps. Artists may also want to put a slide map, or gobo, in front of the light
source to add texture to the light color. Since the filter area with respect to the entire
area light is known, the number of pixels is computed by scaling the ratio between the
filter area and the area light size by the resolution of the slide map. The number of pixels
are then converted into a MIP-map level using a formula similar to Equation (63) and
the filtered texture value is accessed using the same method as described in Section 5.2.
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Figure 12: On complex geometry, undersampling appears as blurring and dulling of the highlights
although appearing visually acceptable around 50 samples (a). The blurring on complex geometry
affects the RMS (b) such that more samples are required to obtain an error similar to the spheres
in Figure 14. However, due to the masking effect of the high-frequency contours, the error is less
noticeable than on smooth surfaces.

5.4 Analysis

Using the aforementioned methods, we can obtain accurate smooth glossy surface reflec-
tions with a relatively small number of samples. The following analyzes the resulting
artifacts when using too few samples with area and image-based environment light
sources. We discuss the convergence pattern associated with smooth and complex ge-
ometry on a few anecdotal cases.

Environment Lights. When viewing BRDF-based FIS integration with the en-
vironment light, undersampling causes a glossy material to appear duller (Figure 12).
This is due to filter kernels not faithfully respecting the shape of the BRDF. This can
cause seams to appear on smooth surfaces when using the GPU-based implementation.
The seams occur from the image representation of the environment which has edge
boundaries. When using with latitude-longitude environment parameterizations, the
edge occurs along the left- and right-most regions of the maps. For the dual paraboloid
parameterization, the artifacts occur when filtering in the transition region between the
two hemispheres. In both cases, the seam artifacts appear since the reconstruction filter
is performed in image space and not in a spherical environment space.

[CKOT] suggest using a scaled dual paraboloid environment parameterization to re-
duce this artifact. The scale results in a portion of the alternate side of each paraboloid
to appear in the other’s map, which affords limited filtering across hemisphere bound-
aries. However, this still produces a seam artifact if the scale is too small or when using
too few samples.

As mentioned in Section 5.2, the Ptex-based environment representation removes
these artifacts by filtering across the boundary regions. In practice, if the reflector
is rough due to displacement or a bump map, the latitude-longitude mapping can be
sufficient since the seam will be masked by the surface variation.

Area Lights. Similar to environment lights, area lights also have an overall dulling
when using too few samples. However, area lights do not have a seam associated with a
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Figure 13: Area light aliasing artifact. Here, the undersampling appears as ripples in the reflection
(a) and can be reduced by sending more samples from the BRDF (b).

filter boundary. Instead, the glossy area light reflections alias when only a small number
of samples hit the emitter. This is evident when viewing reflecting surfaces that are
perpendicular to the area light (Figure 13). The result is a low frequency, shimmering
artifact that occurs until enough samples ray hit the light source. However, due to the
low frequency property, the artifact tends to be masked by high frequency variations in
the surface normal.

Convergence Rates. While these artifacts appear when using too few samples,
visually acceptable results typically appear around 40 to 60 samples. In Figure 14, the
root mean squared (RMS) error is compared between BRDF-based filtered importance
and regular environment map sampling. One measure of success for the method is to
analyze the error with respect to the number of samples. This is called the convergence
rate. As illustrated, FIS works well with glossy surfaces and respects the N'/2 conver-
gence rate associated with Monte Carlo quadrature. However, unlike standard Monte
Carlo quadrature, the results are significantly smoother and require fewer samples for
a visually pleasing solution.

When comparing the results to deterministic environment map sampling, BRDF-
based FIS performs better with glossy surfaces whereas environment sampling produces
better matte reflections with a small number of samples. In practice, as the BRDF be-
comes more diffuse, the effectiveness of BRDF-based FIS wanes as the artifacts become
more prevalent.

When looking at more complex geometry, such as the Buddha statue in Figure 12,
we see a practical use case for FIS, where the only noticeable artifact is the dulling of
the highlights. The high frequency contours of the surface cover up any seam artifacts
and the results look visual pleasing around 50 samples per pixel.

This method extends well for limited amount of anisotropic reflection, as seen in
Figure 15. Unfortunately, as the amount of anisotropy increases the isotropic filter
approximations become insufficient. The result is the appearance of replicated specu-
lar reflections along the direction of high anisotropy. As an alternative, one can use
anisotropic texture filtering. This is typically done by specifying the region of the filter
instead of just controlling a blur or MIP-map parameter. However, this often does not
provide good results.

In practice, the sampling requires a small amount of over-filtering, or overlap on the
filter region between samples. This property is intrinsically afforded by the isotropic ap-
proximations. Care must be taken in order to perform this operation with an anisotropic
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Figure 14: Comparison of filtered BRDF and environment importance sampling. Panel (a) shows
the RMS error when rendering a sphere lit by the grace light probe. While both methods converge
at a rate of N~/2, filtered BRDF importance sampling has a lower RMS overall, especially on
more glossy materials. Visually, the BRDF importance sampling better captures many of the subtle
features of the environment (b). Although the RMS figures suggest better performance for BRDF
importance sampling, even for low-frequency glossy reflections with few samples, environment IS
provides more visually pleasing images in such cases (c).
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Figure 15: The Ward anisotropic BRDF rendered using 40 filtered importance samples. The method
works well on complex surfaces (a) as well as high frequency materials (b) with slightly anisotropic
reflections (¢). However, it breaks down when rendering more anisotropic materials (d) due to our
approximate isotropic filter.

filter and often the cost of anisotropic filtering outweighs the visual benefit. Instead, a
few more isotropic samples will typically capture the reflection.
6 Multiple Importance Sampling

Recall that one of the main objectives in rendering is to approximate the illumination
integral in Equation (29):

Lo(x,wo):/Li(x,wi)f(wo,wi)cosﬂidwi
Q

which can be split into three components: incoming illumination L;, cosine weighted
BRDF B and visibility function V. If we drop the spatial and angular, the illumination
integral becomes

Lo:/LiBdei (67)
Q

and the traditional Monte Carlo estimator is

S Ay
LO*N;p(

il @

i)

where p(w;) is the importance sampling density. Ideally, the density function would be
proportional to the product of LBV. Unfortunately, this is impossible for all but some
artificially contrived scenes. We have to resort to some other density that will hopefully
generate low variance in estimate. Let us examine a few possible options.

