
[Faculty of Science
Information and Computing Sciences]

Program transformation:
intermediate representations

Ivo Gabe de Wolff

June 7, 2022

[Faculty of Science
Information and Computing Sciences]

2

Greek letters

I τ : Tau, types

I ρ: Rho, qualified types or qualified types

I σ: Sigma, type schemes

I Γ: Uppercase gamma, type environment

I φ: Phi, annotation

I α: Alpha, type variables

I β: Beta, annotation variables

I ω: Omega, more than once

I ξ: Xi, extension descriptor

[Faculty of Science
Information and Computing Sciences]

3

Last time

Different ways to do program transformation with Algorithm W:

I Construct a map from variable names to type variables in
W, and use type substitution in transformation.

I Tuple Algorithm W with transformation, return a function
to do the transformation.

Both are a multipass.

[Faculty of Science
Information and Computing Sciences]

4

Intermediate representation (IR)

t ::= let x = t1 in t2 ni
| λx . t1 | t1 + t2 | · · ·

t̂ ::= let x : σ = t̂1 in t̂2 ni

| λx : τ . t̂1 | t̂1 + t̂2 | · · ·

data Expr
= Let Name Expr Expr
| Lam Name Expr
| Add Expr Expr
| · · ·

data TypedExpr
= TLet Name TypeScheme TypedExpr TypedExpr
| TLam Name Type TypedExpr
| TAdd TypedExpr TypedExpr
| · · ·

[Faculty of Science
Information and Computing Sciences]

4

Intermediate representation (IR)

t ::= let x = t1 in t2 ni
| λx . t1 | t1 + t2 | · · ·

t̂ ::= let x : σ = t̂1 in t̂2 ni

| λx : τ . t̂1 | t̂1 + t̂2 | · · ·

data Expr
= Let Name Expr Expr
| Lam Name Expr
| Add Expr Expr
| · · ·

data TypedExpr
= TLet Name TypeScheme TypedExpr TypedExpr
| TLam Name Type TypedExpr
| TAdd TypedExpr TypedExpr
| · · ·

[Faculty of Science
Information and Computing Sciences]

5

Duplicating data types

We could duplicate the data type, but:

I this will get out of sync and is hard to maintain.

I requires code duplication of utility functions.

[Faculty of Science
Information and Computing Sciences]

6

In GHC

Variable names are represented differently during various stages
of the compiler:

I After parsing: ’Reader names’

I After renaming: ’Name’

I After type checking: ’Id’ (Name with type)

Data type for Haskell expressions:

data HsExpr1 = HsVar RdrName | · · ·
data HsExpr2 = HsVar Name | · · ·
data HsExpr3 = HsVar Id | · · ·

[Faculty of Science
Information and Computing Sciences]

6

In GHC

Variable names are represented differently during various stages
of the compiler:

I After parsing: ’Reader names’

I After renaming: ’Name’

I After type checking: ’Id’ (Name with type)

Data type for Haskell expressions:

data HsExpr1 = HsVar RdrName | · · ·
data HsExpr2 = HsVar Name | · · ·
data HsExpr3 = HsVar Id | · · ·

[Faculty of Science
Information and Computing Sciences]

7

Parameterize data type

I For lists we have one generic data type, parameterized over
the type of the contents.

I Similarly, we can paramaterize the IR over the type of
variable names:

data HsExpr id
= HsVar id
| HsApp (HsExpr id) (HsExpr id) | · · ·

(Simplified, actual data type also includes source mapping info.)

[Faculty of Science
Information and Computing Sciences]

7

Parameterize data type

I For lists we have one generic data type, parameterized over
the type of the contents.

I Similarly, we can paramaterize the IR over the type of
variable names:

data HsExpr id
= HsVar id
| HsApp (HsExpr id) (HsExpr id) | · · ·

(Simplified, actual data type also includes source mapping info.)

[Faculty of Science
Information and Computing Sciences]

7

Parameterize data type

I For lists we have one generic data type, parameterized over
the type of the contents.

