
[Faculty of Science
Information and Computing Sciences]

Usage Analysis

Slides from Stefan Holdermans and Jurriaan Hage

Dept. of Information and Computing Sciences, Utrecht University
P.O. Box 80.089, 3508 TB Utrecht, The Netherlands

E-mail: i.g.dewolff@uu.nl

May 30, 2022

i.g.dewolff@uu.nl

[Faculty of Science
Information and Computing Sciences]

2

1. Introduction to usage analysis

[Faculty of Science
Information and Computing Sciences]

3

Usage analysis §1

I Usage analysis: determining which objects in a (functional)
program are guaranteed to be used at most once
and—dually— which objects may be used more than once.

I Two flavours: uniqueness analysis (a.k.a. uniqueness
typing) and sharing analysis.

I Hage et al. (ICFP 2007): A generic usage analysis with
subeffect qualifiers.

[Faculty of Science
Information and Computing Sciences]

4

Hage et al. (ICFP 2007): abstract §1

“Sharing analysis and uniqueness typing are static analyses that
aim at determining which of a program’s objects are to be used
at most once. There are many commonalities between these
two forms of usage analysis. We make their connection precise
by developing an expressive generic analysis that can be
instantiated to both sharing analysis and uniqueness typing.
The resulting system, which combines parametric polymorphism
with effect subsumption, is specified within the general
framework of qualified types, so that readily available tools and
techniques can be used for the development of implementations
and metatheory.”

[Faculty of Science
Information and Computing Sciences]

5

Destructive updates §1

I An important property of pure functional languages is
referential transparency: a given expression will yield one
and the same value each time it is evaluated.

I Referential transparency enables equational reasoning.

I But some operations are destructive by nature:
for example, altering the contents of a file.

I Such destructive operations break referential transparency.

[Faculty of Science
Information and Computing Sciences]

6

Problems with destructive updates §1

Simple I/O interface:

readFile :: String → File
fPutChar :: Char → File → File

For example:

let f = readFile "DATA"

in (fPutChar ’O’ f , fPutChar ’K’ f)

� What is the meaning of this program? (Assume lazy evalu-
ation.)

[Faculty of Science
Information and Computing Sciences]

7

“Safe” destructive updates §1

Idea: referential transparency can be recovered if we restrict
destructive updates to operations that hold the only reference
to the object that is to be destructed.

Example:

let f = readFile "DATA"

in (fPutChar ’K’ ◦ fPutChar ’O’) f

� Each file handle is used at most once.

[Faculty of Science
Information and Computing Sciences]

8

Self-updating closures §1

I Lazy evaluation is typically implemented by means of
self-updating closures.

I For example:

(λx → x + x) (2 + 3)

I A closure is created for the expression (2 + 3) and
associated with x .

I When x is first accessed, the closure evaluates its
expression and updates itself with the result (5).

I For the second access of x , the closure can immediately
produce the value 5.

I The update avoids re-evaluation of (2 + 3).

[Faculty of Science
Information and Computing Sciences]

9

Unnecessary updates §1

Another example:

(λx → 2 ∗ x) (2 + 3)

� Now, the update of the closure is unneccesary, because x is
accessed only once.

[Faculty of Science
Information and Computing Sciences]

10

Two flavours of usage analysis §1

Uniqueness analysis:

I Determines which objects have at most one reference.

I Application: destructive updates that are “safe” w.r.t.
referential transparency.

I Used in Clean as an alternative to monads.

Sharing analysis:

I Determines which function arguments are accessed at most
once.

I Application: avoiding unneccesary closure updates.

I For other applications, see Turner et al. (FPCA 1995),
Wansbrough and Peyton Jones (POPL 1999), and
Gustavsson and Sands (ENTCS 26).

[Faculty of Science
Information and Computing Sciences]

11

Generic usage analysis §1

I Both uniqueness analysis and sharing analysis aim at
keeping track of objects that are used at most once.

I If we forget about modularity and settle for little accuracy,
we can use a single nonstandard type system for both
analyses.

