

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

Program transformation

Ivo Gabe de Wolff Some parts based on slides of Stefan Holdermans

June 20, 2022

Recap

Usage analysis: determining which objects in a (functional) program are guaranteed to be used at most once and—dually which objects may be used more than once.

- \triangleright uniqueness analysis: unique at use site, for in-place updates
- \triangleright sharing analysis: unique at declaration site, for thunk creation

Universiteit Utrecht

\blacktriangleright How do we transform this program? let $xs = [1, 2]$ in sum $(map (+1) xs)$ ni

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences] K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 → 9 Q @

 \blacktriangleright How do we transform this program? let $xs = [1, 2]$ in sum $(map (+1) xs)$ ni

\triangleright Desired output: $\mathbf{let}\; xs = ^{1} [1,2] \mathbf{ in}\; sum\; (map_inplace\; (+1)\; xs) \mathbf{ ni}$

Universiteit Utrecht

 \blacktriangleright How do we transform this program? let $xs = [1, 2]$ in sum $(map (+1) xs)$ ni

Desired output: $\mathbf{let}\; xs = ^{1} [1,2] \mathbf{ in}\; sum\; (map_inplace\; (+1)\; xs) \mathbf{ ni}$

 \blacktriangleright Algorithm W: Nat

Universiteit Utrecht

 \blacktriangleright How do we transform this program? let $xs = [1, 2]$ in sum $(map (+1) xs)$ ni

\blacktriangleright Desired output: $\mathbf{let}\; xs = ^{1} [1,2] \mathbf{ in}\; sum\; (map_inplace\; (+1)\; xs) \mathbf{ ni}$

\blacktriangleright Algorithm W: Nat

 \blacktriangleright How can we preserve the required information?

Universiteit Utrecht

Typed terms

 \blacktriangleright To simplify things, we consider the underlying type system.

 \triangleright We annotate each binding with a type.

t ::=	let $x = t_1$ in t_2 ni
$\begin{vmatrix}\n \lambda x \cdot t_1 & \cdots \\ \lambda x \cdot t_2 & \cdots \\ \vdots & \vdots & \vdots \\ \lambda x \cdot \tau \cdot \hat{t}_1 & \cdots\n \end{vmatrix}$	
t ::=	let $x : \sigma = \hat{t}_1$ in \hat{t}_2 ni

Universiteit Utrecht

Recap: Algorithm W

$generalise : TVEnv \times Tv \rightarrow TvScheme$ $instantiate : **TvScheme** \rightarrow **Tv**$ $U \quad : TV \times Tv \quad \rightarrow TrySubst$ W : TyEnv \times Tm \rightarrow Ty \times TySubst

Later extended with annotation variables and constraints

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences] K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 → 9 Q @

Idea 1: Proof trees

 \triangleright Shows how typing rules are applied.

 \blacktriangleright Contains types of subterms.

Universiteit Utrecht

Idea 1: Proof trees

- \triangleright We write $\mathcal{T}::\Gamma\vdash_{\mathsf{UL}} t:\sigma$ to indicate that \mathcal{T} is a proof tree for $\Gamma \vdash_{\text{III}} t : \sigma$.
- ▶ Next, we define a translation $\llbracket \rrbracket$ from proof trees to target terms.

\blacktriangleright For example:

$$
\left[\n\begin{array}{c}\n\mathcal{T}_1 :: \Gamma \vdash_{\mathsf{UL}} t_1 : \sigma_1 \\
\mathcal{T}_2 :: \Gamma[x \mapsto \sigma_1] \vdash_{\mathsf{UL}} t_2 : \tau \\
\overline{\Gamma \vdash_{\mathsf{UL}}} \text{ let } x = t_1 \text{ in } t_2 \text{ ni} : \tau\n\end{array}\n\right] = \text{let } x : \sigma_1 = \llbracket \mathcal{T}_1 \rrbracket \text{ in } \llbracket \mathcal{T}_2 \rrbracket \text{ ni}
$$

Universiteit Utrecht

Idea 1: Proof trees

- \triangleright We can proof that each translated program evaluates to the value of the original program (meta theory).
- \blacktriangleright But how do we construct a proof tree? That is actually a similar problem as constructing the transformed (typed) terms.

Universiteit Utrecht

Idea 2: Map variable names to types

- \blacktriangleright Algorithm W gives a type and a *substitution*.
- $\triangleright \mathcal{W}$: TyEnv \times Tm \rightarrow Ty \times TySubst
- If we know the type variable (or type) that was assigned to a variable, then we can find its type.
- \triangleright We can construct a mapping from variable names to type variables in W .
- \triangleright if we have globally unique variable names.

Universiteit Utrecht

Variable names

How should we represent identifiers?