I Similarly, we can paramaterize the IR over the type of
variable names:

data HsExpr id
= HsVar id
| HsApp (HsExpr id) (HsExpr id) | · · ·

(Simplified, actual data type also includes source mapping info.)

[Faculty of Science
Information and Computing Sciences]

8

Pipeline

parse :: String→ HsExpr RdrName

rename :: HsExpr RdrName→ HsExpr Name

typecheck :: HsExpr Name→ HsExpr Id

[Faculty of Science
Information and Computing Sciences]

9

Reusable functions

I We can now create generic functions such as a pretty
printer,

I similar to length on polymorphic lists.

I These functions can be parameterized with the semantics
or behaviour of type argument id ,

I similar to filter on polymorphic lists.

[Faculty of Science
Information and Computing Sciences]

10

So far

I A generic data type.

I Reusable utility functions.

I But they only differ on the name type.

[Faculty of Science
Information and Computing Sciences]

11

More annotations

I We need to store more information from type checking in
the IR.

I For list expressions ([1, 2, 3]), we must store the type of
the elements.

data HsExpr id
= HsVar id
| · · ·
| ExplicitList

Type
[HsExpr id]

I Now the type is always present, but it should only be
present after type checking.

[Faculty of Science
Information and Computing Sciences]

12

Type after type checking

I Type argument id tells us whether we are after type
checking.

I We can use a type family to store a type only if id is Id.

type family PostTcType id
type instance PostTcType RdrName = ()
type instance PostTcType Name = ()
type instance PostTcType Id = Type

[Faculty of Science
Information and Computing Sciences]

13

Type families

type family PostTcType id
type instance PostTcType RdrName = ()
type instance PostTcType Name = ()
type instance PostTcType Id = Type

I A type family is a type level function.

I PostTcType maps RdrName and Name to (), and Id
to Type.

[Faculty of Science
Information and Computing Sciences]

14

Back to the data type

Use PostTcType id to only store the type after type checking,
when id is Id:

data HsExpr id
= HsVar id
| · · ·
| ExplicitList

(PostTcType id)
[HsExpr id]

I Now the type is always present, but it should only be
present after type checking.

[Faculty of Science
Information and Computing Sciences]

15

Further generalized

PostTcType can be generalized to:

type family PostTc id a
type instance PostTc RdrName a = ()
type instance PostTc Name a = ()
type instance PostTc Id a = a

Now it can also be used for other annotations than types.

[Faculty of Science
Information and Computing Sciences]

16

1. Trees that grow

[Faculty of Science
Information and Computing Sciences]

17

Trees that grow §1

By Shayan Najd and Simon Peyton Jones

More flexibility:

I Add new fields

I Add new constructors

I Remove constructors

[Faculty of Science
Information and Computing Sciences]

18

General idea §1

Type argument ’id’ implies the representation of names, and
which annotations are on the AST.

What if we only use the type argument for the latter?

[Faculty of Science
Information and Computing Sciences]

19

Data type §1

I Type variable ξ, called the extension descriptor, to replace
id .

I For each constructor, we have a type family for
annotations.

data ExpX ξ
= LitX (XLit ξ) Integer
| VarX (XVar ξ) Var
| AbsX (XAbs ξ) Var (ExpX ξ) -- Abstraction/Lambda
| AppX (XApp ξ) (ExpX ξ) (ExpX ξ)

type family XLit ξ
type family XVar ξ
type family XAbs ξ
type family XApp ξ

[Faculty of Science
Information and Computing Sciences]

20

Undecorated data type §1

I Data type UD has no constructors, we only use it on type
level.

I All annotations are Void.

type ExpUD = ExpX UD
data UD
type instance XLit UD = Void
type instance XVar UD = Void
type instance XAbs UD = Void
type instance XApp UD = Void

[Faculty of Science
Information and Computing Sciences]

21

Void versus () §1

I Void is a datatype with 0 constructors.

I It’s only inhabitant is ⊥; a computation that never
completes successfully.

I This way ExpX UD is isomorphic to Exp: there is only
one annotation possible.

[Faculty of Science
Information and Computing Sciences]

22

Void versus () §1

I () has two inhabitants, but !() has only one.