I For more realistic requirements, we can still define a single
parameterized type system that can be instantiated to
uniqueness analysis as well as sharing analysis.

[Faculty of Science
Information and Computing Sciences]

12

2. The underlying type system

[Faculty of Science
Information and Computing Sciences]

13

Term language §2

I It would be impractical to define the analysis for a
full-fledged language like Haskell or Clean.

I Instead, we use a small toy language.

n ∈ Num numerals
x ∈ Var variables
t ∈ Tm terms
v ∈ Val ⊂ Tm values

t ::= n | x | λx . t1 | t1 t2 | let x = t1 in t2 ni
| t1 + t2

v ::= n | λx . t1

[Faculty of Science
Information and Computing Sciences]

14

Natural semantics §2

I The meaning of programs is defined by means of a
so-called big-step or natural semantics.

I Evaluation relation: judgements of the form t −→ v .

I Rules are given in natural deduction style:

hyp1 · · · hypn

concl

[Faculty of Science
Information and Computing Sciences]

15

Natural semantics: numerals and abstractions §2

Numerals and abstractions are already values:

n −→ n

λx . t1 −→ λx . t1

[Faculty of Science
Information and Computing Sciences]

16

Natural semantics: applications §2

Beta-reduction:

t1 −→ λx . t11 [x 7→ t2]t11 −→ v

t1 t2 −→ v

� [x 7→ t2]t11 means
“replace each free occurrence of x in t11 by t2”.

� Lazy evaluation: arguments are passed unevaluated.

[Faculty of Science
Information and Computing Sciences]

17

Natural semantics: local definitions §2

Local definitions are also evaluated by means of beta-reduction:

[x 7→ t1]t2 −→ v

let x = t1 in t2 ni −→ v
[e-let]

� Local definitions are evaluated as if
let x = t1 in t2 ≡ (λx . t2) t1.

[Faculty of Science
Information and Computing Sciences]

18

Natural semantics: addition §2

Addition is strict, i.e., it first evaluates both its operands:

t1 −→ n1 t2 −→ n2 n1 ⊕ n2 = n

t1 + t2 −→ n

� ⊕ denotes “ordinary” addition of natural numbers.

[Faculty of Science
Information and Computing Sciences]

19

Types and type environments §2

I Types are built from the type Nat of natural numbers and
the function-type constructor →.

I Type environments map variables to types.

τ ∈ Ty types
Γ ∈ TyEnv type environments

τ ::= Nat | τ1 → τ2
Γ ::= [] | Γ1[x 7→ τ]

I We write Γ(x) = τ if the rightmost binding for x in Γ
associates to τ .

[Faculty of Science
Information and Computing Sciences]

20

Typing §2

I We approximate the set of “well-behaved” programs by
means of a type system.

I Typing relation: judgements of the form Γ `UL t : τ .

I “In type environment Γ, the term t can be assigned the
type τ .”

I Γ is supposed to contain types for the free variables of t .

I The subscript UL is used to distinguish the judgements of
this underlying type system from the (nonstandard) type
systems we will consider later on.

[Faculty of Science
Information and Computing Sciences]

21

3. The analysis

[Faculty of Science
Information and Computing Sciences]

22

Examples §3

(λx . x + 1) 2

2 is used at most once.

(λx . x + x) 2

2 is used more than once.

(λx . λy . x) 2 3

2 is used at most once; 3 is used at most once.

(λf . λx . f x) (λy . y + y) 2

2 is used more than once.

[Faculty of Science
Information and Computing Sciences]

23

Annotated type system §3

I Our usage analysis will be specified as an annotated type
system.

I We extend the Damas-Milner type system by annotating
types, type environments, and typing judgements with
information on how often a term is used.

I Two annotations: 1 and ω.

I 1: the term is guaranteed to be used at most once.

I ω: the term may be used more than once.

I Judgements have the form Γ̂ `UA t :ϕ σ̂.

I ϕ ranges over annotations.

I Γ̂ ranges over annotated type environments.

I σ̂ ranges over annotated type schemes.