When we have a diffuse BRDF and multiple area lights of different sizes, we have two
obvious choices for importance sampling densities. We can either sample according to
the diffuse BRDF or lighting. Figure 16 illustrates the two scenarios. Using the diffuse
BRDF, we sample the entire hemisphere, but only small portions of the hemisphere
contain any lighting. So, many samples are completely wasted since the contribution
will be zero. On the other hand, if we sample according to the lighting, none of the
samples will be wasted because for any direction in which light is emitted the BRDF
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Figure 16: Diffuse BRDF and area lights. When we have a diffuse BRDF and multiple area lights
of different sizes, two obvious sampling density choices are lighting (left) and BRDF (right). Note
that BRDF sampling produces many samples that will be wasted, because there is no light emission
in those directions. Sampling according to only the lighting produces lower variance.
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Figure 17: Glossy (specular) BRDF and area lights. Lighting (left) or BRDF (right) can be used as
an importance sampling density. Note that light sampling produces many wasted samples because
there will be no reflection in those directions. Sampling according to the BRDF provides better
results.

will reflect some light. For diffuse surfaces, it is better to sample according to lighting
only.

When we have glossy surfaces and many area lights, we can also sample according
to the glossy BRDF or lighting densities. Figure 17 shows two sampling scenarios. In
contrast to diffuse surfaces, glossy surfaces reflect light from a small solid angle. Using
light sampling densities, most of the samples will be wasted because the surface will not
reflect any light from those directions. Therefore, a better choice is to sample according
to the glossy surface reflection, because there is a much larger chance that at least some
sampled directions within a reflectance cone will have non-zero lighting contributions.

When we have very glossy surfaces or diffuse only surfaces, the choice of sampling
densities is fairly obvious. As highly glossy surfaces become duller (more diffuse) the
choice becomes murkier and not straightforward. For slightly glossy surfaces, a combi-
nation of two sampling strategies should be used.

So far, we have only looked at idealized situations where we have simple surfaces
(composed of simple BRDF's) and no occluders. This is obviously an unrealistic situ-
ation. As shown in Figure 18 for a diffuse only surface, once we add occluders to the
scene the sampling strategy becomes more complicated. Occluders can prevent light
reaching the surface. Sampling according to lighting will generate proper directions,
but lighting from those directions might be blocked. For the time being, we ignore
visibility in our sampling density but we will return to it later and discuss what we
could do to incorporate visibility into the sampling density.

It is clear that complex lighting, surface properties, and occlusions cause the function
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Figure 18: Diffuse BRDF and area lights with occluder. While sampling according to lighting is still
preferable, the occluder blocks many of the directions that contribute light. Ideally, we would not
pick directions that are blocked by the occluder. Unfortunately, this cannot be easily achieved for
arbitrary scenes and geometry.

we want to approximate to be complex and discontinuous. This function can have many
bright and dark regions and intensities can differ by orders of magnitude. Since the
function is very complex and does not have a nice formulation (due to occlusion) it is
clear that either our sampling density will be complex or that we need more than one
sampling density.

Veach and Guibas [VG95] have demonstrated that by combining multiple sampling
strategies, the variance can be reduced in situations where a single sampling strategy
is bad (see Figure 19).

How do we implement Multiple Importance Sampling? Given the two sampling
strategies for lighting and BRDF discussed in Section 4, let py (z) and p2(x) be a BRDF
and light sampling density. The random variables X and Y are then

X1~ pi(x) Xai ~ pa(x)

_ f(Xl,i) _ f(Xa.4)

Now, we just need to combine the samples together:
Y =wiY1; +weYo,. (69)

The only remaining question is how to compute weights w;(z). We have already men-
tioned a few possible options in Section 2. One is using the balance heuristic, where
the weights are:

pi(z)
p1(z) + p2(z)
and the final PDF p(z) for the combined sampling densities is:

p(x) = wi(z)p () + wa(x)pa(2). (71)

Now, we have all the ingredients to implement multiple importance sampling.

One of the remaining questions is how do we choose the number of samples for each

sampling strategy. There are several possibilities:

e Select a fixed number of samples for each strategy. For example, if N = 100, then
N; = 50 would be used for lighting sampling and Ny = 50 for BRDF sampling.
Note that this is a relatively safe choice, although it could lead to suboptimal
sample generation. If the BRDF is very glossy, some of the samples might be
wasted, because too many samples are allocated for lighting sampling.

wi(x) = (70)

34



Radius

A
@
8
=
2
=
&)
Sampling the Sampling the surface Sampling both the
light source surface AND the
light source

Figure 19: Combining many sampling strategies using Multiple Importance Sampling (MIS) pro-
duces superior results to using a single sampling density. Image from Veach and Guibas [VG95].

e Alternatively, the number of samples for each sampling strategy can be adjusted
based on a heuristic, such as a combination of the solid angle of the light and glossi-
ness of the surface. A reasonable strategy might be to have a minimum number of
samples that will be taken according to each strategy and then distribute the rest
based on the heuristic. For instance, if N = 100, we might allocate 20 samples to
each sampling strategy. The remaining 60 samples would be distributed based on
the glossiness of the surface and the light’s solid angle.

