
[Faculty of Science
Information and Computing Sciences]

Annotated Type Systems

Slides from Stefan Holdermans and Jurriaan Hage

Dept. of Information and Computing Sciences, Utrecht University
P.O. Box 80.089, 3508 TB Utrecht, The Netherlands

E-mail: i.g.dewolff@uu.nl

i.g.dewolff@uu.nl

[Faculty of Science
Information and Computing Sciences]

2

Type and effect systems - Introduction

[Faculty of Science
Information and Computing Sciences]

3

Static program analysis

I Static program analysis: compile-time techniques for
approximating the set of values or behaviours that arise at
run-time when a program is executed.

I Applications: verification, optimization.

I Different approaches: data-flow analysis, constraint-based
analysis, abstract interpretation, type-based analysis.

[Faculty of Science
Information and Computing Sciences]

4

Previously: monotone frameworks

I Propagate information over control flow graph.

I For procedures (interprocedural), embellished instances to
propagate over balanced (valid) paths

I Procedures are analyzed per context.

I Targets of calls were statically known. How about
languages with higher order functions?

[Faculty of Science
Information and Computing Sciences]

5

Type-based approaches to static program analysis

I Type-based analysis: equipping a programming language
with a nonstandard type system that keeps track of some
properties of interest.

I Advantages: reuse of tools, techniques, and infrastructure
(polymorphism, subtyping, type inference, . . .).

[Faculty of Science
Information and Computing Sciences]

6

Examples

. . .
Side-effect analysis.

Callability analysis. . . .
Reachability analysis. Sign analysis.

Uniqueness analysis. Flow analysis.
Totality analysis. Control-flow analysis.

Security analysis. Class-hierarchy analysis.
Strictness analysis. Region analysis.

Sharing analysis. Binding-time analysis.
Trust analysis. Alias analysis.

. . . Communication analysis .
Escape analysis.

. . .

[Faculty of Science
Information and Computing Sciences]

7

Accuracy

I Establishing nontrivial behavioural
properties of programs is in general
undecidable (halting problem,
Rice’s theorem).

I In static analysis we have to settle
for “useful” approximations of
properties.

I “Useful” means: sound (“erring at
the safe side”) and accurate (as
precise as possible).

overapprox.
exact

underapprox.

[Faculty of Science
Information and Computing Sciences]

8

Modularity

I Breaking up a (large) program in
smaller units or modules is generally
considered good programming style.

I Separate compilation: compile each
module in isolation.

I Advantage: only modules that have
been edited need to be recompiled.

I To facilitate separate compilation,
each unit of compilation needs to be
analysed in isolation, i.e., without
knowledge of how it’s used from
within the rest of the program.

B

A

C

� Tension between accuracy and modularity: whole-program
analysis typically yields more precise results.

[Faculty of Science
Information and Computing Sciences]

9

Roadmap

I Type system formalization (Hindley-Milner)

I Inference algorithm (Algorithm W)

I Annotated type systems

[Faculty of Science
Information and Computing Sciences]

10

Hindley-Milner and Algorithm W

[Faculty of Science
Information and Computing Sciences]

11

A simple functional language

n ∈ Num = N numerals

f , x ∈ Var variables

⊕ ∈ Op binary operators
π ∈ Pnt program points

t ∈ Tm terms

t ::=

n | false | true

| x | λ

π

x . t1

| µf . λπx . t1

| t1 t2

| if t1 then t2 else t3 | let x = t1 in t2

|

t1 ⊕ t2

Example:

let fac = µf . λfx . if x ≡ 0 then 1 else x ∗ f (x − 1)
in fac 6

[Faculty of Science
Information and Computing Sciences]

11

A simple functional language

n ∈ Num = N numerals

f , x ∈ Var variables

⊕ ∈ Op binary operators

π ∈ Pnt program points
t ∈ Tm terms

t ::=

n | false | true

| x | λπx . t1

| µf . λπx . t1

| t1 t2

| if t1 then t2 else t3 | let x = t1 in t2

|

t1 ⊕ t2

Example:

let fac = µf . λfx . if x ≡ 0 then 1 else x ∗ f (x − 1)
in fac 6

[Faculty of Science
Information and Computing Sciences]

11

A simple functional language

n ∈ Num = N numerals

f , x ∈ Var variables

⊕ ∈ Op binary operators

π ∈ Pnt program points
t ∈ Tm terms

t ::=

n | false | true

| x | λπx . t1

| µf . λπx . t1

| t1 t2

| if t1 then t2 else t3

| let x = t1 in t2
|

t1 ⊕ t2

Example:

let fac = µf . λfx . if x ≡ 0 then 1 else x ∗ f (x − 1)
in fac 6

[Faculty of Science
Information and Computing Sciences]

11

A simple functional language

n ∈ Num = N numerals

f , x ∈ Var variables

⊕ ∈ Op binary operators

π ∈ Pnt program points
t ∈ Tm terms

t ::=

n | false | true

| x | λπx . t1 | µf . λπx . t1
| t1 t2

| if t1 then t2 else t3

| let x = t1 in t2
|

t1 ⊕ t2

Example:

let fac = µf . λfx . if x ≡ 0 then 1 else x ∗ f (x − 1)
in fac 6

[Faculty of Science
Information and Computing Sciences]

11

A simple functional language

n ∈ Num = N numerals
f , x ∈ Var variables

⊕ ∈ Op binary operators

π ∈ Pnt program points
t ∈ Tm terms

t ::= n

| false | true

| x | λπx . t1 | µf . λπx . t1
| t1 t2

| if t1 then t2 else t3

| let x = t1 in t2
|

t1 ⊕ t2

Example:

let fac = µf . λfx . if x ≡ 0 then 1 else x ∗ f (x − 1)
in fac 6

[Faculty of Science
Information and Computing Sciences]

11

A simple functional language

n ∈ Num = N numerals
f , x ∈ Var variables

⊕ ∈ Op binary operators

π ∈ Pnt program points
t ∈ Tm terms

t ::= n | false | true | x | λπx . t1 | µf . λπx . t1
| t1 t2 | if t1 then t2 else t3 | let x = t1 in t2
|

t1 ⊕ t2

Example:

let fac = µf . λfx . if x ≡ 0 then 1 else x ∗ f (x − 1)
in fac 6

[Faculty of Science
Information and Computing Sciences]

11

A simple functional language

n ∈ Num = N numerals
f , x ∈ Var variables
⊕ ∈ Op binary operators
π ∈ Pnt program points
t ∈ Tm terms

t ::= n | false | true | x | λπx . t1 | µf . λπx . t1
| t1 t2 | if t1 then t2 else t3 | let x = t1 in t2
| t1 ⊕ t2

Example:

let fac = µf . λfx . if x ≡ 0 then 1 else x ∗ f (x − 1)
in fac 6

[Faculty of Science
Information and Computing Sciences]

11

A simple functional language

n ∈ Num = N numerals
f , x ∈ Var variables
⊕ ∈ Op binary operators
π ∈ Pnt program points
t ∈ Tm terms

t ::= n | false | true | x | λπx . t1 | µf . λπx . t1
| t1 t2 | if t1 then t2 else t3 | let x = t1 in t2
| t1 ⊕ t2

Example:

let fac = µf . λfx . if x ≡ 0 then 1 else x ∗ f (x − 1)
in fac 6

[Faculty of Science
Information and Computing Sciences]

12

Monomorphic types

τ ∈ Ty types

Γ ∈ TyEnv type environments

τ ::= Nat | Bool | τ1 → τ2

Γ ::= [] | Γ1[x 7→ τ]

Typing judgements:

Γ `ul t : τ typing

“Term t has type τ assuming that any of its free variables has the
type given by Γ.”