[Faculty of Science
Information and Computing Sciences]

24

Usage analysis: syntax §3

ϕ ∈ Ann annotations

τ̂ ∈ T̂y annotated types

σ̂ ∈ ̂TyScheme annotated type schemes

Γ̂ ∈ T̂yEnv annotated type environments

ϕ ::= 1 | ω
τ̂ ::= α | Nat | τ̂1ϕ1 → τ̂2

ϕ2

σ̂ ::= τ̂ | ∀α. σ̂1
Γ̂ ::= [] | Γ̂1[x 7→ϕ σ̂]

I We write Γ̂(x) =ϕ σ̂ if the rightmost binding for x in Γ̂
associates to ϕ and σ̂.

I We write Γ̂ \ x for the environment obtained by removing all

bindings for x from Γ̂.

[Faculty of Science
Information and Computing Sciences]

25

Usage analysis: numerals §3

It depends on the context of a numeral whether it used at most
once:

Γ̂ `UA n :1 Nat

—or possibly more than once:

Γ̂ `UA n :ω Nat

Merging the two rules:

Γ̂ `UA n :ϕ Nat

[Faculty of Science
Information and Computing Sciences]

26

Usage analysis: variables §3

To analyse a variable, we look it up in the environment:

Γ̂(x) =ϕ σ̂

Γ̂ `UA x :ϕ σ̂

[Faculty of Science
Information and Computing Sciences]

27

The rôle of environments §3

An annotated type environment should reflect how often the
free variables of a term are used:

[x 7→1 Nat] `UA x + 1 :ϕ Nat

should be valid.

[x 7→1 Nat] `UA x + x :ϕ Nat

should not be valid.

[x 7→ω Nat] `UA x + 1 :ϕ Nat

should be valid.

[x 7→ω Nat] `UA x + x :ϕ Nat

should be valid.

[Faculty of Science
Information and Computing Sciences]

28

Context splitting §3

I Idea: for every possible branch in a term’s control-flow
graph (for example a function application or an addition),
we split the type environment in a left and a right part:
Γ̂ ∼UA Γ̂1 ./ Γ̂2.

I Bindings for 1-annotated variables go either left or right.

I Bindings for ω-annotated variables may go both ways.

[Faculty of Science
Information and Computing Sciences]

29

Context splitting: rules §3

[] ∼UA [] ./ []

Γ̂1 ∼UA Γ̂11 ./ Γ̂12

Γ̂1[x 7→ϕ σ̂] ∼UA Γ̂11[x 7→ϕ σ̂] ./ Γ̂12 \ x

Γ̂1 ∼UA Γ̂11 ./ Γ̂12

Γ̂1[x 7→ϕ σ̂] ∼UA Γ̂11 \ x ./ Γ̂12[x 7→ϕ σ̂]

Γ̂1 ∼UA Γ̂11 ./ Γ̂12

Γ̂1[x 7→ω σ̂] ∼UA Γ̂11[x 7→ω σ̂] ./ Γ̂12[x 7→ω σ̂]

[Faculty of Science
Information and Computing Sciences]

30

Usage analysis: addition §3

Γ̂ ∼UA Γ̂1 ./ Γ̂2 Γ̂1 `UA t1 :ϕ1 Nat Γ̂2 `UA t2 :ϕ2 Nat

Γ̂ `UA t1 + t2 :ϕ Nat

� If a variable is used in both t1 and t2, context splitting guar-
antees that it is ω-annotated in Γ̂.