Notes. Multiple importance sampling is an unbiased method for reducing the variance
of Monte Carlo estimators. However, if it is used in conjunction with filtered importance
sampling (e.g., filtered importance sampling is used to filter environment lighting) the
method is biased due to the nature of FIS. For visual effects applications, this is not
troublesome as the noise can be greatly reduced.

While MIS reduces the variance, there are still configurations where the variance
will be high. As Kollig and Keller [KKO00] pointed out, multiple importance sampling
attempts to hide a weakness of using a single density function. If, however, only one
sampling density exists for some region of our integration domain €2, the multiple im-
portance sampling will revert to a standard importance sampling. Kollig and Keller
call this an insufficient set of techniques [KK00]. We emphasize again, if inappropriate
sampling densities are chosen, multiple importance sampling will not help to reduce the
variance.

7 Practical Notes on Monte Carlo Sampling

7.1 Choosing Sampling Density

The effectiveness of importance sampling depends on the choice of the importance
sampling density p(z). Figure 20 shows the differences between uniform and importance
sampling.

Figure 21 illustrates why the choice of importance sampling density is crucial for
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Figure 20: (Left) A function f(z) can has many peaks. There might not be a single importance
sampling density p(z) that can capture regions where the function f(z) has large values. (Middle)
If samples (in red) are chosen uniformly, the variance will be high, because we oversample regions
where the function is low (dark regions) and undersamples regions where the function is high (bright
regions). (Right) If appropriate sampling density is used, we take many more samples (in green) in
regions where the function has high values and thus reduce the variance.

variance reduction. The examples in the figure demonstrate that inappropriate sampling
density can increase variance, which can even become infinite.

Figure 21: Bad choice of importance sampling density. The sampling density does not match the
shape of the function f(x) we want to evaluate. Only a small portion of the regions in the density
function p(z) overlap (in orange) the non-zero parts of the function. A bad choice of importance
sampling density will increase variance and not reduce it.

7.2 Filtered Importance Sampling For Area Lights

Previous sections have described in great detail how to apply filtered importance sam-
pling for infinite (hemispherical) lights. A small extension could be used for filtered
importance sampling for textured area lights. This is an alternative approximation to
what was described Section 5.3.

Recall that each sampled ray has a solid angle:

When the intersection with the sampled ray is found, we can approximate the area on
the surface of the hit object by looking at the distance to the hit object and the solid

angle of the ray:
i — || - Qs
Alzy)  ——. 72
( Z) cos 01 ( )
For the above to hold true, we assume that the cross-sectional area is locally flat (Fig-
ure 22). Now that we have the estimated cross-section of the intersection A(z;), we can

estimate the mipmap level [ based on this area:

1 A(Z‘Z) 1
l=—log = —(logy A(z1) — logy A ive]) (73)
2 (Apixel) 2 ? 2 pixel
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Figure 22: Cross-sectional footprint of ray intersection.

where Apixel is the object space area covered by one pixel. It is used to convert areas
from object space to texel space. We can use this formula to filter the texture on area
lights when using multiple importance sampling. It is important to recognize that this
is a crude approximation. When part of the ray footprint is outside the textured area,
the light contribution will be underestimated and wrong. Still, this approximation gives
plausible results.

7.3 What About Visibility?
We have seen in Section 2.3.5 that the idealMonte Carlo estimator should be

N
. 1 L LBY
L=+ .
° N & pw)

So far, we have been focusing on sampling from either the lighting, BRDF or a combi-
nation of sampling strategies using MIS. However, several recent sampling algorithms
explicitly compute and sample an approximation of the product between the lighting
and BRDF. Two-stage importance sampling [CETCO06] and quadtree-based product
sampling [CJAMJ05, CAMO8b] hierarchically approximate a BRDF at a given point
on the surface and combine it with the incoming light L;. Some of these methods can
be fairly costly or may require precomputed data structures for BRDFs. If BRDF's are
spatially varying, some of these methods may not be practical since they would require
too much storage for all the BRDF's in the scene.

We can take this further by adding visibility into the mix to lower the variance.
Sampling from a triple product of lighting, BRDF and visibility, LBV, is difficult at
best. Exact visibility would take a long time to pre-compute and would be expensive to
store. We can use an approximate visibility V', thus making the estimator LBV. The
problem with this approach is that approximate visibility ¥V would have to be nonzero
everywhere true visibility V' is nonzero. This brings us back to the initial problem,
because in order to guarantee this condition is satisfied we would have to compute
visibility in all directions.
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On the other hand, we can use the estimator LBV as a control variate:

. 1 X LBV - aL;BV _
Lo= z; o) + o / L; BV dw;. (74)
Remember that a control variate requires the function f — g to be approximately
constant. Even if visibility is crudely approximated, this condition can be satisfied.
Clarberg and Akenine Moller [CAMO08a] analyze the variance for this case and describe
an algorithm for using approximate visibility:
e Create a compressed visibility cache using a compact bitwise representation stored
at a sparse set of points in screen space.
e Compute a rough estimate of L; BV using the approximations.
e Evaluate the difference between this approximation and the correct solution using
Monte Carlo integration
The reader is directed to [CAMO08a] for detailed discussion and implementation notes.