[Faculty of Science
Information and Computing Sciences]

12

Monomorphic types

τ ∈ Ty types
Γ ∈ TyEnv type environments

τ ::= Nat | Bool | τ1 → τ2
Γ ::= [] | Γ1[x 7→ τ]

Typing judgements:

Γ `ul t : τ typing

“Term t has type τ assuming that any of its free variables has the
type given by Γ.”

[Faculty of Science
Information and Computing Sciences]

12

Monomorphic types

τ ∈ Ty types
Γ ∈ TyEnv type environments

τ ::= Nat | Bool | τ1 → τ2
Γ ::= [] | Γ1[x 7→ τ]

Typing judgements:

Γ `ul t : τ typing

“Term t has type τ assuming that any of its free variables has the
type given by Γ.”

[Faculty of Science
Information and Computing Sciences]

13

Monomorphic type system: constants

Γ `ul n : Nat
[t-num]

Γ `ul false : Bool
[t-false]

Γ `ul true : Bool
[t-true]

[Faculty of Science
Information and Computing Sciences]

13

Monomorphic type system: constants

Γ `ul n : Nat
[t-num]

Γ `ul false : Bool
[t-false]

Γ `ul true : Bool
[t-true]

[Faculty of Science
Information and Computing Sciences]

14

Monomorphic type system: variables

Γ(x) = τ

Γ `ul x : τ
[t-var]

[Faculty of Science
Information and Computing Sciences]

15

Monomorphic type system: functions

Γ[x 7→ τ1] `ul t1 : τ2

Γ `ul λπx . t1 : τ1 → τ2
[t-lam]

Γ[f 7→ (τ1 → τ2)][x 7→ τ1] `ul t1 : τ2

Γ `ul µf . λπx . t1 : τ1 → τ2
[t-mu]

Γ `ul t1 : τ2 → τ Γ `ul t2 : τ2

Γ `ul t1 t2 : τ
[t-app]

[Faculty of Science
Information and Computing Sciences]

15

Monomorphic type system: functions

Γ[x 7→ τ1] `ul t1 : τ2

Γ `ul λπx . t1 : τ1 → τ2
[t-lam]

Γ[f 7→ (τ1 → τ2)][x 7→ τ1] `ul t1 : τ2

Γ `ul µf . λπx . t1 : τ1 → τ2
[t-mu]

Γ `ul t1 : τ2 → τ Γ `ul t2 : τ2

Γ `ul t1 t2 : τ
[t-app]

[Faculty of Science
Information and Computing Sciences]

15

Monomorphic type system: functions

Γ[x 7→ τ1] `ul t1 : τ2

Γ `ul λπx . t1 : τ1 → τ2
[t-lam]

Γ[f 7→ (τ1 → τ2)][x 7→ τ1] `ul t1 : τ2

Γ `ul µf . λπx . t1 : τ1 → τ2
[t-mu]

Γ `ul t1 : τ2 → τ Γ `ul t2 : τ2

Γ `ul t1 t2 : τ
[t-app]

[Faculty of Science
Information and Computing Sciences]

16

Monomorphic type system: conditionals

Γ `ul t1 : Bool Γ `ul t2 : τ Γ `ul t3 : τ

Γ `ul if t1 then t2 else t3 : τ
[t-if]

[Faculty of Science
Information and Computing Sciences]

17

Monomorphic type system: local definitions

Γ `ul t1 : τ1 Γ[x 7→ τ1] `ul t2 : τ

Γ `ul let x = t1 in t2 : τ
[t-let]

[Faculty of Science
Information and Computing Sciences]

18

Monomorphic type system: binary operators

Γ `ul t1 : τ1⊕ Γ `ul t2 : τ2⊕

Γ `ul t1 ⊕ t2 : τ⊕
[t-op]

[Faculty of Science
Information and Computing Sciences]

19

Monomorphic type system: example

...

Γf `ul x ≡ 0 : Bool Γf `ul 1 : Nat

...

Γf `ul x ∗ f (x − 1) : Nat

Γf `ul if x ≡ 0 then 1 else x ∗ f (x − 1) : Nat

Γ `ul µf . λfx . if x ≡ 0 then 1 else x ∗ f (x − 1) : Nat → Nat

Γf = Γ[f 7→ (Nat → Nat)][x 7→ Nat]

[Faculty of Science
Information and Computing Sciences]

19

Monomorphic type system: example

...

Γf `ul x ≡ 0 : Bool Γf `ul 1 : Nat

...

Γf `ul x ∗ f (x − 1) : Nat

Γf `ul if x ≡ 0 then 1 else x ∗ f (x − 1) : Nat

Γ `ul µf . λfx . if x ≡ 0 then 1 else x ∗ f (x − 1) : Nat → Nat

Γf = Γ[f 7→ (Nat → Nat)][x 7→ Nat]

[Faculty of Science
Information and Computing Sciences]

20

Polymorphic functions

λfx . x

λfx . λgy . x

λff . λgx . f x

µf . λfg . λgx . λhy . if x ≡ 0 then y else f g (x − 1) (g y)

[Faculty of Science
Information and Computing Sciences]

20

Polymorphic functions

λfx . x

λfx . λgy . x

λff . λgx . f x

µf . λfg . λgx . λhy . if x ≡ 0 then y else f g (x − 1) (g y)

[Faculty of Science
Information and Computing Sciences]

20

Polymorphic functions

λfx . x

λfx . λgy . x

λff . λgx . f x

µf . λfg . λgx . λhy . if x ≡ 0 then y else f g (x − 1) (g y)

[Faculty of Science
Information and Computing Sciences]

20

Polymorphic functions

λfx . x

λfx . λgy . x

λff . λgx . f x

µf . λfg . λgx . λhy . if x ≡ 0 then y else f g (x − 1) (g y)

[Faculty of Science
Information and Computing Sciences]

20

Polymorphic functions

λfx . x

λfx . λgy . x

λff . λgx . f x

µf . λfg . λgx . λhy . if x ≡ 0 then y else f g (x − 1) (g y)

[Faculty of Science
Information and Computing Sciences]

21

Polymorphic types

α ∈ TyVar type variables

τ ∈ Ty types

σ ∈ TyScheme type schemes

Γ ∈ TyEnv type environments

τ ::=

α

| Nat | Bool | τ1 → τ2

σ ::= τ | ∀α. σ1

Γ ::= [] | Γ1[x 7→ τ]

Γ `ul t : τ typing

� Ty ⊆ TyScheme

[Faculty of Science
Information and Computing Sciences]

21

Polymorphic types

α ∈ TyVar type variables
τ ∈ Ty types

σ ∈ TyScheme type schemes

Γ ∈ TyEnv type environments

τ ::= α | Nat | Bool | τ1 → τ2

σ ::= τ | ∀α. σ1

Γ ::= [] | Γ1[x 7→ τ]

Γ `ul t : τ typing

� Ty ⊆ TyScheme

[Faculty of Science
Information and Computing Sciences]

21

Polymorphic types

α ∈ TyVar type variables
τ ∈ Ty types
σ ∈ TyScheme type schemes
Γ ∈ TyEnv type environments

τ ::= α | Nat | Bool | τ1 → τ2
σ ::= τ | ∀α. σ1
Γ ::= [] | Γ1[x 7→ τ]

Γ `ul t : τ typing

� Ty ⊆ TyScheme

[Faculty of Science
Information and Computing Sciences]