[Faculty of Science
Information and Computing Sciences]

31

Usage analysis: example §3

Γ̂11(x) =ω Nat

Γ̂11 `UA x :ω Nat

Γ̂12(y) =1 Nat

Γ̂12 `UA y :1 Nat

Γ̂1 `UA x + y :1 Nat

Γ̂2(x) =ω Nat

Γ̂2 `UA x :ω Nat

[x 7→ω Nat , y 7→1 Nat , z 7→1 Nat] `UA (x + y) + x :1 Nat

(context splits omitted)

Γ̂1 = [x 7→ω Nat , y 7→1 Nat , z 7→1 Nat]

Γ̂11 = [x 7→ω Nat , z 7→1 Nat]

Γ̂12 = [x 7→ω Nat , y 7→1 Nat]

Γ̂2 = [x 7→ω Nat]

[Faculty of Science
Information and Computing Sciences]

32

Usage analysis: local definitions §3

Γ̂ ∼UA Γ̂1 ./ Γ̂2 Γ̂1 `UA t1 :ϕ1 σ̂1 Γ̂2[x 7→ϕ1 σ̂1] `UA t2 :ϕ τ̂

Γ̂ `UA let x = t1 in t2 ni :ϕ τ̂

[Faculty of Science
Information and Computing Sciences]

33

Usage analysis: applications §3

Γ̂ ∼UA Γ̂1 ./ Γ̂2 Γ̂1 `UA t1 :ϕ1 τ̂2
ϕ2 → τ̂ϕ Γ̂2 `UA t2 :ϕ2 τ̂2

Γ̂ `UA t1 t2 :ϕ τ̂

I Domain and domain annotation should match type and
usage of argument.

I Result type and usage of application are retrieved from
codomain and codomain annotation.

[Faculty of Science
Information and Computing Sciences]

34

Usage analysis: abstractions (first attempt) §3

Γ̂[x 7→ϕ1 τ̂1] `UA t1 :ϕ2 τ̂2

Γ̂ `UA λx . t1 :ϕ τ̂1
ϕ1 → τ̂2

ϕ2

For example:

[] `UA λx . x + 1 :1 Nat1 → Nat1

[] `UA λx . x + x :1 Natω → Nat1

[Faculty of Science
Information and Computing Sciences]

35

Partial applications: problem §3

let f = λx . λy . x + y
in let g = f (2 + 3)

in g 7 + g 11
ni

ni

I How often is g used?

I How often is (2 + 3) used?

I Nat1 → (Nat1 → Nat1)ω is a valid type for f .
Should it be?

[Faculty of Science
Information and Computing Sciences]

36

Containment §3

I Containment: an object is potentially used as least as
often as an object it is contained in.

let f = λx . λy . x + y
in let g = f (2 + 3)

in g 7 + g 11
ni

ni

I The binding of x to (2 + 3) is contained in the partial
application g .

I The partial application is used more than once: hence, so
is (2 + 3).

[Faculty of Science
Information and Computing Sciences]

37

Usage analysis: abstractions (another look) §3

Γ̂[x 7→ϕ1 τ̂1] `UA t1 :ϕ2 τ̂2

Γ̂ `UA λx . t1 :ϕ τ̂1
ϕ1 → τ̂2

ϕ2

I Problem: the free variables of the abstraction could be
used as least as often as the abstraction itself.

I The usage of the free variables is reflected by Γ̂.

I The usage of the abstraction is reflected by ϕ.

I Solution: If ϕ ≡ ω, then all bindings in Γ̂ that are used in
the typing of t1 should also be ω.

[Faculty of Science
Information and Computing Sciences]

38

Usage analysis: abstractions (refined) §3

Γ̂ .ϕ Γ̂11 Γ̂11[x 7→ϕ1 τ̂1] `UA t1 :ϕ2 τ̂2

Γ̂ `UA λx . t1 :ϕ τ̂1
ϕ1 → τ̂2

ϕ2

Γ̂ .ϕ Γ̂11:

I Γ̂11 is a subenvironment of Γ̂;

I if ϕ ≡ ω, then all bindings in Γ̂11 are annotated with ω.

[Faculty of Science
Information and Computing Sciences]

39

Containment: rules §3

[] .ϕ []

Γ̂11 .
ϕ Γ̂2

Γ̂11[x 7→ϕ0 σ̂] .ϕ Γ̂2 \ x

Γ̂11 .
1 Γ̂2

Γ̂11[x 7→ϕ0 σ̂] .1 Γ̂2[x 7→ϕ0 σ̂]

Γ̂11 .
ω Γ̂2

Γ̂11[x 7→ω σ̂] .ω Γ̂2[x 7→ω σ̂]

[Faculty of Science
Information and Computing Sciences]

40

Containment: examples §3

let f = λx . λy . x + y
in let g = f (2 + 3)

in g 7 + g 11
ni

ni

...

