[Faculty of Science
5 Universiteit Utrecht Information and Computing Sciences]

APA
Effects in Type Systems

Jurriaan Hage
e-mail: J.Hage®@uu.nl
homepage: http://www.cs.uu.nl/people/jur/

Department of Information and Computing Sciences, Universiteit Utrecht

May 31, 2018

Effects

» In static analysis we compute properties of programs.

» In functional languages we tend to consider programs,
expressions and values to be relatively similar.

» However, computations and values are different from an
optimizer's perspective:
> Types are about properties of values (being an integer,
being even, be storable in 4 bits)
» Effects are properties of computations
» the maximum number of memory allocations
» the set of functions that may be applied during evaluation
» Often come up in side-effected language, but not only
there.

5&\\“’7/} [Faculty of Science

= o S q . .
= % Universiteit Utrecht Information and Computing Sciences]

2 ?{ﬂ»

The Fun language

v

Lambda calculus with the necessary syntactic sugar

v

Arithmetic and boolean expressions as in While.
ML style function declarations

» fn x => e for anonymous, non-recursive functions
» fun f x => e for anonymous, recursive functions

v

v

An if-then-else construct is present.

v

Example is forthcoming.

5&\\“’%}) [Faculty of Science
% &) § Universiteit Utrecht Information and Computing Sciences]
N

3 H

Fun with assighments and references

v

Imperative constructs for Fun:
ex=---|new, x := ejines|lx |x :=ep|er;er

» new introduces a statically scoped reference and initializes
the value it refers to.

» We need program point annotation 7 again.

» Deferencing the value of the reference x is via the !
operator.
» Explicit difference between rvalue and Ivalue

> Assignments may set this value to a new one.

» Sequencing ; first evaluates e; for its effect on the state,
then evaluates ey (in this new state) and returns this value.

5&\\“’%}) [Faculty of Science
% &) é Universiteit Utrecht Information and Computing Sciences]
4 NS

Example

» This variant of fibonacci uses a 'global’ variable r to
compute:
newr 7 := 0
in let fib =fung f z =>if 2 < 3
thenr:=!r+1
else f(z —1); f(z—2)
in fib z;!r
» The fib definition assigns to and dereferences the reference
variable created at program point R.

‘S\ ﬁ/) . [Facul_ty of S'ciem:e

% &) § Universiteit Utrecht Information and Computing Sciences]

TN
5

Side Effect Analysis

» Side Effect Analysis determines

For each subexpression, which locations have
been created, accessed and assigned.

» Monomorphic/monovariant, but with subeffecting.

» No algorithm.

&\\‘Wﬁ)) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
6 NS

Annotations

» Annotations are sets of effects (three kinds):

p o= {7} [{m:=} | {newr} [o1 U2 [0

» {Ir} means that in the expression to which it is attached,
a location created at program point 7 was accessed.

» And similarly for the others

» We also need sets of program points:

wi={r}|wUw]|0

5&\\“’%}) [Faculty of Science
= b = Universiteit Utrecht Information and Computing Sciences]
7 WY

UCAI

> ws (sets of locations) are equal modulo UCAI.

» Values are considered the same if they only differ in order,
parentheses and the presence of unit or cancelling values
because of idempotence.

» For example:
({m} U {m}) U0 =
{m}u{m} <
{m} U ({me} U {m}) £
({m} U {me}) U {m2} £
({m2} U {m}) U {m2}

» We may simply write {7, m2}.

5&\\“’%}) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
8 NS

otated types

» Annotated types are defined to be
7 = int | bool | 157 | ref, 7

{!R,R=}.

IR,R=
» Example: int" = “int.

[Faculty of Science
& Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

Example revisited

> newg 7 := 0
in let fib =fung f z=>if 2 <3
thenr :=!r+1
else f(z—1); f(z—2)
in fib z;!r
> A reference variable like r has type refg; int

IR,R=
» The function fib has type int{'Rﬁ }int.

» It is obviously a function from int to int.
» Which may, as a side effect, access and update a reference
created at R.