21

Polymorphic types

α ∈ TyVar type variables
τ ∈ Ty types
σ ∈ TyScheme type schemes
Γ ∈ TyEnv type environments

τ ::= α | Nat | Bool | τ1 → τ2
σ ::= τ | ∀α. σ1
Γ ::= [] | Γ1[x 7→ σ]

Γ `ul t : τ typing

� Ty ⊆ TyScheme

[Faculty of Science
Information and Computing Sciences]

21

Polymorphic types

α ∈ TyVar type variables
τ ∈ Ty types
σ ∈ TyScheme type schemes
Γ ∈ TyEnv type environments

τ ::= α | Nat | Bool | τ1 → τ2
σ ::= τ | ∀α. σ1
Γ ::= [] | Γ1[x 7→ σ]

Γ `ul t : σ typing

� Ty ⊆ TyScheme

[Faculty of Science
Information and Computing Sciences]

21

Polymorphic types

α ∈ TyVar type variables
τ ∈ Ty types
σ ∈ TyScheme type schemes
Γ ∈ TyEnv type environments

τ ::= α | Nat | Bool | τ1 → τ2
σ ::= τ | ∀α. σ1
Γ ::= [] | Γ1[x 7→ σ]

Γ `ul t : σ typing

� Ty ⊆ TyScheme

[Faculty of Science
Information and Computing Sciences]

22

Polymorphic type system:
generalisation and instantiation

Introduction:

Γ `ul t : σ1 α /∈ ftv(Γ)

Γ `ul t : ∀α. σ1
[t-gen]

Elimination:

Γ `ul t : ∀α. σ1
Γ `ul t : [α 7→ τ0]σ1

[t-inst]

[Faculty of Science
Information and Computing Sciences]

22

Polymorphic type system:
generalisation and instantiation

Introduction:

Γ `ul t : σ1 α /∈ ftv(Γ)

Γ `ul t : ∀α. σ1
[t-gen]

Elimination:

Γ `ul t : ∀α. σ1
Γ `ul t : [α 7→ τ0]σ1

[t-inst]

[Faculty of Science
Information and Computing Sciences]

23

Polymorphic type system:
variables and local definitions

Γ(x) = σ

Γ `ul x : σ
[t-var]

Γ `ul t1 : σ1 Γ[x 7→ σ1] `ul t2 : τ

Γ `ul let x = t1 in t2 : τ
[t-let]

[Faculty of Science
Information and Computing Sciences]

23

Polymorphic type system:
variables and local definitions

Γ(x) = σ

Γ `ul x : σ
[t-var]

Γ `ul t1 : σ1 Γ[x 7→ σ1] `ul t2 : τ

Γ `ul let x = t1 in t2 : τ
[t-let]

[Faculty of Science
Information and Computing Sciences]

24

Polymorphic types: example

λfx . x : ∀α. α→ α

λfx . λgy . x : ∀α1.∀α2. α1 → α2 → α1

λff . λgx . f x : ∀α1. ∀α2. (α1 → α2)→ α1 → α2

µf . λfg . λgx . λhy . if x ≡ 0 then y else f g (x − 1) (g y)
: ∀α. (α→ α)→ Nat → α→ α

[Faculty of Science
Information and Computing Sciences]

25

Inference algorithm

θ ∈ TySubst = TyVar→fin Ty type substitution

generaliseul : TyEnv ×Ty → TyScheme
instantiateul : TyScheme → Ty
Uul : Ty ×Ty → TySubst
Wul : TyEnv ×Tm→ Ty ×TySubst

[Faculty of Science
Information and Computing Sciences]

26

Inference algorithm: constants

Wul(Γ,n) = (Nat , id)

Wul(Γ, false) = (Bool , id)

Wul(Γ, true) = (Bool , id)

[Faculty of Science
Information and Computing Sciences]

26

Inference algorithm: constants

Wul(Γ,n) = (Nat , id)

Wul(Γ, false) = (Bool , id)

Wul(Γ, true) = (Bool , id)

[Faculty of Science
Information and Computing Sciences]

27

Inference algorithm: variables

Wul (Γ, x) = (instantiateul(Γ(x)), id)

I The instantiation rule is built into the case for variables.

I By choosing fresh type variables, we commit to nothing,

I and let the actual types be determined by future
unifications.

[Faculty of Science
Information and Computing Sciences]

28

Inference algorithm: functions

Wul (Γ, λπx . t1) = let α1 be fresh
(τ2, θ) =Wul(Γ[x 7→ α1], t1)

in ((θ α1)→ τ2, θ)

Wul (Γ,µf . λπx . t1) =
let α1, α2 be fresh

(τ2, θ1) =Wul(Γ[f 7→ (α1 → α2)][x 7→ α1], t1)
θ2 = Uul(τ2, θ1 α2)

in (θ2 (θ1 α1)→ θ2 τ2, θ2 ◦ θ1)

Wul (Γ, t1 t2) = let (τ1, θ1) =Wul(Γ, t1)
(τ2, θ2) =Wul(θ1 Γ, t2)
α be fresh
θ3 = Uul(θ2 τ1, τ2 → α)

in (θ3 α, θ3 ◦ θ2 ◦ θ1)

[Faculty of Science
Information and Computing Sciences]

28

Inference algorithm: functions

Wul (Γ, λπx . t1) = let α1 be fresh
(τ2, θ) =Wul(Γ[x 7→ α1], t1)

in ((θ α1)→ τ2, θ)

Wul (Γ,µf . λπx . t1) =
let α1, α2 be fresh

(τ2, θ1) =Wul(Γ[f 7→ (α1 → α2)][x 7→ α1], t1)
θ2 = Uul(τ2, θ1 α2)

in (θ2 (θ1 α1)→ θ2 τ2, θ2 ◦ θ1)

Wul (Γ, t1 t2) = let (τ1, θ1) =Wul(Γ, t1)
(τ2, θ2) =Wul(θ1 Γ, t2)
α be fresh
θ3 = Uul(θ2 τ1, τ2 → α)

in (θ3 α, θ3 ◦ θ2 ◦ θ1)

[Faculty of Science
Information and Computing Sciences]

28

Inference algorithm: functions

Wul (Γ, λπx . t1) = let α1 be fresh
(τ2, θ) =Wul(Γ[x 7→ α1], t1)

in ((θ α1)→ τ2, θ)

Wul (Γ,µf . λπx . t1) =
let α1, α2 be fresh

(τ2, θ1) =Wul(Γ[f 7→ (α1 → α2)][x 7→ α1], t1)
θ2 = Uul(τ2, θ1 α2)

in (θ2 (θ1 α1)→ θ2 τ2, θ2 ◦ θ1)

Wul (Γ, t1 t2) = let (τ1, θ1) =Wul(Γ, t1)
(τ2, θ2) =Wul(θ1 Γ, t2)
α be fresh
θ3 = Uul(θ2 τ1, τ2 → α)

in (θ3 α, θ3 ◦ θ2 ◦ θ1)

[Faculty of Science
Information and Computing Sciences]

29

Unification

I To combine (join) two given types we apply unification

I I.e., in case rule for applications, Uul(θ2 τ1, τ2 → α)

I Unification computes a substitution from two types:
Uul : Ty ×Ty→ TySubst

I If Uul(τ1, τ2) = θ then θ τ1 = θ τ2
I And θ is the least such substitution

I Ex. Uul(α1 → Nat → Bool ,Nat → Nat → α2) equals θ
with θ(α1) = Nat and θ(α2) = Bool

I Note: unification is basically the t in the lattice of
monotypes

[Faculty of Science
Information and Computing Sciences]

30

Unification Algorithm

Uul (Nat , Nat) = id
Uul (Bool ,Bool) = id
Uul (τ1 → τ2, τ3 → τ4) = θ2 ◦ θ1

where
θ1 = Uul (τ1, τ3)
θ2 = Uul (θ1 τ2, θ1 τ4)

Uul (α, τ) = [α 7→ τ] if chk (α, τ)
Uul (τ , α) = [α 7→ τ] if chk (α, τ)
Uul (,) = fail

Here, chk (α, τ) returns true if τ = α or α is not a free
variable in τ .