[x 7→ω Nat] .ω [x 7→ω Nat]

...

[x 7→ω Nat , y 7→1 Nat] `UA x + y :1 Nat

[x 7→ω Nat] `UA λy. x + y :ω Nat1 → Nat1

...

[Faculty of Science
Information and Computing Sciences]

41

Where are we? §3

I An annotated type system for usage analysis.

I Judgements of the form Γ̂ `UA t :ϕ σ̂.

I Auxiliary judgement for context splitting: Γ̂ ∼UA Γ̂1 ./ Γ̂2.

I Auxiliary judgement for containment: Γ̂ .ϕ Γ̂11.

[Faculty of Science
Information and Computing Sciences]

42

Applications §3

I Verification: type checking destructive updates (uniqueness
typing).

I Optimization: avoiding unnecessary closure updates
(sharing analysis).

[Faculty of Science
Information and Computing Sciences]

43

4. Type checking destructive updates

[Faculty of Science
Information and Computing Sciences]

44

Construct for destructive updates §4

I To demonstrate how the analysis can be used to perform
uniqueness typing, we extend the language with a simple
construct for destructive updates.

t ::= · · · | x@t

I Meaning: update x with t .

I Can be formalized with a semantics that explicitly models
memory usage.

I See Hage and Holdermans (PEPM 2008).

[Faculty of Science
Information and Computing Sciences]

45

Typing rule for updates §4

I Require that updated object is unique.

Γ̂(x) =1 σ̂0 Γ̂ `UA t :ϕ σ̂

Γ̂ `UA x@t :ϕ σ̂

I Then: show that a program with updates has the same
meaning as the same program with all updates removed.

[Faculty of Science
Information and Computing Sciences]

46

5. Avoiding unnecessary closure updates

[Faculty of Science
Information and Computing Sciences]

47

Generating use-once closures §5

I To avoid unnecessary closure updates, we compile to a
target language that distinguishes between closures that
can be used at most once and closures that can be used
more than once.

I For each let-binding we indicate what kind of closure needs
to be constructed.

I We make sure that closures are only created at let-bindings.

t̂ ∈ T̂m annotated terms

t̂ ::= · · · | t̂1 x | let x =ϕ t̂1 in t̂2 ni | · · ·

I We equip the target language with a semantics that makes
memory usage explicit and renders use-once closures
inaccessible after their first use.

[Faculty of Science
Information and Computing Sciences]

48

Target language: examples §5

let z =1 2 + 3
in (λx . x + 1) z
ni

let z =ω 2 + 3
in (λx . x + x) z
ni

[Faculty of Science
Information and Computing Sciences]

49

Translation §5

I We write T :: Γ̂ `UA t :ϕ σ̂ to indicate that T is a proof
tree for Γ̂ `UA t :ϕ σ̂.

I Next, we define a translation J−K from proof trees to
target terms.

I For example:

u

wwwwwww
v

T0 :: Γ̂ ∼UA Γ̂1 ./ Γ̂2

T1 :: Γ̂1 `UA t1 :ϕ1 σ̂1

T2 :: Γ̂2[x 7→ϕ1 σ̂1] `UA t2 :ϕ τ̂

Γ̂ `UA let x = t1 in t2 ni :ϕ τ̂

}

�������
~

= let x =ϕ1 JT1K in JT2K ni

I Then, show that each translated program evaluates to the
value of the original program.

[Faculty of Science
Information and Computing Sciences]

50

6. Subeffecting

[Faculty of Science
Information and Computing Sciences]

51

Lack of modularity §6

let x = 2 + 3
in (λx . x + 1) x
ni

x :1 Nat

let x = 2 + 3
in (λx . x + x) x
ni

x :ω Nat

� Use of x in body determines its usage annotation.