7.4 Resampled Importance Sampling

Efficiency of a Monte Carlo estimator depends on the expense of the sample evaluation
versus the cost of drawing a sample from better densities. For example, if function is
cheap to compute, but finding the importance density is computationally expensive,
there is probably an advantage to using a simpler sampling density with more samples.
In rendering, casting visibility rays can be expensive and oftentimes we still want to
avoid tracing too many shadow rays.

Consider a situation where we have a glossy surface and we choose N samples based
on the BRDF density. We also know that the surface is very glossy and therefore the
cone around reflected lobe is fairly narrow. We might be able to use less than N visibility
rays to approximate the light transport integral. We can do that by using resampled
importance sampling [TCEO05]. The idea is that from N partial estimates (BRDF times
lighting, L; B) we only choose M values for which we will compute the visibility.

More formally, resampled importance sampling is a generalization of importance
sampling that permits unnormalized sampling densities or difficult to sample densities
(in our case, visibility) denoted as ¢. In rendering, the best density ¢ would be ¢
L;BV, but we can realistically at best only sample from another density p that is
proportional to L;B. Instead of sampling from ¢, we generate a set of samples from
a source distribution p and weight these samples appropriately. Then, we resample
these samples by drawing a single sample from them with probability proportional to
its weight.

The basic algorithm proceeds as follows:

e Choose a set of sample X; from a known distribution p

e Associate a weight w; = gglg with each X;, where ¢ is the desired (possibly

unknown distribution)
e Generate the final samples Y; by sampling X; with a distribution proportional to
w;

If the weights w; are chosen to be w; = a(Xs)

(X)) then the resulting samples Y; will be
approximately distributed to g. The processes of resampling is equivalent to filtering.
In rendering applications, we use importance resampling as follows:
e Generate N samples from some proposal distribution p(z). This is as before, where
we created samples from either lighting density, BRDF density or combined MIS
density.
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e Compute the weights (e.g., luminance) of partial contributions (L;B, but no visi-
bility yet).

e Compute the discrete distribution from these weights.

e Chose M samples from the above N samples. These samples are chosen based on
the importance density that we computed in previous step.

e Shoot shadow rays for these M samples, add computed visibility to each sample
and apply proper weighting (based on the probability with which each sample was
chosen).

Note that although the desired target density ¢(z) is unknown a priori because of the
visibility, we never sample from it. We only need to be able to evaluate it and that is
straightforward as long as as we can evaluate visibility V.

Resamples Importance Sampling (RIS) is better than importance sampling when:

e ¢ is a better importance sampling density than p.

e Computing proposals is much cheaper than computing actual samples.

RIS takes advantage of differences in the variance computation expense. More details
and examples can be found in [TCEO05].

8 Importance Sampling Framework at MPC

The Moving Picture Company recently developed a complete Image-Based Lighting
solution in order to tackle the challenges of movies such as Clash of the Titans, Harry
Potter and The Deathly Hallows and The Chronicles of Narnia: The voyage of the
Dawn Treader. This project required us to render photorealistic creatures with highly
reflective or wet surfaces, where fast and accurate specular and glossy reflections would
be key to achieving the look. Alongside the creatures, we rendered a complete city
environment, for which we would rely heavily on IBL for diffuse lighting.

Rather than augmenting traditional lighting techniques, our IBL tools became the
standard solution and replaced classical lighting techniques in the majority of shots.
This required us to tackle many problems, such as ensuring energy conservation and
making ray-tracing of incredibly heavy scenes efficient by maximizing the bang for the
buck of each ray traced. This section will cover some of these techniques and provide
practical use cases of importance sampling and filtered importance sampling at MPC.

8.1 Image Based Lighting Constraints

Image Based Lighting allows the user to easily represent lighting coming from an al-
most infinite number of directional light sources. Different techniques can be used to
compute the diffuse and specular contributions. Each of these techniques have differ-
ent advantages in term of accuracy of the lighting and occlusion estimations as well
as advantages in terms of computational cost. Amongst these techniques, the MPC
pipeline uses a classic Dome Light, Environment Map Blurring, Importance Sampling
and Filtered Importance Sampling. This allows the artist to choose a method based on
its accuracy in the lighting, occlusion estimation, speed or memory consumption.

The use of Image Based Lighting raises different practical problems. This section
describe some of the findings we made when using importance sampling for production
purposes. We found that one important aspect raised by the introduction of this lighting
technique in the MPC rendering pipeline was the difficulty to accurately estimate the
incident lighting and at the same time ensure the quality of the shadows. Section 8.1.3
describes the ray-tracing solutions we developed at MPC to account for the variety of
cases that our lighters encountered on the project Clash of the Titans.
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Figure 23: Rendering of the Kraken character from Clash of The Titans. (©Warner Bros

Another aspect of IBL and Important Sampling is their ability to faithfully reproduce
reflections. However, this functionality strongly depends on the choice of the BRDF.
Section 4.1 presents how to sample the BRDF. In the next subsection, we describe one
key aspect to account for in the choice of a BRDF when rendering feature films images.

8.1.1 Energy Conserving BRDFS and Albedo Pump-up

One important requirement of the Image Based Lighting at MPC was to ensure energy
conservation in order to avoid or reduce “light leakage.” Here, light leakage represents
a loss of energy at near-grazing viewing directions which causes surfaces to appear
darker near silhouette edges. When directly using energy-conserving BRDF's to compute
reflectance, artists find a light-leaking or mirror reflection behavior around the grazing
angles that is not intuitively expected. In the following, we compare the responses for
three different BRDFs and their integration with Importance Sampling and Filtered
Importance Sampling for computing the specular contribution of semi glossy surfaces.