[Faculty of Science
Information and Computing Sciences]

31

Inference algorithm: conditionals

Wul(Γ, if t1 then t2 else t3) =
let (τ1, θ1) =Wul(Γ, t1)

(τ2, θ2) =Wul(θ1 Γ, t2)
(τ3, θ3) =Wul(θ2 (θ1 Γ), t3)
θ4 = Uul(θ3 (θ2 τ1),Bool)
θ5 = Uul(θ4 (θ3 τ2), θ4 τ3)

in (θ5 (θ4 τ3), θ5 ◦ θ4 ◦ θ3 ◦ θ2 ◦ θ1)

I Subsitutions are applied as soon as possible.

I Error prone process of putting the right composition of
substitutions everywhere.

I Substitutions are idempotent: blindly applying all of them
all the time can only influence efficiency.

[Faculty of Science
Information and Computing Sciences]

32

Inference algorithm: local definitions

Wul(Γ, let x = t1 in t2) =
let (τ1, θ1) =Wul(Γ, t1)

(τ , θ2) =Wul((θ1 Γ)[x 7→ generaliseul(θ1 Γ, τ1)], t2)
in (τ , θ2 ◦ θ1)

generaliseul generalizes all variables absent in θ1 Γ at once.

[Faculty of Science
Information and Computing Sciences]

33

Inference algorithm: binary operators

Wul(Γ, t1 ⊕ t2) =
let (τ1, θ1) =Wul(Γ, t1)

(τ2, θ2) =Wul(θ1 Γ, t2)
θ3 = Uul(θ2 τ1, τ1⊕)
θ4 = Uul(θ3 τ2, τ2⊕)

in (τ⊕, θ4 ◦ θ3 ◦ θ2 ◦ θ1)

[Faculty of Science
Information and Computing Sciences]

34

Control-flow Analysis with Annotated Types

[Faculty of Science
Information and Computing Sciences]

35

Control-flow analysis

Control-flow analysis (or closure analysis) determines:

For each function application, which functions may be applied.

[Faculty of Science
Information and Computing Sciences]

36

Annotated types

ϕ ∈ Ann annotations

τ̂ ∈ T̂y annotated types

σ̂ ∈ ̂TyScheme annotated type schemes

Γ̂ ∈ T̂yEnv annotated type environments

ϕ ::= ∅ | {π} | ϕ1 ∪ ϕ2

τ̂ ::= α | Nat | Bool | τ̂1
ϕ−→ τ̂2

σ̂ ::= τ̂ | ∀α. σ̂1
Γ̂ ::= [] | Γ̂1[x 7→ σ̂]

Γ̂ `cfa t : σ̂ control-flow analysis

[Faculty of Science
Information and Computing Sciences]

36

Annotated types

ϕ ∈ Ann annotations

τ̂ ∈ T̂y annotated types

σ̂ ∈ ̂TyScheme annotated type schemes

Γ̂ ∈ T̂yEnv annotated type environments

ϕ ::= ∅ | {π} | ϕ1 ∪ ϕ2

τ̂ ::= α | Nat | Bool | τ̂1
ϕ−→ τ̂2

σ̂ ::= τ̂ | ∀α. σ̂1
Γ̂ ::= [] | Γ̂1[x 7→ σ̂]

Γ̂ `cfa t : σ̂ control-flow analysis

[Faculty of Science
Information and Computing Sciences]

36

Annotated types

ϕ ∈ Ann annotations

τ̂ ∈ T̂y annotated types

σ̂ ∈ ̂TyScheme annotated type schemes

Γ̂ ∈ T̂yEnv annotated type environments

ϕ ::= ∅ | {π} | ϕ1 ∪ ϕ2

τ̂ ::= α | Nat | Bool | τ̂1
ϕ−→ τ̂2

σ̂ ::= τ̂ | ∀α. σ̂1

Γ̂ ::= [] | Γ̂1[x 7→ σ̂]

Γ̂ `cfa t : σ̂ control-flow analysis

[Faculty of Science
Information and Computing Sciences]

36

Annotated types

ϕ ∈ Ann annotations

τ̂ ∈ T̂y annotated types

σ̂ ∈ ̂TyScheme annotated type schemes

Γ̂ ∈ T̂yEnv annotated type environments

ϕ ::= ∅ | {π} | ϕ1 ∪ ϕ2

τ̂ ::= α | Nat | Bool | τ̂1
ϕ−→ τ̂2

σ̂ ::= τ̂ | ∀α. σ̂1
Γ̂ ::= [] | Γ̂1[x 7→ σ̂]

Γ̂ `cfa t : σ̂ control-flow analysis

[Faculty of Science
Information and Computing Sciences]

36

Annotated types

ϕ ∈ Ann annotations

τ̂ ∈ T̂y annotated types

σ̂ ∈ ̂TyScheme annotated type schemes

Γ̂ ∈ T̂yEnv annotated type environments

ϕ ::= ∅ | {π} | ϕ1 ∪ ϕ2

τ̂ ::= α | Nat | Bool | τ̂1
ϕ−→ τ̂2

σ̂ ::= τ̂ | ∀α. σ̂1
Γ̂ ::= [] | Γ̂1[x 7→ σ̂]

Γ̂ `cfa t : σ̂ control-flow analysis

[Faculty of Science
Information and Computing Sciences]

37

Control-flow analysis: constants

Γ̂ `cfa n : Nat
[cfa-num]

Γ̂ `cfa false : Bool
[cfa-false]

Γ̂ `cfa true : Bool
[cfa-true]

[Faculty of Science
Information and Computing Sciences]

37

Control-flow analysis: constants

Γ̂ `cfa n : Nat
[cfa-num]

Γ̂ `cfa false : Bool
[cfa-false]

Γ̂ `cfa true : Bool
[cfa-true]

[Faculty of Science
Information and Computing Sciences]

38

Control-flow analysis: variables

Γ̂(x) = σ̂

Γ̂ `cfa x : σ̂
[cfa-var]

[Faculty of Science
Information and Computing Sciences]

39

Control-flow analysis: functions

Γ̂[x 7→ τ̂1] `cfa t1 : τ̂2

Γ̂ `cfa λπx . t1 : τ̂1
{π}−−→ τ̂2

[cfa-lam]

Γ̂[f 7→ (τ̂1
{π}−−→ τ̂2)][x 7→ τ̂1] `cfa t1 : τ̂2

Γ̂ `cfa µf . λπx . t1 : τ̂1
{π}−−→ τ̂2

[cfa-mu]

Γ̂ `cfa t1 : τ̂2
ϕ−→ τ̂ Γ̂ `cfa t2 : τ̂2

Γ̂ `cfa t1 t2 : τ̂
[cfa-app]

I ϕ describes what may be applied!