[Faculty of Science
Information and Computing Sciences]

52

Poisoning §6

let id = λx . x
in let y = 2 + 3

in let z = 5
in id y + id z + z
ni

ni
ni

I z is used more than once: hence, z :ω Nat .

I id is applied to z : hence, id :ω Natω → Natω.
(Or id :ω ∀α. αω → αω .)

I id is applied to y : hence, y :ω Nat .

I But y is used only once!!

[Faculty of Science
Information and Computing Sciences]

53

Who’s to blame? §6

I Recall the rule for function application:

Γ̂ ∼UA Γ̂1 ./ Γ̂2 Γ̂1 `UA t1 :ϕ1 τ̂2
ϕ2 → τ̂ϕ Γ̂2 `UA t2 :ϕ2 τ̂2

Γ̂ `UA t1 t2 :ϕ τ̂

I Argument annotation ϕ2 should match the annotation on
the function domain.

I But in uniqueness typing it’s safe to bind a 1-annotated
argument to an ω-annotated function parameter.

I But in sharing analysis, it’s safe to bind an ω-annotated
argument to a 1-annotated function parameter.

[Faculty of Science
Information and Computing Sciences]

54

Turning the reasoning around... §6

I In uniqueness analysis, a 1-annotation on a formal
parameter may not receive ω-annotated values.
I The latter may have been duplicated, while the

1-annotation implies that destructive updates may take
place on the value.

I In sharing analysis, an ω-annotated formal parameter (that
may then use its arguments twice), should not be passed a
1-annotated argument.
I As a rule, you garbage collect 1-annotated values after their

use.

I The difference is then that for uniqueness typing the 1 on
the argument matters, and for sharing analysis the 1 on
the values.

I The latter decides what kind of thunk must be created, the
former what applications of the function are correct.

[Faculty of Science
Information and Computing Sciences]

55

Ordering on annotations §6

Partial order on Ann with 1 @ ω:

1 v ϕ

ϕ v ω

[Faculty of Science
Information and Computing Sciences]

56

Subeffecting: uniqueness typing §6

I From our generic usage analysis we can derive a system
that is specific for uniqueness typing.

I Judgements of the form Γ̂ `UT t :ϕ σ̂.

I Same rules as before.

I New rule for subeffecting:

Γ̂ `UT t :ϕ0 σ̂ ϕ0 v ϕ
Γ̂ `UT t :ϕ σ̂

[Faculty of Science
Information and Computing Sciences]

57

Example §6

I Let Γ̂ = [f 7→1 (Natω → Nat1), x 7→1 Nat].

I So, f does not perform destructive updates. Any argument
is fine!

I For example: f = λx . x + x and x = 2 + 3.

Γ̂ ∼UA Γ̂1 ./ Γ̂2
Γ̂1(f) =1 Natω → Nat1

Γ̂1 `UT f :1 Natω → Nat1

Γ̂2(x) =1 Nat

Γ̂2 `UT x :1 Nat
1 v ω

Γ̂2 `UT x :ω Nat

Γ̂ `UT f x :1 Nat

Γ̂1 = [f 7→1 (Natω → Nat1)] and Γ̂2 = [x 7→1 Nat]

[Faculty of Science
Information and Computing Sciences]

58

Subeffecting: sharing analysis §6

I We can also derive a system that is specific for sharing
analysis.

I Judgements of the form Γ̂ `SA t :ϕ σ̂.

I Same rules as in the generic analysis.

I But: a new rule for subeffecting:

Γ̂ `SA t :ϕ0 σ̂ ϕ v ϕ0

Γ̂ `SA t :ϕ σ̂

[Faculty of Science
Information and Computing Sciences]

59

Example §6

I In sharing analysis, doing a self-update that is not
necessary is not unsound.
I A value created with annotation ω can be used in a

1-annotated setting.

I Let Γ̂ = [f 7→1 (Nat1 → Nat1), x 7→ω Nat].