The Ward BRDF [War92] has the advantage that its PDF is proportional to the
BRDF and can be calculated at little extra cost. FIS using the Ward BRDF can give
clean results even for a low number of samples. However, a direct implementation suffers
from severe edge darkening, as visible in Figure 24.

The Ashikhmin-Shirley BRDF [AS00], a Phong-like anisotropic BRDF, also has an
easily derivable PDF. However, as shown Figure 24, this BRDF also suffers from an
edge darkening even though much less than the Ward BRDF.

Edward et al. [EBJT06] presented a mathematical framework for enforcing energy
conservation in a BRDF by specifying halfway vector distributions in simple two-
dimensional domains. The Halfway-Vector Disk BRDF gives the best results in terms
of energy conservation and faithfully reproduces the sharpening of reflections visible
at grazing angles in real-world surfaces (Figure 24). However, this accuracy made the
BRDF unsuitable for our needs. In production scenes, where traditional delta light
sources are still used, the tendency of the reflection to be perfectly specular around
grazing angles produced unattractive highlights.

In the end, we chose to use the Ashikhmin-Shirley BRDF, modified with an in-
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Figure 24: Comparison of the filtered importance sampling for the BRDF of Ward, Ashikhmin-
Shirley BRDF and The Halfway Vector Disk BRDF. The grey spheres represent the response to a
uniform grey environment. A sphere using an ideal energy conserving BRDF would not be visible;
it would reflect all the light from the environment at each point of the sphere, so every point on the
sphere would be the same color as the environment.
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Figure 25: The inverse of the measured total reflectance is used to normalize our Ashikhmin-Shirley
BRDF -here lowered in exposure by 2 for display purposes-.

house albedo pump-up based on the findings of Neumann et al [NNSK99]. While not
completely physically accurate, this reduced the edge darkening to the point of being
visually imperceptible. The pump-up also let us keep the blurry reflections at grazing
angles desired by the artistic direction.

One simple approach to study and correct BRDF light leakage is to render a mirror
ball within a constant white environment as presented in Figure 24. The albedo can
be normalized by multiplying the BRDF by a normalization factor. This factor can
be precomputed and stored in a texture, as the one in Figure 25. Here, the texture
represents the inverse of total reflectance for every viewing angle and roughness value.
The roughness is mapped from 0 to 1 to make the BRDFs interchangeable and the
albedo pump-up is computed by

1

. 5 b _ . 75
factor (w,, roughness) Jo, f(wo, wi, roughness) cos 0;dw; ()

Unfortunately, the addition of this arbitrary pump-up creates filtering artifacts when
using FIS. Appearing as a ghosting effect, these artifacts are caused by filtering with an
unmodified PDF. Experimental tests show that these are created by an overestimation
of the filtering kernel around directions with a low PDF.

At first, we attempted to manually map filtering values that we compared visually
to the correct result. While this gave acceptable results, it required long and fastidious
experiments that had to be repeated for each BRDF.

We therefore modified Equation (63), replacing the PDF by pow(pdf, ). By ensuring
that a < 1, we successfully reduced the filtering for samples with a low PDF while
preserving the correct filtering for samples with a high probability.

8.1.2 Dealing with Number of Samples

The quality of an image rendered with important sampling highly depends on the num-
ber of samples used to estimate the illumination integral (Equation (29)). A large
number of samples usually provides accurate and noise free results, but it quickly be-
comes computationally prohibitive in complex scenes required for production. Here, the
number of samples represents the amount texture lookups. In the case of ray-traced
occlusion and inter-reflections, the sample count also represents the number of traced
rays. While Filtered Importance Sampling allows us to use fewer samples than classical
important sampling, it can still lead to prohibitive computations and it remains impor-
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Figure 26: The number of samples needed to accurately estimate the incident lighting depends on
the broadness of the specular lobe.

tant to try to use an optimal numbers of samples, especially in the case of ray-traced
occlusion or inter-reflections.

Adjusting the Number of Samples. Depending on the shape of the BRDF
and on the environment lighting, the number of samples should be adjusted. When
considering no occlusion and lighting with a low frequency environment map, a small
number of samples can efficiently estimate the incident lighting. On the contrary, using
a low number of samples when lighting an object with high frequency incident lighting
results in noisy images.

While the frequency of the environment lighting usually remains unknown, the num-
ber of samples needed to accurately estimate Equation (29) can also be related to the
broadness of the BRDF lobe, as shown in Figure 26. Rendering mirror like reflections
only require a few samples while rough surface reflections require a large number of
samples. We mapped the number of samples to the shininess parameter of our BRDF
to provide the artist with a simple but tweakable solution.

For a given roughness value, we rendered a reflective sphere with a different number
of samples -ranging from 1 to 256-, as well as a reference sphere rendered with a large
number of samples. The next step was to choose the sphere with the lowest number of
samples that would effectively match the reference. We repeated this process for various
values of roughness ranging from 0 to 1. This allowed us to plot the minimum number of
samples required for each roughness value. We then fit a spline to the data to smoothen
the results. The spline is stored in a look up table to minimize the computation for
each pixel.

The roughness values of a character are often described by a texture map to allow
rich specular variations over the model, such as wet/dry or more or less oily areas etc..
The interesting aspect of this mapping is that the sampling is automatically adapted
to these roughness values. It significantly optimized the number of samples per pixel,
especially if there are regions that are mirror like.
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Figure 27: A given set of images is rendered with different sample counts and compared with a
reference image to visually determine the necessary number of samples.