[Faculty of Science
Information and Computing Sciences]

39

Control-flow analysis: functions

Γ̂[x 7→ τ̂1] `cfa t1 : τ̂2

Γ̂ `cfa λπx . t1 : τ̂1
{π}−−→ τ̂2

[cfa-lam]

Γ̂[f 7→ (τ̂1
{π}−−→ τ̂2)][x 7→ τ̂1] `cfa t1 : τ̂2

Γ̂ `cfa µf . λπx . t1 : τ̂1
{π}−−→ τ̂2

[cfa-mu]

Γ̂ `cfa t1 : τ̂2
ϕ−→ τ̂ Γ̂ `cfa t2 : τ̂2

Γ̂ `cfa t1 t2 : τ̂
[cfa-app]

I ϕ describes what may be applied!

[Faculty of Science
Information and Computing Sciences]

39

Control-flow analysis: functions

Γ̂[x 7→ τ̂1] `cfa t1 : τ̂2

Γ̂ `cfa λπx . t1 : τ̂1
{π}−−→ τ̂2

[cfa-lam]

Γ̂[f 7→ (τ̂1
{π}−−→ τ̂2)][x 7→ τ̂1] `cfa t1 : τ̂2

Γ̂ `cfa µf . λπx . t1 : τ̂1
{π}−−→ τ̂2

[cfa-mu]

Γ̂ `cfa t1 : τ̂2
ϕ−→ τ̂ Γ̂ `cfa t2 : τ̂2

Γ̂ `cfa t1 t2 : τ̂
[cfa-app]

I ϕ describes what may be applied!

[Faculty of Science
Information and Computing Sciences]

40

Control-flow analysis: conditionals

Γ̂ `cfa t1 : Bool Γ̂ `cfa t2 : τ̂ Γ̂ `cfa t3 : τ̂

Γ̂ `cfa if t1 then t2 else t3 : τ̂
[cfa-if]

[Faculty of Science
Information and Computing Sciences]

41

Control-flow analysis: local definitions

Γ̂ `cfa t1 : σ̂1 Γ̂[x 7→ σ̂1] `cfa t2 : τ̂

Γ̂ `cfa let x = t1 in t2 : τ̂
[cfa-let]

[Faculty of Science
Information and Computing Sciences]

42

Control-flow analysis: binary operators

Γ̂ `cfa t1 : τ1⊕ Γ̂ `cfa t2 : τ2⊕

Γ̂ `cfa t1 ⊕ t2 : τ⊕
[cfa-op]

[Faculty of Science
Information and Computing Sciences]

43

Control-flow analysis: example

(λfx . x) (λgy . y)

...

Γ̂[x 7→ τ̂g] `cfa x : τ̂g

Γ̂ `cfa λfx . x : τ̂g
{f}−−→ τ̂g

...

Γ̂[y 7→ α] `cfa y : α

Γ̂ `cfa λgy . y : τ̂g

Γ̂ `cfa (λfx . x) (λgy . y) : τ̂g

Γ̂ `cfa (λfx . x) (λgy . y) : ∀α. α {g}−−→ α

τ̂g = α
{g}−−→ α

[Faculty of Science
Information and Computing Sciences]

43

Control-flow analysis: example

(λfx . x) (λgy . y)

...

Γ̂[x 7→ τ̂g] `cfa x : τ̂g

Γ̂ `cfa λfx . x : τ̂g
{f}−−→ τ̂g

...

Γ̂[y 7→ α] `cfa y : α

Γ̂ `cfa λgy . y : τ̂g

Γ̂ `cfa (λfx . x) (λgy . y) : τ̂g

Γ̂ `cfa (λfx . x) (λgy . y) : ∀α. α {g}−−→ α

τ̂g = α
{g}−−→ α

[Faculty of Science
Information and Computing Sciences]

43

Control-flow analysis: example

(λfx . x) (λgy . y)

...

Γ̂[x 7→ τ̂g] `cfa x : τ̂g

Γ̂ `cfa λfx . x : τ̂g
{f}−−→ τ̂g

...

Γ̂[y 7→ α] `cfa y : α

Γ̂ `cfa λgy . y : τ̂g

Γ̂ `cfa (λfx . x) (λgy . y) : τ̂g

Γ̂ `cfa (λfx . x) (λgy . y) : ∀α. α {g}−−→ α

τ̂g = α
{g}−−→ α

[Faculty of Science
Information and Computing Sciences]

44

Higher-order functions

let f = λfx . x + 1 in
let g = λgy . y ∗ 2 in
let h = λhz . z 3 in
h g + h f

f : Nat
{f}−−→ Nat

g : Nat
{g}−−→ Nat

h : (Nat
??−→ Nat)

{h}−−→ Nat

Should we have h : (Nat
{f}−−→ Nat)

{h}−−→ Nat or

h : (Nat
{g}−−→ Nat)

{h}−−→ Nat?

[Faculty of Science
Information and Computing Sciences]

44

Higher-order functions

let f = λfx . x + 1 in
let g = λgy . y ∗ 2 in
let h = λhz . z 3 in
h g + h f

f : Nat
{f}−−→ Nat

g : Nat
{g}−−→ Nat

h : (Nat
??−→ Nat)

{h}−−→ Nat

Should we have h : (Nat
{f}−−→ Nat)

{h}−−→ Nat or

h : (Nat
{g}−−→ Nat)

{h}−−→ Nat?

[Faculty of Science
Information and Computing Sciences]

44

Higher-order functions

let f = λfx . x + 1 in
let g = λgy . y ∗ 2 in
let h = λhz . z 3 in
h g + h f

f : Nat
{f}−−→ Nat

g : Nat
{g}−−→ Nat

h : (Nat
??−→ Nat)

{h}−−→ Nat

Should we have h : (Nat
{f}−−→ Nat)

{h}−−→ Nat or

h : (Nat
{g}−−→ Nat)

{h}−−→ Nat?

[Faculty of Science
Information and Computing Sciences]

44

Higher-order functions

let f = λfx . x + 1 in
let g = λgy . y ∗ 2 in
let h = λhz . z 3 in
h g + h f

f : Nat
{f}−−→ Nat

g : Nat
{g}−−→ Nat

h : (Nat
??−→ Nat)

{h}−−→ Nat

Should we have h : (Nat
{f}−−→ Nat)

{h}−−→ Nat or

h : (Nat
{g}−−→ Nat)

{h}−−→ Nat?

[Faculty of Science
Information and Computing Sciences]

45

Conditionals

λhz . if z ≡ 0
then λfx . x + 1
else λgy . y ∗ 2

Should we have Nat
{h}−−→ (Nat

{f}−−→ Nat) or

Nat
{h}−−→ (Nat

{g}−−→ Nat)?

[Faculty of Science
Information and Computing Sciences]

45

Conditionals

λhz . if z ≡ 0
then λfx . x + 1
else λgy . y ∗ 2

Should we have Nat
{h}−−→ (Nat

{f}−−→ Nat) or

Nat
{h}−−→ (Nat

{g}−−→ Nat)?