- \triangleright Named variables (String or number) Seems easy here, but rewrite rules as beta reduction become harder.
- \blacktriangleright Debruijn indices Number of binders between declaration and use
- \blacktriangleright Debruijn level Number of binders between declaration and root

Always use named variables in a pretty printer!

Universiteit Utrecht

Debruijn indices

- \triangleright Debruijn indices can be used for a typed environment.
- \blacktriangleright Environment becomes a type-level list.
- \blacktriangleright Parameterize the expression data type over the environment.
- \triangleright Debruijn indices index into that list.

Universiteit Utrecht

Idea 3: Call W on subterms

 $transform : **TyEnv** \rightarrow **Tm** \rightarrow **TypedTm**$ transform Γ (let $x = bnd$ in body ni) = let $x : \sigma = (transform \Gamma bnd)$ in (transform Γ_1 body) ni where $(\tau, _) = \mathcal{W}(\Gamma, bnd)$ $\sigma = \text{generalise}(\Gamma, \tau)$ $\Gamma_1 = \Gamma[x \mapsto \sigma]$

Universiteit Utrecht

Idea 3: Call W on subterms

 $transform : **TyEnv** \rightarrow **Tm** \rightarrow **TypedTm**$ transform Γ (let $x = bnd$ in body ni) = let $x : \sigma = (transform \Gamma bnd)$ in (transform Γ_1 body) ni where $(\tau, _) = \mathcal{W}(\Gamma, bnd)$ $\sigma = \text{generalise}(\Gamma, \tau)$ $\Gamma_1 = \Gamma[x \mapsto \sigma]$

What are the problems?

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences] **K ロ K + @ K K 를 K K 를 K - 를 - ⊙ Q (V**

Tupling

In transform and W both recurse on Tm.

- \triangleright W may be called many times on some subterms.
- \triangleright Worst case: quadratic instead of linear.

Universiteit Utrecht

Tupling

Integrate W in transform:

```
transform: \mathbf{Ty}\mathbf{Env} \to \mathbf{Tm} \to \mathbf{Ty} \times \mathbf{Ty}\mathbf{Subst} \times \mathbf{TypedTm}transform \Gamma (let x = bnd in body ni) =
        (\tau_2)\theta_2 \circ \theta_1, let x : \sigma_1 = \text{bnd}' in \text{body}' ni
         )
   where
         (\tau_1, \theta_1, \text{bnd}') = \text{transform } \Gamma \text{ } \text{bnd}\sigma_1 = \text{generalise}(\theta_1 \Gamma, \tau_1)\Gamma_1 = (\theta_1 \Gamma)[x \mapsto \sigma_1](\tau_2, \theta_2, body') = transform \space \Gamma_1 \space body
```


Universiteit Utrecht

Substitutions

- \blacktriangleright When analyzing $body$, we may find substitutions on type variables used in bnd.
- \triangleright Can we apply the substitution on a term?
- \triangleright For simple analysis that might be possible, but still undecirable for performance.

Universiteit Utrecht

Tupling

Return term as a function taking a substitution:

 $transform : **TyEnv** \rightarrow **Tm**$ \rightarrow Ty \times TySubst \times (TySubst \rightarrow TypedTm) transform Γ (let $x = bnd$ in body ni) = (τ_2) $\theta_2 \circ \theta_1$ $, \lambda \theta \rightarrow$ let $x : \theta \tau_1 = (bnd' (\theta, \theta_2) \text{ in } (body' \theta) \text{ ni})$) where $(\tau_1, \theta_1, \text{bnd}') = \text{transform } \Gamma \text{ } \text{bnd}$ $(\tau_2, \theta_2, body') = transform (\theta_1 \Gamma) body$

Universiteit Utrecht

Type variables

 $transform : **TyEnv** \rightarrow **Tm**$ \rightarrow Ty \times TySubst \times (TySubst \rightarrow TypedTm)

- \blacktriangleright This signature doens't allow you to create fresh type variables.
- ▶ You could use the State monad to keep track of the next fresh index.

Universiteit Utrecht

Comparison with Attribute Grammars

- \triangleright We're now manually doing a multi-pass.
- \blacktriangleright The first pass returns a function to perform the second pass.
- \triangleright An Attribute Grammar system would do that for us, though it is not always possible/preferred to integrate that in a project.

Universiteit Utrecht

Next time

- \blacktriangleright We now know how to convert a Tm to a Typed Tm.
- \triangleright Do we need to duplicate the data type Tm to define TypedTm?
- \triangleright Do we need to reimplement all utility functions on Tm for TypedTm?

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

 PQQ

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} + \mathbf{B} + \mathbf{A} + \math$