
[Faculty of Science
Information and Computing Sciences]

Program transformation

Ivo Gabe de Wolff
Some parts based on slides of Stefan Holdermans

June 20, 2022

[Faculty of Science
Information and Computing Sciences]

2

Recap

Usage analysis: determining which objects in a (functional)
program are guaranteed to be used at most once and—dually—
which objects may be used more than once.

I uniqueness analysis: unique at use site, for in-place updates

I sharing analysis: unique at declaration site, for thunk
creation

[Faculty of Science
Information and Computing Sciences]

3

Today

I How do we transform this program?
let xs = [1, 2] in sum (map (+1) xs) ni

I Desired output:
let xs =1 [1, 2] in sum (map inplace (+1) xs) ni

I Algorithm W:
Nat

I How can we preserve the required information?

[Faculty of Science
Information and Computing Sciences]

3

Today

I How do we transform this program?
let xs = [1, 2] in sum (map (+1) xs) ni

I Desired output:
let xs =1 [1, 2] in sum (map inplace (+1) xs) ni

I Algorithm W:
Nat

I How can we preserve the required information?

[Faculty of Science
Information and Computing Sciences]

3

Today

I How do we transform this program?
let xs = [1, 2] in sum (map (+1) xs) ni

I Desired output:
let xs =1 [1, 2] in sum (map inplace (+1) xs) ni

I Algorithm W:
Nat

I How can we preserve the required information?

[Faculty of Science
Information and Computing Sciences]

3

Today

I How do we transform this program?
let xs = [1, 2] in sum (map (+1) xs) ni

I Desired output:
let xs =1 [1, 2] in sum (map inplace (+1) xs) ni

I Algorithm W:
Nat

I How can we preserve the required information?

[Faculty of Science
Information and Computing Sciences]

4

Typed terms

I To simplify things, we consider the underlying type system.

I We annotate each binding with a type.

t ∈ Tm terms

t̂ ∈ TypedTm typed terms

t ::= let x = t1 in t2 ni
| λx . t1 | · · ·

t̂ ::= let x : σ = t̂1 in t̂2 ni

| λx : τ . t̂1 | · · ·

[Faculty of Science
Information and Computing Sciences]

5

Recap: Algorithm W

generalise : TyEnv ×Ty → TyScheme
instantiate : TyScheme → Ty
U : Ty ×Ty → TySubst
W : TyEnv ×Tm→ Ty ×TySubst

Later extended with annotation variables and constraints

[Faculty of Science
Information and Computing Sciences]

6

Idea 1: Proof trees

I Shows how typing rules are applied.

I Contains types of subterms.

[Faculty of Science
Information and Computing Sciences]

7

Idea 1: Proof trees

I We write T :: Γ `UL t : σ to indicate that T is a proof tree
for Γ `UL t : σ.

I Next, we define a translation J−K from proof trees to
target terms.

I For example:

u

ww
v

T1 :: Γ `UL t1 : σ1

T2 :: Γ[x 7→· σ1] `UL t2 : τ

Γ `UL let x = t1 in t2 ni : τ

}

��
~ = let x : σ1 =· JT1K in JT2K ni

[Faculty of Science
Information and Computing Sciences]

8

Idea 1: Proof trees

I We can proof that each translated program evaluates to
the value of the original program (meta theory).

I But how do we construct a proof tree?
That is actually a similar problem as constructing the
transformed (typed) terms.

[Faculty of Science
Information and Computing Sciences]

9

Idea 2: Map variable names to types

I Algorithm W gives a type and a substitution.

I W : TyEnv ×Tm→ Ty ×TySubst

I If we know the type variable (or type) that was assigned to
a variable, then we can find its type.

I We can construct a mapping from variable names to type
variables in W,

I if we have globally unique variable names.

[Faculty of Science
Information and Computing Sciences]

10

Variable names

How should we represent identifiers?

I Named variables (String or number)
Seems easy here, but rewrite rules as beta reduction
become harder.

I Debruijn indices
Number of binders between declaration and use

I Debruijn level
Number of binders between declaration and root

Always use named variables in a pretty printer!

[Faculty of Science
Information and Computing Sciences]

11

Debruijn indices

I Debruijn indices can be used for a typed environment.

I Environment becomes a type-level list.

I Parameterize the expression data type over the
environment.

I Debruijn indices index into that list.

[Faculty of Science
Information and Computing Sciences]

12

Idea 3: Call W on subterms

transform : TyEnv→ Tm→ TypedTm
transform Γ (let x = bnd in body ni) =

let x : σ = (transform Γ bnd)
in (transform Γ1 body) ni

where
(τ ,) =W (Γ, bnd)
σ = generalise(Γ, τ)
Γ1 = Γ[x 7→ σ]

What are the problems?

[Faculty of Science
Information and Computing Sciences]

12

Idea 3: Call W on subterms

transform : TyEnv→ Tm→ TypedTm
transform Γ (let x = bnd in body ni) =

let x : σ = (transform Γ bnd)
in (transform Γ1 body) ni

where
(τ ,) =W (Γ, bnd)
σ = generalise(Γ, τ)
Γ1 = Γ[x 7→ σ]

What are the problems?

[Faculty of Science
Information and Computing Sciences]

13

Tupling

I transform and W both recurse on Tm.

I W may be called many times on some subterms.

I Worst case: quadratic instead of linear.

[Faculty of Science
Information and Computing Sciences]

14

Tupling

Integrate W in transform:

transform : TyEnv→ Tm→ Ty ×TySubst×TypedTm
transform Γ (let x = bnd in body ni) =

(τ2
, θ2 ◦ θ1
, let x : σ1 = bnd ′ in body ′ ni
)

where
(τ1, θ1, bnd

′) = transform Γ bnd
σ1 = generalise(θ1 Γ, τ1)
Γ1 = (θ1 Γ)[x 7→ σ1]
(τ2, θ2, body

′) = transform Γ1 body

[Faculty of Science
Information and Computing Sciences]

15

Substitutions

I When analyzing body , we may find substitutions on type
variables used in bnd .

I Can we apply the substitution on a term?

I For simple analysis that might be possible, but still
undecirable for performance.

[Faculty of Science
Information and Computing Sciences]

16

Tupling

Return term as a function taking a substitution:

transform : TyEnv→ Tm
→ Ty ×TySubst× (TySubst→ TypedTm)

transform Γ (let x = bnd in body ni) =
(τ2
, θ2 ◦ θ1
, λθ → let x : θ τ1 = (bnd ′ (θ. θ2) in (body ′ θ) ni)
)

where
(τ1, θ1, bnd

′) = transform Γ bnd
(τ2, θ2, body

′) = transform (θ1 Γ) body

[Faculty of Science
Information and Computing Sciences]

17

Type variables

transform : TyEnv→ Tm
→ Ty ×TySubst× (TySubst→ TypedTm)

I This signature doens’t allow you to create fresh type
variables.

I You could use the State monad to keep track of the next
fresh index.

[Faculty of Science
Information and Computing Sciences]

18

Comparison with Attribute Grammars

I We’re now manually doing a multi-pass.

I The first pass returns a function to perform the second
pass.

I An Attribute Grammar system would do that for us,
though it is not always possible/preferred to integrate that
in a project.

[Faculty of Science
Information and Computing Sciences]

19

Next time

I We now know how to convert a Tm to a TypedTm.

I Do we need to duplicate the data type Tm to define
TypedTm?

I Do we need to reimplement all utility functions on Tm for
TypedTm?