Figure 28 schematizes the increase of the number of samples with the increase of
the material roughness. In most cases, when considering semi-glossy reflections without
occlusion or inter-reflections, we found that values from 16 to 64 samples provided us
with acceptable results in term of image quality and render time (red curve in Figure 28).
For materials with strong roughnesses, which required high number of samples, a per
material/scene tweaking was performed in order to optimize the render times.

Adjusting the Number of Ray-traced Rays. The computation of occlusion
and inter-reflections for each sampled direction may be needed to accurately estimate
the illumination integral. However, we found that computing the occlusion for the
mapped number of samples was often too expensive and in many cases unnecessary.
Depending on the scene geometry and its organization, we wanted to be able to adjust
the amount of ray-tracing done (green curve in Figure 28). We introduced a percentage
value that allowed us to only trace a certain number of sample directions while using
interpolated occlusion or inter-reflection values for non ray-traced sampled directions.

There are multiple ways to interpolate the occlusion samples. A brute force tech-
nique is to directly interpolate the occlusion value for a given direction using the closest
ray-traced directions. However finding these rays can be computationally expensive and
can overcome the advantage of tracing fewer rays. Moreover, sorting the precomputed
rays to accelerate the search can be time consuming and memory prohibitive and needs
to be repeated for each shading point.

A more efficient method consists of projecting the occlusion function -estimated
using the ray-traced sampled directions- into a hemispherical basis such as hemispherical
harmonics [KG05] or hemispherical wavelets. An estimated occlusion value for the non-
ray-traced directions is then obtained by evaluating the projected function in a new
direction. Such methods give good interpolations when using enough coefficients which
can, as a result, be time and memory consuming.

As our main requirement was to save memory and ensure speed, we simplify the
problem and choose to sort the rays by quadrants and average the occlusion values
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Figure 28: Schematic view of the mapping of the number of samples used at MPC.

per quadrant. The new directions will inherit the occlusion value of their respective
quadrant. The quadrants are chosen around the direction of perfect reflection w, to
ensure a good distribution of rays in all the quadrants (Figure 29).

This can be seen as a simplistic basis written:

Bi(w)= @001
B = Ll
Bs(wi) = (a+1)4([3+1)
Byw) = festipen

with a = sign(w;.T), 8 = sign(w;.B), and B and T being random vectors constructed
such that (B,T,w,) is an orthonormal basis.

The occlusion value Occ(w;) of a given direction w; is then efficiently estimated as
follow:

Oce(w;) = By (w;) * Ocey + Ba(w;) * Ocea + Bs(w;) * Oces + By(w;) * Ocey. (76)

Here, Occy, Oces, Oces and Occey are the respective average occlusion of each quadrant.

Even though this is a coarse approximation of the correct ray-traced occlusion, it
gave us convincing results with a very small memory foot print. Furthermore, the
simplicity of the projection made it easy to implement and provided us with quick but
acceptable estimates of the occlusion values. When using this method, small artifacts,
such as light leaks, could be visible for broad specular lobes but did not significantly
change the overall look of the images in the very complex scenes we had in Clash of the
Titans.
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Figure 29: Each direction is located in a quadrant around the direction of the mirror reflection wi..

Given an array of sample directions w;[], and the direction of the mirror reflection w;.,
the following code snippet shows how to quickly estimate the visibility of the untraced
rays.

vector randomVector = normalize(vector(random(),random() ,random()));
vector T = randomVector“wr ;

vector B = wr'T;

color visibilityQuadrant[4] = {0,0,0,0};

int nSampleQuadrant[4] = {0,0,0,0%};

int inQuadrant[4] = {0,0,0,0%};

//Raytraced samples

for(int i=0; i<nRaytracedSamples; i+=1){
alpha = sign(wil[i].T);
beta = sign(wi[i].B);

visibility = rayTraceVisibility(wil[i]);

inQuadrant [0]
inQuadrant [1]

1/4*(alpha-1)*(beta-1);

-1/4x(alpha+1)*(beta-1);
inQuadrant [2] 1/4*(alpha+1)*(beta+l);
inQuadrant [3] -1/4x(alpha-1)*(beta+l);
for(j=0; j<4; j+=1){

nSampleQuadrant[j] += inQuadrant([j];

visibilityQuadrant[j] += inQuadrant[j]*visibility;
}
//do the other computations

}

for(int j = 0; j<4; j+=1 ){
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Figure 30: Images rendered with 64 samples for the environment lookups with (a) 100% of traced
rays for occlusion and (b) 60%.

visibilityQuadrant[j] /= nSampleQuadrant[j];
}

//Non raytraced samples
for(int i=nRaytracedSamples; i<nSamples; i+=1){
alpha = sign(wili].T);
beta = sign(wil[i].B);
color visibility = visibilityQuadrant[0]* 1/4*(alpha-1)*(beta-1) +
visibilityQuadrant [1]*-1/4%(alpha+1)*(beta-1) +
visibilityQuadrant [2]* 1/4x(alpha+1)*(beta+l) +
visibilityQuadrant [3]*-1/4%(alpha-1)*(beta+l) ;
//do the other computatiomns...

In some cases, a quadrant may not contain any traced rays and would not store any
estimation of the visibility. One solution is to trace the first ray in the quadrant and
use its visibility value as an estimate of the whole quadrant’s visibility. We found this
solution expensive in practice as it adds a significant amount of conditionals and com-
putations. Therefore, we chose a coarse approach and replaced the quadrant visibility
by the averaged visibility value. Even though this is a very approximative solution, it
showed acceptable behavior in practice.

Figure 30 shows that, in this test case, a reduction of the number of traced rays from
100% to 60% does not significantly increase the noise visible in the resulting image.