5&\\“’%}) [Faculty of Science
= b = Universiteit Utrecht Information and Computing Sciences]
10 N

» Judgments for Side Effect Analysis are of the form
Thpe:T& o

» The name type and effect system should now become
apparent.

» Every expression has an (annotated) type and an effect.

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

e for let-expressions

~

Thpe:A&eor Tl Alhger:n & o

_ - — [let]
Fhpletz = ejiney: 7 & 1 U

Effects typically accumulate: @1 U @o.

4 [Faculty of Science
2= U F Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

e for abstraction

~

Clx — 7] kg eo s To & @o
fI—SEfn,Tx => ¢p: a7 & 0

[fn]

» A function body has effect, defining a function does not.

» Effects of bodies are stored on the arrows in [fn] or [fun].

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

Rule for application

fl—SEel:f\g@ﬁ)&<p1 fl—SEeg:i’\g&gpg

- — [app]
el e:To & o U1 U s

» Application retrieves the effect of executing body from
annotated type of function.
» Contributes it to the total effect.

» Abstraction rule stores effect on arrow type, application
retrieves it.

» Help deal with the non-compositional aspect of function
definition.

5&\\“’%}) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
14 NS

e for dereference

f(a:) = I’ef{mwmn} ’/7'\

Thylo:7 & {Imy,...,\m}

[deref]

» {m,...,m,} describes all program points where the
reference x may have been created.

» Why a set?

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

Rule for dereference

~

f(x) — ref{m’,_,JrH} T

= — [deref]
Fhgle:7 & {lmy,....Imp}
» {m1,...,m,} describes all program points where the
reference x may have been created.
> Why a set?

» Various reasons:

» Reference variables can be function arguments
» Conditionals

&\\‘Wﬁ)) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
15 NS

e for new-expression

~

f |—SE e1:11 & ©1 F[:I? — I’ef{ﬂ.} ﬁ] I—SE er:Ta & ©2

—~ ~ [new]
Fhpnew, z:=ejiney: 7o & 1 Uy U {newr}

» Put the annotation into the type of x and add its effect.

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

e for assignments

-~

I kpe:T& @ f(x) =refi 3 T

_ — [ass]
F'hpzi=e:T& pU{m:=,...,mp:=}

» Simply add annotations to denote the fact that = has a
new value.

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

Example

> newp = 1

in (newg y :=lz in (z :=ly + 1;ly + 3))

+ (newc z :=lzin (z :=lz+ 1;lz + 1))

» First summand has type and effect:

int & {newB,!A A:= IB}
» Second summand has type and effect:

int & {newC,!A, C:=,!C}

» The updated z is the local, not the global one

» Together we get

int & {newA,!A A:= newB, !B, newC, C:=,!C}
» Conclusion: reference created at B is never assigned to, so

could be replaced by an ordinary integer variable.

; N) % Universiteit Utrecht Information and Computing Sciences]

@Wff') [Faculty of Science
18 KT\

> newp x = 1
in (fnf=>f(ny=>12)+ f(fnz=> (z:=2;2)))
(fng=>g1)
{IA A=}

» Determine that f has the type (int" = int)

{AA}

[Faculty of Science
& Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

Poisoning

> newp x = 1
in fnf=>fny=>1z)+ f(fn 2 => (2 := 2;2)))
(fng=>g1)

{IA A=

{!A’—Aﬁz}int) A int

» Determine that f has the type (int

> In the presence of poisoning, both arguments must have

exactly the type of the argument to f, (int{!AiA;:}int).
» We would prefer (fn y => lx) : (int{ﬁ}int) and
(fnz=> (x:=2;2)): (int{A.—:>}int).

» And to weaken annotations independently and only when

we must.
_’\\\‘Wf/} [Faculty of Science
%Ué Universiteit Utrecht Information and Computing Sciences]
19 K

Subtyping

20

N
En

fl—SEe:?&w 7A'§7?’ o C ¢
Thpe: 7 & ¢

[sub]

)

v

Subeffecting/subtyping performed by a single rule.

v

The rule allows us to weaken analysis results when
appropnate

» T < 7/ 7' is weaker than 7.
» o C 't ¢ is weaker than .

