[Faculty of Science
5 Universiteit Utrecht Information and Computing Sciences]

Program transformation
Ilvo Gabe de Wolff

Some parts based on slides of Stefan Holdermans

June 20, 2022

Recap

Usage analysis: determining which objects in a (functional)
program are guaranteed to be used at most once and—dually—
which objects may be used more than once.

P uniqueness analysis: unique at use site, for in-place updates

P sharing analysis: unique at declaration site, for thunk
creation

& ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

24

» How do we transform this program?
let zs = [1,2] in sum (map (+1) xs) ni

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

=] F = E E 9DQAC¢

» How do we transform this program?
let zs = [1,2] in sum (map (+1) xs) ni

» Desired output:
let zs =! [1,2] in sum (map_inplace (+1) zs) ni

[Faculty of Science
& Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

» How do we transform this program?

let zs = [1,2] in sum (map (+1) xs) ni
» Desired output:

let zs =! [1,2] in sum (map_inplace (+1) zs) ni
> Algorithm W:
Nat

Universiteit Utrecht

[m]

[Faculty of Science
Information and Computing Sciences]
(=

DEE

» How do we transform this program?
let zs = [1,2] in sum (map (+1) xs) ni

» Desired output:
let zs =! [1,2] in sum (map_inplace (+1) zs) ni

> Algorithm W:
Nat

> How can we preserve the required information?

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

Typed terms

» To simplify things, we consider the underlying type system.
> We annotate each binding with a type.

t € Tm terms
t € TypedTm typed terms
t == letz =1t in & ni
| Az.ty | ---
A let:c:a:flinfgni
| Az:t.%y | -

4 ﬁ)) [Faculty of Science
% &) § Universiteit Utrecht Information and Computing Sciences]

Recap: Algorithm W

generalise : TyEnv x Ty — TyScheme
instantiate : TyScheme — Ty

U : Ty x Ty — TySubst

w : TyEnv x Tm — Ty x TySubst

Later extended with annotation variables and constraints

5&\\“’%}) [Faculty of Science
% &) é Universiteit Utrecht Information and Computing Sciences]
5 NS

a 1: Proof trees

» Shows how typing rules are applied.
» Contains types of subterms.

Universiteit Utrecht

[m]

[Faculty of Science
Information and Computing Sciences]

F = E E 9DQAC¢

; 1: Proof trees

» We write 7 :: ' by t: o to indicate that 7 is a proof tree
for I’ l_UL t:o.

> Next, we define a translation [—] from proof trees to
target terms.

» For example:

TiaD by ti:01
Toul|z— o) bubo:7
IFFyletz=tintni: 7

=let z:01 = [T1] in [72] ni

[Faculty of Science

Universiteit Utrecht Information and Computing Sciences]

=] F = E E 9DQAC¢

Idea 1: Proof trees

> We can proof that each translated program evaluates to
the value of the original program (meta theory).

» But how do we construct a proof tree?
That is actually a similar problem as constructing the
transformed (typed) terms.

5&\\“’%}) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
8 NS

Ildea 2: Map variable names to types

v

Algorithm W gives a type and a substitution.
> W:TyEnv x Tm — Ty x TySubst

If we know the type variable (or type) that was assigned to
a variable, then we can find its type.

v

> We can construct a mapping from variable names to type
variables in W,

> if we have globally unique variable names.

&\\‘Wﬁ)) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
9 NS

Variable names

How should we represent identifiers?

» Named variables (String or number)
Seems easy here, but rewrite rules as beta reduction
become harder.

» Debruijn indices
Number of binders between declaration and use

» Debruijn level
Number of binders between declaration and root

Always use named variables in a pretty printer!

5&\\“’%}) [Faculty of Science
% N % Universiteit Utrecht Information and Computing Sciences]
10 N

Debruijn indices

» Debruijn indices can be used for a typed environment.
» Environment becomes a type-level list.

P> Parameterize the expression data type over the
environment.

» Debruijn indices index into that list.

&\\‘Wﬁ)) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
1 N

Idea 3: Call W on subterms

transform : TyEnv — Tm — TypedTm
transform I' (let © = bnd in body ni) =
let x : 0 = (transform I' bnd)
in (transform I'; body) ni
where
(r,—) =W (L, bnd)
o = generalise(',)
Iy = F[ZE — O']

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

12

Idea 3: Call W on subterms

transform : TyEnv — Tm — TypedTm
transform I' (let © = bnd in body ni) =
let x : 0 = (transform I' bnd)
in (transform I'; body) ni
where
(r,—) =W (L, bnd)
o = generalise(',)
Iy = F[ZE — O']

What are the problems?

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

12

> transform and W both recurse on Tm.
>)V may be called many times on some subterms.

» Worst case: quadratic instead of linear.

[Faculty of Science
& Universiteit Utrecht Information and Computing Sciences]

Or«@r«=r»<Er» E DA

Tupling

Integrate W in transform:

transform : TyEnv — Tm — Ty x TySubst x TypedTmn
transform ' (let z = bnd in body ni) =
(72
9 92 % 91
et z: 0 = bnd’ in body’ ni
)
where
(11,61, bnd") = transform T bnd
o1 = generalise(0; T, 1)
Fl = (91 F)[ZB —> 0'1]
(72,02, body") = transform Ty body

5&\\“’%}) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
14 NS

Substitutions

» When analyzing body, we may find substitutions on type
variables used in bnd.

» Can we apply the substitution on a term?

P For simple analysis that might be possible, but still
undecirable for performance.

5&\\“’%}) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
15 NS

Tupling

Return term as a function taking a substitution:

transform : TyEnv — Tm
— Ty x TySubst x (TySubst — TypedTm)
transform I' (let © = bnd in body ni) =
(72
,02 001
A = let x:0 71 = (bnd’ (0.65) in (body’ 0) ni)
)
where
(11,61, bnd") = transform T bnd
(72, 02, body") = transform (61 ") body

5&\\“’%}) [Faculty of Science
% N % Universiteit Utrecht Information and Computing Sciences]
16 N

Type variables

transform : TyEnv — Tm
— Ty x TySubst x (TySubst — TypedTm)

» This signature doens’t allow you to create fresh type

variables.
» You could use the State monad to keep track of the next
fresh index.
&\\Wi},; [Faculty of Science
% &) é Universiteit Utrecht Information and Computing Sciences]
17 NS

Comparison with Attribute Grammars

> We're now manually doing a multi-pass.

» The first pass returns a function to perform the second
pass.

» An Attribute Grammar system would do that for us,
though it is not always possible/preferred to integrate that
in a project.

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

18

19

Next time

> We now know how to convert a Tm to a TypedTm.

> Do we need to duplicate the data type Tm to define
TypedTm?

» Do we need to reimplement all utility functions on Tm for
TypedTm?

5&\\“’%}) [Faculty of Science
E N § Universiteit Utrecht Information and Computing Sciences]
NS