The next section presents other methods and tweaks we developed at MPC to effi-
ciently use ray-tracing and Importance Sampling within the production constraints of
Clash of the Titans.
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8.1.3 Raytracing Strategies in Clash of the Titans

While FIS gives us good results and an acceptable render time when not computing the
visibility term, these techniques became computationally and memory prohibitive when
using ray-tracing to compute occlusion and inter-reflections. Even the interpolation
technique in the previous section is insufficient at reducing the computational footprint.
This section describes common methods which make possible the use of important
sampling and ray-tracing within a production environment.

MPC has long favored Image-Based Lighting techniques over traditional point-source
and convolved environment approaches for the superior complexity and richness of the
resulting lighting. Clash of the Titans presented a unique challenge to MPCs lighting
and shading team: a full 3D city-harbor environment being attacked by a 350feet-tall
sea monster. The city environment consisted of thousands of individual buildings and
props, totaling millions of polygons, while the Kraken itself was just as complex -dozens
of subdivision surfaces represented by cages of over 7 million polygons-. All this had
to be lit using Image Based Lighting and be reflected in the water surface of the bay,
while the Kraken itself required complex glossy and specular self-reflections.

Despite significant performance improvements in recent versions, ray-tracing in Pixar’s
RenderMan is still an expensive operation. There are two ways to speed up the ray-
tracing process: 1) shoot less rays, or 2) reduce the computation that results from each
ray hit.

Filtered Importance Sampling with Occlusion Caching and Interpo-
lation. As shown in the images below, Filtered Importance Sampling allowed us to
dramatically reduce the number of rays required to sample the environment map ef-
fectively. Rather than use a single Image Based light source to illuminate the scenes,
the initial image was split into different sectors to provide artists with full control over
the lighting. In all, there were 6 individual IBL sources used to light the scenes. This
required that we modify our shaders to cache the interpolated occlusion and impor-
tance sampling intermediaries for each sampled direction, such that the results could
be re-used for each IBL source rather than tracing more rays. These results were also
shared with reflection cards -simple textured polygonal objects hand-placed by lighters
to add shot-specific reflections -which could be either occlusive or additive depending
on the needs of the lighters-.

Radiance/Irradiance Caching. For several years, MPC has used radiance caching
techniques similar to those described in [SRKGO07] to avoid expensive shading computa-
tions for ray hits. Since we use RenderMan’s point-based color bleeding solution [Chr(09]
on everything we render, we already have suitable irradiance pointclouds to be read for
shading of reflections. Although these did not contain specular reflections, for the vast
majority of cases the difference was not noticeable.

The use of Importance Sampling made ray-tracing for diffuse IBL of the city environ-
ment feasible, but it was still too slow to calculate on a per-frame basis. We could not
bake the illumination into shared irradiance caches since the client required a unique
lighting direction for every shot, and baking the entire city for every shot would be
impractical. Thus, we wrote a tool to bake multiple key frames from the shots camera
move, then stitch the resulting pointclouds together to create an irradiance pointcloud
that covered the entire length of the shot. The shadows and specular reflections of the
key light on the city were calculated in the beauty render (using FIS to limit the number
of samples), so the environment lighting and color bleeding only needed to be rebaked
relatively infrequently. Many shots were only baked once.
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(a) infinite trace distance - 3 hours

Figure 31: The comparison of two renders with a different trace distance shows that reducing the
trace distance does not significantly affect the look of the final image. (©)Warner Bros.

Figure 32: In Clash of the Titans, separate ray traces are performed with respective trace sets and
trace distances.

Trace Distance and Trace Sets. A common technique for accelerating ray trac-
ing is to limit the distance rays are traced for intersections before giving up and returning
an unoccluded result. This is especially important for massive models, such as the city
environment, since searching only a small part of the scene reduces that amount of
cache thrashing. Here, the trashing is caused by reloading geometry that does not fit
entirely in main memory.

For the particular case of lighting the city however, we required shadowing from the
cliffs that surrounded the city in order to get the correct lighting result (Figure 31).
The solution was to do two separate ray traces, one short distance against the high-
resolution model for local inter-building occlusion, and one long distance against a very
low-resolution proxy model of the cliffs for environmental shadowing (Figure 32). The
importance sampled ray directions were shared between the two traces, and rays were
not retraced for the cliffs if they were already occluded by the city.

Ray-tracing Proxy Objects. Even using when Filtered Importance Sampling
to limit the number of samples, ray-tracing occlusion and specular reflections on a 7
million polygon subdivision surface like the Kraken, presented in Figure 33, was still
impractical. This was due to the computational cost and memory requirements. In
order to make this feasible, we used a technique similar to that described in [TLO4].
While subdivision surfaces were used for the beauty render, the traceable objects
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were in fact the original poly cages without any subdivision, thus giving much better
performance both in memory usage and render time. In order to avoid intersections
where the subdivision surface and the poly cage overlapped, we attached a second
copy of the vertex positions to the subdivision surface, changing the way RenderMan
interpolated the data such that the shaders would know where the polygonal cage was
for each subdivision surface shading point, and could trace rays from this surface.

In instances where this still was not enough, we used the same technique but tracing
against a low-poly representation of the Kraken (2 million polygons).

8.2 Quick Implementation of Iridescence and Color Shifts with
Filtered Importance Sampling

The iridescence is an optical phenomenon commonly visible on multi-layered materi-
als such as pearls, butterflies or snake skin. It consists in light wave interferences and
diffraction on multiple thin films.

Different approaches can be used to either accurately estimate such phenomenon or
to imitate it in a simpler way. The equations governing the iridescence phenomenon
are complex and are not directly adaptable to the FIS theory because the importance
sampling of such a BRDF is not straightforward. This section presents a simple and
experimental approach to quickly imitate iridescent reflections when using Filtered Im-
portance Sampling.