[Faculty of Science
Information and Computing Sciences]

46

Subeffecting

Γ̂[x 7→ τ̂1] `cfa t1 : τ̂2

Γ̂ `cfa λπx . t1 : τ̂1
{π}∪ϕ−−−−→ τ̂2

[cfa-lam]

Γ̂[f 7→ (τ̂1
{π}∪ϕ−−−−→ τ̂2)][x 7→ τ̂1] `cfa t1 : τ̂2

Γ̂ `cfa µf . λπx . t1 : τ̂1
{π}∪ϕ−−−−→ τ̂2

[cfa-mu]

[Faculty of Science
Information and Computing Sciences]

46

Subeffecting

Γ̂[x 7→ τ̂1] `cfa t1 : τ̂2

Γ̂ `cfa λπx . t1 : τ̂1
{π}∪ϕ−−−−→ τ̂2

[cfa-lam]

Γ̂[f 7→ (τ̂1
{π}∪ϕ−−−−→ τ̂2)][x 7→ τ̂1] `cfa t1 : τ̂2

Γ̂ `cfa µf . λπx . t1 : τ̂1
{π}∪ϕ−−−−→ τ̂2

[cfa-mu]

[Faculty of Science
Information and Computing Sciences]

47

Subeffecting: example

let f = λfx . x + 1 in
let g = λgy . y ∗ 2 in
let h = λhz . z 3 in
h g + h f

f : Nat
{f,g}−−−→ Nat

g : Nat
{f,g}−−−→ Nat

h : (Nat
{f,g}−−−→ Nat)

{h}−−→ Nat

[Faculty of Science
Information and Computing Sciences]

48

Subeffecting: example

λhz . if z ≡ 0
then λfx . x + 1
else λgy . y ∗ 2

Nat
{h}−−→ (Nat

{f,g}−−−→ Nat)

[Faculty of Science
Information and Computing Sciences]

49

Inference algorithm: simple types

β ∈ AnnVar annotation variables

τ̂ ∈ ̂SimpleTy simple types

σ̂ ∈ ̂SimpleTyScheme simple type schemes

Γ̂ ∈ ̂SimpleTyEnv simple type environments

θ̂ ∈ ̂TySubst hybrid type substitution
C ∈ Constr constraint

τ̂ ::= α | Nat | Bool | τ̂1
β−→ τ̂2

σ̂ ::= τ̂ | ∀α. σ̂1
Γ̂ ::= [] | Γ̂1[x 7→ σ̂]
C ::= ∅ | {β ⊇ ϕ} | C1 ∪ C2

[Faculty of Science
Information and Computing Sciences]

50

Inference algorithm

generalisecfa : ̂SimpleTyEnv × ̂SimpleTy→
̂SimpleTyScheme

instantiatecfa : ̂SimpleTyScheme→ ̂SimpleTy

Ucfa : ̂SimpleTy × ̂SimpleTy→
̂TySubst

Wcfa : ̂SimpleTyEnv ×Tm→
̂SimpleTy × ̂TySubst×Constr

[Faculty of Science
Information and Computing Sciences]

51

Inference algorithm: constants

Wcfa(Γ̂,n) = (Nat , id , ∅)

Wcfa(Γ̂, false) = (Bool , id , ∅)

Wcfa(Γ̂, true) = (Bool , id , ∅)

[Faculty of Science
Information and Computing Sciences]

52

Inference algorithm: variables

Wcfa (Γ̂, x) = (instantiatecfa(Γ̂(x)), id , ∅)

[Faculty of Science
Information and Computing Sciences]

53

Inference algorithm: functions

Wcfa (Γ̂, λπx . t1) = let α1 be fresh

(τ̂2, θ̂, C1) =Wcfa(Γ̂[x 7→ α1], t1)
β be fresh

in ((θ̂ α1)
β−→ τ̂2, θ̂, C1 ∪ {β ⊇ {π}})

I Introduce fresh variables for annotations.

I Invariant: only variables as annotations in types (aka
simple types).

I Put concrete information about the variables into C.

I Solve constraints later to obtain actual sets.

I Simplifies unification substantially.

[Faculty of Science
Information and Computing Sciences]

54

Changes to unification

Only the case for function changes:

...

Uul (τ1
β1−→ τ2, τ3

β2−→ τ4) = θ2 ◦ θ1 ◦ θ0
where
θ0 = [β1 7→ β2]
θ1 = Uul (θ0 τ1, θ0 τ3)
θ2 = Uul (θ1 (θ0 τ2), θ1 (θ0 τ4))

...

No need to recurse on annotations: just map one variable to
the other.

[Faculty of Science
Information and Computing Sciences]

55

Inference algorithm: recursive functions

Wcfa (Γ̂,µf . λπx . t1) =
let α1, α2, β be fresh

(τ̂2, θ̂1, C1) =Wcfa(Γ̂[f 7→ (α1
β−→ α2)][x 7→ α1], t1)

θ̂2 = Ucfa(τ̂2, θ̂1 α2)

in (θ̂2 (θ̂1 α1)
θ̂2 (θ̂1 β)−−−−−→ θ̂2 τ̂2, θ̂2 ◦ θ̂1,

(θ̂2 C1) ∪ { θ̂2 (θ̂1 β) ⊇ {π}})

Remember: θ̂1 and θ̂2 can only rename annotation variables.

[Faculty of Science
Information and Computing Sciences]

56

Constraints: example

let f = λfx . x + 1 in
let g = λgy . y ∗ 2 in
let h = λhz . z 3 in
h g + h f

f : Nat
β1−→ Nat

g : Nat
β2−→ Nat

h : (Nat
β3−→ Nat)

{h}−−→ Nat

θ̂(β1) = β3

θ̂(β2) = β3

C = {β1 ⊇ {f}, β2 ⊇ {g}}
θ̂ C = {β3 ⊇ {f}, β3 ⊇ {g}}

Least solution: β3 = {f,g}.

[Faculty of Science
Information and Computing Sciences]

56

Constraints: example

let f = λfx . x + 1 in
let g = λgy . y ∗ 2 in
let h = λhz . z 3 in
h g + h f

f : Nat
β1−→ Nat

g : Nat
β2−→ Nat

h : (Nat
β3−→ Nat)

{h}−−→ Nat

θ̂(β1) = β3

θ̂(β2) = β3

C = {β1 ⊇ {f}, β2 ⊇ {g}}
θ̂ C = {β3 ⊇ {f}, β3 ⊇ {g}}

Least solution: β3 = {f,g}.

[Faculty of Science
Information and Computing Sciences]

56

Constraints: example

let f = λfx . x + 1 in
let g = λgy . y ∗ 2 in
let h = λhz . z 3 in
h g + h f

f : Nat
β1−→ Nat

g : Nat
β2−→ Nat

h : (Nat
β3−→ Nat)

{h}−−→ Nat

θ̂(β1) = β3

θ̂(β2) = β3

C = {β1 ⊇ {f}, β2 ⊇ {g}}
θ̂ C = {β3 ⊇ {f}, β3 ⊇ {g}}

Least solution: β3 = {f,g}.

[Faculty of Science
Information and Computing Sciences]

56

Constraints: example

let f = λfx . x + 1 in
let g = λgy . y ∗ 2 in
let h = λhz . z 3 in
h g + h f

f : Nat
β1−→ Nat

g : Nat
β2−→ Nat

h : (Nat
β3−→ Nat)

{h}−−→ Nat

θ̂(β1) = β3

θ̂(β2) = β3

C = {β1 ⊇ {f}, β2 ⊇ {g}}

θ̂ C = {β3 ⊇ {f}, β3 ⊇ {g}}

Least solution: β3 = {f,g}.

[Faculty of Science
Information and Computing Sciences]

56

Constraints: example

let f = λfx . x + 1 in
let g = λgy . y ∗ 2 in
let h = λhz . z 3 in
h g + h f

f : Nat
β1−→ Nat

g : Nat
β2−→ Nat

h : (Nat
β3−→ Nat)

{h}−−→ Nat

θ̂(β1) = β3

θ̂(β2) = β3

C = {β1 ⊇ {f}, β2 ⊇ {g}}
θ̂ C = {β3 ⊇ {f}, β3 ⊇ {g}}

Least solution: β3 = {f,g}.