> In the example: large sets are weaker.

v

The rule is not syntax directed.
> It can always be applied, forever.

v

Typically, subsumption is built into [app], [if] etc.

[Faculty of Science

I
N) § Universiteit Utrecht Information and Computing Sciences]

The example again

21

<y

newp r = 1
in (fnf=>f(fny=>z)+ f(fn z => (z := 2;2)))
(fng=>g1)
Weaken the type when necessary (when a value is “used”):
(int{i}int) < (int{!Aﬁﬁ:}int)
(int{Aj}int) < (int{!A’*A;:}int)

Larger type for f does not change types of its arguments.
Just before matching the type of an argument with the
formal parameter type.

Just before checking that the then-part and else-part have
matching types.

[Faculty of Science

N) % Universiteit Utrecht Information and Computing Sciences]

EN

The subtyping relation

» We should now define < for annotated types.
» Example (function types):
T <71 T < 7y 0 Cy¢

v

The subtyping relation is

» covariant in the result
> contravariant in the argument

> and covariant in the argument of the argument, etc.
The reference type ref,,7 is both covariant and
contravariant (invariant) in 7.
> A reference can be used to read from and write to.

v

5&\\“’%}) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
22 N

Meanwhile, in a real life...

» Say you bought a new laptop with a six month guarantee
» What can happen?
» The shopowner may fix a problem after seven months
> You decide not to bring it back when it break at 5,5 months
» Effectively, each party can change the guarantee time but
each in his/her own direction.
» You can not demand more than the guarantee, the shop
owner cannot give you less.

5&\\“’%}) [Faculty of Science
= b = Universiteit Utrecht Information and Computing Sciences]
23 N

Contravariance example

| 4

>

N

w N

Consider sets of signs as annotation and a function with
analysis:
f o int{OF) S0

This is a may-style analysis so we can weaken to

int{0F} Sint{—0+}

But what can be done with int{®t}?

If f returns a value in {—, 0} for positive arguments and
zero, then it also returns such values if we restrict to {0}.

Thus: intt® —int{=0} is a safe approximation of f
Applicability of f is restricted: only for arguments 0.

Note: growing the set on the argument may not be safe!

[Faculty of Science

= o S q . .
§ Universiteit Utrecht Information and Computing Sciences]

More covariance and contravariance

» A fact of life (with subtyping) that must be dealt with.

» Essentially it distinguishes between consuming a value and
producing one.
» And this has implications for how we should handle them.
> In Java: S extends T, and T extends U
» Assume a method

T work(T t) .

Then we may safely

» pass an S, but not a U to the method work,

> use the result of work where a U is expected, but not
where we need an S.

> In other words, T" work(T' t) may be weakened to

U work(S t).
ng’%)é 5 . . [Facul.ty of S'ciem:e
%‘x§ Universiteit Utrecht Information and Computing Sciences]
25)

More covariance and contravariance

v

A fact of life (with subtyping) that must be dealt with.

Essentially it distinguishes between consuming a value and
producing one.

v

» And this has implications for how we should handle them.
In Haskell: f :: Ega=a—a

» We may pass values b to f that have at least Eq b, so they
may have also Ord b

v

» We may write id (f z), forgetting that a has Eq a

v

Bottom-line: changing a value safely (weakening) is done
differently depending on variance.

5&\\“’%}) [Faculty of Science
EN é Universiteit Utrecht Information and Computing Sciences]
25 NS

More?

26

» Call Tracking Analysis is an effect analysis that is much
related to CFA.

» In Call Tracking Analysis:

Which functions may have been called during the
evaluation of an expression.

» In 2006, an assignment was to give a deduction system and
algorithm for the monomorphic/monovariant case without
subeffecting.

» Behaviours: effects are not sets but sequences.

» Effects include information on when it happened:
Communication Analysis

5&\\“% [Faculty of Science
% N) % Universiteit Utrecht Information and Computing Sciences]
N