I For example: f = λx . x + 1 and x = 2 + 3.

Γ̂ ∼UA Γ̂1 ./ Γ̂2
Γ̂1(f) =1 Nat1 → Nat1

Γ̂1 `SA f :1 Nat1 → Nat1

Γ̂2(x) =ω Nat

Γ̂2 `SA x :ω Nat
1 v ω

Γ̂2 `SA x :1 Nat

Γ̂ `SA f x :1 Nat

Γ̂1 = [f 7→1 (Nat1 → Nat1), x 7→ω Nat] and Γ̂2 = [x 7→ω Nat]

[Faculty of Science
Information and Computing Sciences]

60

Keeping the analysis generic §6

I Define the inverse partial order (Ann,w) with ω A 1.

I Let � range over the two partial orders:

� ∈ Ord = {v,w} partial orders

I Parameterize the judgements of the generic analysis with a
partial order �:

Γ̂ `�UA t :ϕ0 σ̂ ϕ0 � ϕ
Γ̂ `�UA t :ϕ σ̂

[Faculty of Science
Information and Computing Sciences]

61

Instantiation §6

Uniqueness typing:

Γ̂ `vUA t :ϕ σ̂

Γ̂ `UT t :ϕ σ̂

Sharing analysis:

Γ̂ `wUA t :ϕ σ̂

Γ̂ `SA t :ϕ σ̂

[Faculty of Science
Information and Computing Sciences]

62

Containment revisited §6

I In uniqueness typing, a 1-annotated variable may be used
as ω-annotated.

I What if that variable contains a function?

let f = λx . λy . x + y
in let g = f (2 + 3)

in g 7 + g 11
ni

ni

I With subeffecting, this is typeable!

I Type system is now unsound, should we disallow
subeffecting on function types?

[Faculty of Science
Information and Computing Sciences]

63

7. Polyvariance

[Faculty of Science
Information and Computing Sciences]

64

What about modularity? §7

I Idea: independent from its use sites, can we assign each
function its “most flexible” type:

I For uniqueness analysis:

λx . x + 1 :ω Natω → Nat1

I For sharing analysis:

λx . x + 1 :ω Nat1 → Natω

[Faculty of Science
Information and Computing Sciences]

65

Polyvariance §7

I Allow types to be polymorphic in their annotations.

I For uniqueness analysis:

λx . x + 1 :ω ∀β1. ∀β2.Natβ1 → Natβ2

λx . x :ω ∀β. Natβ → Natβ

I For sharing analysis:

λx . x + 1 :ω ∀β1. ∀β2.Natβ1 → Natβ2

λx . x :ω ∀β. Natβ → Natβ

[Faculty of Science
Information and Computing Sciences]

66

8. Subeffect qualifiers

[Faculty of Science
Information and Computing Sciences]

67

How to capture all valid types? §8

In uniqueness typing (with subeffecting):

λx . x :ω ∀α. α1 → α1

λx . x :ω ∀α. α1 → αω

λx . x :ω ∀α. αω → αω

In sharing analysis (with subeffecting):

λx . x :ω ∀α. α1 → α1

λx . x :ω ∀α. αω → α1

λx . x :ω ∀α. αω → αω

Which polyvariant type captures all valid types?

∀α.∀β. αβ → αβ (not general enough)

∀α.∀β1.∀β2. αβ1 → αβ2 (too general)

[Faculty of Science
Information and Computing Sciences]

68

Poisoning (again) §8

let h = λf . λx . λy . f x + f y
in let g = λz . z + 1

in let u = 2 + 3
in let v = 5 + 7

in h g u v + v
ni

ni
ni

ni

I Let h :1 ∀β. (Natβ → Nat1)ω → (Natβ → (Natβ → Nat1)1)1.

I v is used more than once, hence: v :ω Nat .

I But then, in the call to h, β is instantiated to ω.

I For sharing analysis, this means that u :ω Nat .

I But u is used only once!!

[Faculty of Science
Information and Computing Sciences]

69

Qualified types §8

I To gain accuracy, we can store subeffecting conditions in
type schemes.