[Faculty of Science
Information and Computing Sciences]

56

Constraints: example

let f = λfx . x + 1 in
let g = λgy . y ∗ 2 in
let h = λhz . z 3 in
h g + h f

f : Nat
β1−→ Nat

g : Nat
β2−→ Nat

h : (Nat
β3−→ Nat)

{h}−−→ Nat

θ̂(β1) = β3

θ̂(β2) = β3

C = {β1 ⊇ {f}, β2 ⊇ {g}}
θ̂ C = {β3 ⊇ {f}, β3 ⊇ {g}}

Least solution: β3 = {f,g}.

[Faculty of Science
Information and Computing Sciences]

57

Poisoning

Naive use of subeffecting is fatal for the precision of your
analysis:

let f = λfx . x + 1 in
let g = λgy . y ∗ 2 in
let h = λhz . if z ≡ 0 then f else g in
f

Nat
{f,g}−−−→ Nat

[Faculty of Science
Information and Computing Sciences]

58

Separate rule for subeffecting

Γ̂ `cfa t : τ̂1
ϕ−→ τ̂2

Γ̂ `cfa t : τ̂1
ϕ∪ϕ′
−−−→ τ̂2

[cfa-sub]

We can remove the subeffecting from the lambda rule:

Γ̂[x 7→ τ̂1] `cfa t1 : τ̂2

Γ̂ `cfa λπx . t1 : τ̂1
{π}−−→ τ̂2

[cfa-lam]

[Faculty of Science
Information and Computing Sciences]

58

Separate rule for subeffecting

Γ̂ `cfa t : τ̂1
ϕ−→ τ̂2

Γ̂ `cfa t : τ̂1
ϕ∪ϕ′
−−−→ τ̂2

[cfa-sub]

We can remove the subeffecting from the lambda rule:

Γ̂[x 7→ τ̂1] `cfa t1 : τ̂2

Γ̂ `cfa λπx . t1 : τ̂1
{π}−−→ τ̂2

[cfa-lam]

[Faculty of Science
Information and Computing Sciences]

59

Separate compilation?

let f = λfx . x + 1 in
let g = λgy . y ∗ 2 in
let h = λhz . z 3 in
h g + h f

f : Nat
{f}−−→ Nat

g : Nat
{g}−−→ Nat

h : (Nat
{f,g}−−−→ Nat)

{h}−−→ Nat

� We need to analyse the whole program to accurately deter-
mine the domain of h.

[Faculty of Science
Information and Computing Sciences]

59

Separate compilation?

let f = λfx . x + 1 in
let g = λgy . y ∗ 2 in
let h = λhz . z 3 in
h g + h f

f : Nat
{f}−−→ Nat

g : Nat
{g}−−→ Nat

h : (Nat
{f,g}−−−→ Nat)

{h}−−→ Nat

� We need to analyse the whole program to accurately deter-
mine the domain of h.

[Faculty of Science
Information and Computing Sciences]

60

Subeffecting and subtyping

I We have now seen subeffecting at work.
I The main ideas of all of these are:

I compute types and annotations independent of context,
I allow to weaken the outcomes whenever convenient.

I Weakening provides a form of context-sensitiveness.

I In (shape conformant) subtyping we may also weaken
annotations deeper in the type.

[Faculty of Science
Information and Computing Sciences]

61

Polyvariance

[Faculty of Science
Information and Computing Sciences]

62

Example: parity analysis

I The natural number 1 can be analysed to have type
Nat{O }.

I A function like double on naturals should work for all
naturals: Nat{O ,E } −→ Nat{E }.

I The type of 1 can then be weakened to Nat{O ,E } as it is
passed into double, without influencing the type and other
uses of 1.

let one = 1 in
let double = λgy . y ∗ 2 in
one ∗ double one

[Faculty of Science
Information and Computing Sciences]

63

Limitations to subeffecting and subtyping

I Weakening prevents certain forms of poisoning,

I but it does not help propagate analysis information.

I For id on naturals we expect the type
Nat{O ,E } −→ Nat{O ,E }.

I However, we also know that O inputs leads to O outputs,
and similar for E .

I Our annotated types cannot represent this information.

I Is it acceptable that id 1 and 1 give different analyses?

[Faculty of Science
Information and Computing Sciences]

64

Polyvariance

I We consider only let-polyvariance.

I Exactly analogous to let-polymorphism, but for
annotations.

I For id we then derive the type ∀β.Natβ −→ Natβ.

I For id 1 we can choose β = {O } so that id 1 has
annotation {O }.

I Allows us to propagate properties through functions that
are property-agnostic.

I Polyvariant analyses with subtyping are current state of the
art.

I But it depends somewhat on the analysis.

[Faculty of Science
Information and Computing Sciences]

65

Annotated polyvariant types

ϕ ∈ Ann annotations

τ̂ ∈ T̂y annotated types

σ̂ ∈ ̂TyScheme annotated type schemes

Γ̂ ∈ T̂yEnv annotated type environments

ϕ ::= β | ∅ | {π} | ϕ1 ∪ ϕ2

τ̂ ::= α | Nat | Bool | τ̂1
ϕ−→ τ̂2

σ̂ ::= τ̂ | ∀α. σ̂1 | ∀β. σ̂1
Γ̂ ::= [] | Γ̂1[x 7→ σ̂]

Γ̂ `cfa t : σ̂ control-flow analysis

[Faculty of Science
Information and Computing Sciences]

65

Annotated polyvariant types

ϕ ∈ Ann annotations

τ̂ ∈ T̂y annotated types

σ̂ ∈ ̂TyScheme annotated type schemes

Γ̂ ∈ T̂yEnv annotated type environments

ϕ ::= β | ∅ | {π} | ϕ1 ∪ ϕ2

τ̂ ::= α | Nat | Bool | τ̂1
ϕ−→ τ̂2

σ̂ ::= τ̂ | ∀α. σ̂1 | ∀β. σ̂1
Γ̂ ::= [] | Γ̂1[x 7→ σ̂]

Γ̂ `cfa t : σ̂ control-flow analysis

[Faculty of Science
Information and Computing Sciences]

65

Annotated polyvariant types

ϕ ∈ Ann annotations

τ̂ ∈ T̂y annotated types

σ̂ ∈ ̂TyScheme annotated type schemes

Γ̂ ∈ T̂yEnv annotated type environments

ϕ ::= β | ∅ | {π} | ϕ1 ∪ ϕ2

τ̂ ::= α | Nat | Bool | τ̂1
ϕ−→ τ̂2

σ̂ ::= τ̂ | ∀α. σ̂1 | ∀β. σ̂1

Γ̂ ::= [] | Γ̂1[x 7→ σ̂]

Γ̂ `cfa t : σ̂ control-flow analysis

[Faculty of Science
Information and Computing Sciences]

65

Annotated polyvariant types

ϕ ∈ Ann annotations

τ̂ ∈ T̂y annotated types

σ̂ ∈ ̂TyScheme annotated type schemes

Γ̂ ∈ T̂yEnv annotated type environments

ϕ ::= β | ∅ | {π} | ϕ1 ∪ ϕ2

τ̂ ::= α | Nat | Bool | τ̂1
ϕ−→ τ̂2

σ̂ ::= τ̂ | ∀α. σ̂1 | ∀β. σ̂1
Γ̂ ::= [] | Γ̂1[x 7→ σ̂]

Γ̂ `cfa t : σ̂ control-flow analysis

[Faculty of Science
Information and Computing Sciences]

65

Annotated polyvariant types

ϕ ∈ Ann annotations

τ̂ ∈ T̂y annotated types

σ̂ ∈ ̂TyScheme annotated type schemes

Γ̂ ∈ T̂yEnv annotated type environments

ϕ ::= β | ∅ | {π} | ϕ1 ∪ ϕ2

τ̂ ::= α | Nat | Bool | τ̂1
ϕ−→ τ̂2

σ̂ ::= τ̂ | ∀α. σ̂1 | ∀β. σ̂1
Γ̂ ::= [] | Γ̂1[x 7→ σ̂]

Γ̂ `cfa t : σ̂ control-flow analysis

[Faculty of Science
Information and Computing Sciences]

66

Is this enough?

let f = λfx . True in
let g = λgk . if f 0 then k else (λhy .False) in
g f

A (mono)type for g f is v1
{f}∪{h}−−−−−→ Bool .