One key idea is to show the flexibility and simplicity of the FIS algorithm, even for
reproducing complex phenomena such as iridescence (see Figure 34). The two important
aspects of the iridescence phenomenon to take into account are the shifting of the BRDF
lobes and the very remarkable change of color depending on the viewing angle and light
incident angle.

Shifting BRDF Lobe. Iridescent materials commonly present off-specular reflec-
tions, such as retro reflection. The Lafortune BRDF [LFTG97] or the Halfway Vector
Disk BRDF offer a good, controllable solution to this particular problem. However,
note that comparable results can be obtained by shifting the BRDF lobes for other
reflectance models, such as Ashikhmin-Shirley or Ward.

Color Variation. In order to provide the artist with a simple and editable irides-
cence effect, we chose to control the change of color using a user defined ramp of color
such as the one presented in Figure 35. This color variation acts like a Fresnel term
and multiply the environment contributions depending on the angle between the inci-
dent light direction and the normal, #;. The interesting aspect of this method is its
adaptability to the filtering scheme presented in Section 5. Note that in this case the
distortion factor is equal to 1 when considering a ramp defined in ;. However, the
distortion needs to be taken into account when considering ramps defined in cos(6;).

One future extension of this method for imitating iridescence in FIS will be to take
into account the anisotropic behavior of certain iridescent materials, such as snake
scales, by considering color ramps defined in 6; and ¢,.

8.3 Sampling Strategies

One of the most commonly used algorithm for generating quasi-random sequences is the
Hammersley algorithm (presented in Section 3), which is used in the FIS technique. One
property of this technique is that it always generates the same sequence of quasi-random
numbers for the same set of input parameters and provides an optimal deterministic
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Renderings of the Kraken creature within different lighting environments.
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Figure 34: Iridescence and Filtered Importance Sampling. The colored reflection of the main sphere
is a combination of mirror reflection and our iridescent reflection. The sphere in the lower right is a
chrome reflection.
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Figure 35: Example of ramp defining the color variations of the iridescence effect: the sphere in the
lower right shows a chrome reflection, the colored reflection of the main sphere is entirely due to
iridescence.
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Figure 36: (a) Top: A quasi-random number sequence tends to generate spatial aliasing. Bottom:
This can be avoided by using randomization algorithms. (b) The sequence selection is randomly
shifted to avoid banding artifacts.

sequence. However, this deterministic behavior tends to produce spatial aliasing as
explained by Figure 36. Reusing the same sequence of randomly distributed points to
sample a function combined with a low number of samples, introduces a visual artifact
known as banding or “chandelier effect” as seen in Figure 37(c). As explained by Colbert
et al. [CPKO06], in the case of Filtered Importance Sampling, this artifact is avoided as
by blurring the environment map for each sample. However, the FIS technique was
originally developed in the context of a GPU pipeline. Here, reflection occlusion and
inter-reflection using ray-tracing are not commonly taken into account in the rendering
equation (see Figure 37(a)). On the contrary, in production environments we need
to capture these effects and the banding becomes a problem for which a solution is
required.

One method to avoid these artifacts consists of using randomization methods. These
methods, such as the Cranley-Patterson rotations or Random Digit Scrambling, “ran-
domize” quasi-random sequences while keeping their low-discrepancy properties. A
more complete description and comparison of these methods is presented in [KK02].

We use a simpler, fast to implement, technique at MPC: we store a large num-
ber of pre-computed quasi-random numbers using the Hammersley algorithm and shift
the sequence used per shading point by offsetting the entry in the table by a random
number. As visible in Figure 37(d), this method introduces some noise back in the
frame. However, the results are considerably better than a purely random solution
(Figure 37(b)) and avoid banding artifacts. Furthermore it is often better than other
stochastic sampling strategies (nrooks,jittered, etc...) as it is still conserving the low
discrepancy properties. An interesting aspect of our method is that one can balance
between the banding and noise by controlling the amplitude of the random shifting. For
a number of samples N, we found that using shifting amplitudes in between N/2 and
N gave us an acceptable balance. Note that the randomization method at MPC is a
field that we will test and research more in the future.
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Figure 37: Comparison in between different sampling strategies. 16 samples are used to sample
the BRDF. (a) FIS and Hammersley sampling with no occlusion, (b) IS and N-rook sampling with
ray traced occlusion, (c¢) FIS and Hammersley sampling with ray traced occlusion, (d) FIS and
Hammersley shifted sampling with ray traced occlusion.

9 Conclusion

Importance sampling is an effective framework for efficiently evaluating the illumination
integral with only a limited amount of pre-computation. The approach provides a means
to simulate light reflectance from a broad variety of materials with a relatively simple
trade off between visual fidelity and the number of samples used in the computation.

The Filtered Importance Sampling (FIS) extension provides a practical solution for
production rendering of both offline visual effects and real-time visualization. However,
the approach does not work well for all situations, such as diffuse reflections. We have
discussed the appearance of the FIS artifacts, which allows users to identify and diagnose
problems associated with undersampling. For other cases, such as glossy reflection
integration, FIS can provide smooth, deterministic results with a relatively small number
of samples.

Multiple Importance Sampling (MIS) can further reduce the number of samples
necessary for visually acceptable results since both the lighting and material functions
guide the integration evaluation.

The importance sampling simulation algorithms can be implemented in most render-
ing systems as a single shader and thus easily integrate into most production pipelines.
We have examined practical issues associated with various rendering systems and how
they have been addressed in several production environments.
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