I Qualified types are a generalization of Haskell’s type
classes that allow constraints to be incorporated in types.

I Elegant and well-established theory: see Jones (ESOP
1992).

λx . x :ω ∀α.∀β1. ∀β2. β1 � β2 ⇒ αβ1 → αβ2

[Faculty of Science
Information and Computing Sciences]

70

Example revisited §8

let h = λf . λx . λy . f x + f y
in let g = λz . z + 1

in let u = 2 + 3
in let v = 5 + 7

in h g u v + v
ni

ni
ni

ni

I Sharing analysis.

I Let h :1 ∀β1 β2 β3. β2 w β1 ⇒ β3 w β1 ⇒ (Natβ1 → Nat1)ω →
(Natβ2 → (Natβ3 → Nat1)1)1.

I v is used more than once, hence: v :ω Nat .

I So, in the call to h, β3 is instantiated to ω.

I Still, the constraints are satisfied if β1 = β2 = 1.

I Hence, we can have u :1 Nat .

[Faculty of Science
Information and Computing Sciences]

71

Principal types §8

Most general types can sometimes be a bit intimidating.

λf . λx . λy . f x + f y :
∀α.∀β1.∀β2.∀β3. ∀β4. ∀β5. ∀β6.∀β7.∀β8.
β3 � β1 ⇒ β4 � β1 ⇒ β7 v β3 ⇒
(αβ1 → Natβ2)ω → (αβ3 → (αβ4 → Natβ5)β7)β8

[Faculty of Science
Information and Computing Sciences]

72

9. Properties of type systems (Metatheory)

[Faculty of Science
Information and Computing Sciences]

73

Subject reduction §9

I If an expression has type τ , then the value it evaluates to
also has type τ .

I Type preservation is a bit weaker: every evaluation step
keeps the result well-typed.
I But the types may change

[Faculty of Science
Information and Computing Sciences]

74

Conservative extension §9

I If a program can be typed, then it can be analyzed.

I If a program can be analyzed, erasing the annotations from
the proof tree gives the proof tree for the type system.

[Faculty of Science
Information and Computing Sciences]

75

Safety/Soundness §9

I In the underlying type system: well-typed programs do not
go wrong.

I In the annotated type system: acting on the optimisations
implied by the annotations does not make evaluation go
wrong.

I Usually, the semantics must be changed slightly to observe
this.

I In the case of sharing analysis:
I Distinguish between 1-annotated and w -annotated thunks.
I Remove the 1-annotated thunks from the heap when they

have been used (once).
I Show that you never need to access something that was

removed from the heap.

[Faculty of Science
Information and Computing Sciences]

76

Progress §9

I Only with respect to small-step semantics.

I Evaluation of a well-typed term never gets stuck.

I It might loop though.

[Faculty of Science
Information and Computing Sciences]

77

Completeness §9

I Usually the analysis is not complete
I Some never-go-wrong expressions cannot be typed.
I Static analysis is approximate.

I Still, we do sometimes establish completeness.

I Consider an analysis that generates constraints to capture
the analysis.

I And build a solver to find a solution to the constraints.
I We want that solver to be

I sound: the solution it computes is a solution
I complete: if a set of constraints has a solution, the solver

should find it (or a better solution).

[Faculty of Science
Information and Computing Sciences]

78

Principality §9

I We prefer the analysis to provide a best solution,

I from which all other solutions can be derived.

I Depends very much on the expressivity of your types: λx . x
may have type Nat → Nat or Bool → Bool if we do not
allow type variables in types.

I Neither is better than the other.

I Principality allows to solve constraints, have the result be a
principal type, and forget the constraints from then on.

I There is never a need to re-analyze: the principal type says
all.

I Not to be confused with principal typings.

	Introduction to usage analysis
	The underlying type system
	The analysis
	Type checking destructive updates
	Avoiding unnecessary closure updates
	Subeffecting
	Polyvariance
	Subeffect qualifiers
	Properties of type systems (Metatheory)