{h} is contributed by the else-part, {f} comes from the
parameter passed to g .

But what is the type of g that can lead to such type?

g : ∀a.∀β. (a β−→ Bool)
g−→ (a

β∪{h}−−−−→ Bool)

But how can we manipulate such annotations correctly?

� Add a few rules

[Faculty of Science
Information and Computing Sciences]

66

Is this enough?

let f = λfx . True in
let g = λgk . if f 0 then k else (λhy .False) in
g f

A (mono)type for g f is v1
{f}∪{h}−−−−−→ Bool .

{h} is contributed by the else-part, {f} comes from the
parameter passed to g .

But what is the type of g that can lead to such type?

g : ∀a. ∀β. (a β−→ Bool)
g−→ (a

β∪{h}−−−−→ Bool)

But how can we manipulate such annotations correctly?

� Add a few rules

[Faculty of Science
Information and Computing Sciences]

67

Polyvariant type system: generalisation

Introduction for type variables:

Γ̂ `cfa t : σ̂ α /∈ ftv(Γ)

Γ̂ `cfa t : ∀α. σ̂
[cfa-gen]

Introduction for annotation variables:

Γ̂ `cfa t : σ̂ β /∈ fav(Γ)

Γ̂ `cfa t : ∀β. σ̂
[cfa-ann-gen]

Here fav(Γ) computes the free annotation variables in Γ.

[Faculty of Science
Information and Computing Sciences]

68

Polyvariant type system: instantiation

Elimination for type variables:

Γ̂ `cfa t : ∀α. σ̂
Γ̂ `cfa t : [α 7→ τ̂]σ̂

[cfa-inst]

Elimination for annotation variables:

Γ̂ `cfa t : ∀β. σ̂
Γ̂ `cfa t : [β 7→ ϕ]σ̂

[cfa-ann-inst]

[Faculty of Science
Information and Computing Sciences]

69

Polyvariant type system: subeffecting again

To align the types of the then-part and else-part, and to match
arguments to function types, we still need subeffecting.

Recap:

Γ̂ `cfa t : τ̂1
ϕ−→ τ̂2

Γ̂ `cfa t : τ̂1
ϕ∪ϕ′
−−−→ τ̂2

[cfa-sub]

then-part: β can be weakened to β ∪ {h}.

else-part: {h} can be weakened to {h} ∪ β.

But these are not the same!

[Faculty of Science
Information and Computing Sciences]

70

When are two annotations equal?

The type system has no way of knowing, so we have to tell it
when.

Γ̂ `cfa t : τ̂1
ϕ−→ τ̂2 ϕ ≡ ϕ′

Γ̂ `cfa t : τ̂1
ϕ′
−→ τ̂1

[cfa-eq]

In other words: you may replace equals by equals.

� {h} ∪ β by β ∪ {h}

Problem now becomes to define/axiomatize equality for these
annotations.

[Faculty of Science
Information and Computing Sciences]

71

Equality of annotations axiomatized (1)

ϕ ≡ ϕ
[q-refl]

ϕ′ ≡ ϕ
ϕ ≡ ϕ′

[q-symm]

ϕ ≡ ϕ′′ ϕ′′ ≡ ϕ′

ϕ ≡ ϕ′
[q-trans]

ϕ1 ≡ ϕ′1 ϕ2 ≡ ϕ′2
ϕ1 ∪ ϕ2 ≡ ϕ′1 ∪ ϕ′2

[q-join]

[Faculty of Science
Information and Computing Sciences]

72

Equality of annotations axiomatized (2)

{ } ∪ ϕ ≡ ϕ
[q-unit]

ϕ ∪ ϕ ≡ ϕ
[q-idem]

ϕ1 ∪ ϕ2 ≡ ϕ2 ∪ ϕ1
[q-comm]

ϕ1 ∪ (ϕ2 ∪ ϕ3) ≡ (ϕ1 ∪ ϕ2) ∪ ϕ3
[q-ass]

[Faculty of Science
Information and Computing Sciences]

73

UCAI

This combination of axioms often occurs:

I Unit

I Commutativity

I Associativity

I Idempotency

� Modulo UCAI

[Faculty of Science
Information and Computing Sciences]

74

What about the algorithm?

I We still perform generalization in the let.

I And instantiation in the variable case.
I Recall:

I The algorithm unifies types and identifies annotation
variables.

I It collects constraints on the latter.

I After algorithm Wcfa, we solve the constraints to obtain
annotation variables.

I In the monovariant setting this was fine: correctness did
not depend on the context.

I In a polyvariant setting, the context plays a role

� Constraints on annotations must be propagated along.

[Faculty of Science
Information and Computing Sciences]

75

Some variations

I Idea 1: simply store all constraints in the type.
I During instantation refresh type and annotations variables

in the type, and the constraint set (consistently).
I Includes also trivial and irrelevant constraints.
I Some say: simple duplication is not feasible.

I Idea 2: simplify constraints as much as possible before
storing them.
I Simplification can take many forms.
I Takes place as part of generalisation.
I Type schemes store constraints sets: rather like qualified

types.

[Faculty of Science
Information and Computing Sciences]

76

Simplification

I Simplification = intermediate constraint solving.

I In both cases, annotations left unconstrained can be
defaulted to the best possible.

I However, annotation variables that occur in the type to be
generalized must be left unharmed.

I Why? Annotation variables provide flexibility for
propagation.

� Defaulting throws that flexibility away.

[Faculty of Science
Information and Computing Sciences]

77

Example (to illustrate)

I Assume Wcfa returns type (v1
β1−→ v1)

β2−→ (v1
β3−→ v1)

and constraint set
{β2 ⊇ {g}, β3 ⊇ β4, β4 ⊇ β1, β5 ⊇ {h}, β3 ⊇ β}

I And that β occurs free in Γ̂.
I β5 is not relevant, so it can be omitted (set to {h}).

I It does not occur in the type, or the context

I β4 is not relevant either, but removing it implies we must
add β3 ⊇ β1.

I Neither β2 ⊇ {g} and β3 ⊇ β may be touched.

I Remember the invariant to keep unification simple: only
annotation variables in types.

[Faculty of Science
Information and Computing Sciences]

78

Constrained types and type schemes

Introduce an additional layer of types (a la qualified types):

τ̂ ::= α | Nat | Bool | τ̂1
ϕ−→ τ̂2

ρ̂ ::= τ̂ | c ⇒ ρ̂
σ̂ ::= ρ̂ | ∀α. σ̂1 | ∀β. σ̂1

[Faculty of Science
Information and Computing Sciences]

79

Generalisation and instantiation

I Instantiation provides fresh variables for universally
quantified variables.

I Generalisation invokes the simplifier.

I Simplification can be performed by a worklist
algorithm, that leaves certain (which?) variables untouched.

� Considers them to be constants

I Type signature compartmentalizes a local definition: we do
not care what happens inside.

	Type and effect systems - Introduction
	Hindley-Milner and Algorithm W
	Control-flow Analysis with Annotated Types
	Polyvariance