I Bottom is not an inhabitant of !().

I With strict annotation fields and () as annotation, it is
again isomorphic:

data ExpX ξ
= LitX ! (XLit ξ) Integer
| VarX ! (XVar ξ) Var
| AbsX ! (XAbs ξ) Var (ExpX ξ) -- Abstraction/Lambda
| AppX ! (XApp ξ) (ExpX ξ) (ExpX ξ)

type instance XLit UD = ()
type instance XVar UD = ()
type instance XAbs UD = ()
type instance XApp UD = ()

[Faculty of Science
Information and Computing Sciences]

23

Adding annotations §1

Recall the typing rule for applications:

Γ `UL t1 : τ2 → τ Γ `UL t2 : τ2

Γ `UL t1 t2 : τ
[t-app]

I We may need to store the argument type τ2 in application
nodes.

type ExpTC = ExpX TC
data TC
type instance XLit TC = ()
type instance XVar TC = ()
type instance XAbs TC = ()
type instance XApp TC = Type

[Faculty of Science
Information and Computing Sciences]

24

Adding constructors §1

Partial application:

Some subtrees will be replaced with constant values

We could add an additional constructor to Exp:

data Val = · · ·
data Exp = · · · | Val Val

[Faculty of Science
Information and Computing Sciences]

25

Type family for adding constructors §1

Type family XExp ξ contains the type of the additional
constructor.

data ExpX ξ
= LitX (XLit ξ) Integer
| VarX (XVar ξ) Var
| AbsX (XAbs ξ) Var (ExpX ξ) -- Abstraction/Lambda
| AppX (XApp ξ) (ExpX ξ) (ExpX ξ)
| ExpX (XExp ξ)

[Faculty of Science
Information and Computing Sciences]

26

Undecorated data type §1

All annotations are Void:

type ExpUD = ExpX UD
data UD
type instance XLit UD = Void
type instance XVar UD = Void
type instance XAbs UD = Void
type instance XApp UD = Void
type instance XExp UD = Void

[Faculty of Science
Information and Computing Sciences]

27

Data type for partial evaluation §1

type ExpPE = ExpX PE
data PE
type instance XLit PE = Void
type instance XVar PE = Void
type instance XAbs PE = Void
type instance XApp PE = Void
type instance XExp PE = Val

[Faculty of Science
Information and Computing Sciences]

28

Isomorphic §1

Is ExpX UD still isomorphic to the original Exp?

I The additional constructor was implemented as:
| ExpX (XExp ξ)

I In ExpX UD , the constructor ExpX can still be used:

I ExpX ⊥ is a value of type XExp UD .

I So ExpX UD and Exp are not isomorphic any more.

[Faculty of Science
Information and Computing Sciences]

29

Isomorphic with strictness §1

Is ExpX UD still isomorphic to the original Exp?

I By making the field strict, we can prevent this:
| ExpX ! (XExp ξ)

I ⊥ is not a value of !Void , so this constructor can now
really not be used.

I ExpX UD and Exp are now isomoprhic.

I The paper doens’t talk about strictness, but it does solve
some issues they had.

[Faculty of Science
Information and Computing Sciences]

30

Replacing constructors §1

A compiler often replaces a chain of applications with a single
application, with a list of arguments:

data Val = · · ·
data Exp = · · · | App Exp [Exp]

Now we need to:

I Remove the old App constructor.

I Add a new constructor.

[Faculty of Science
Information and Computing Sciences]

31

Add the new constructor §1

type ExpSA = ExpX SA
data SA
type instance XLit SA = Void
type instance XVar SA = Void
type instance XAbs SA = Void
type instance XApp SA = Void
type instance XExp SA = (ExpSA, [ExpSA])

[Faculty of Science
Information and Computing Sciences]

32

Remove the old constructor §1

I Paper: use module system to hide this constructor.

I Not in the paper, but strictness helps here again!

I We then use () for annotation-less constructors, and Void
for inaccessible constructors.

[Faculty of Science
Information and Computing Sciences]

33

Remove the new constructor §1

data ExpX ξ
= LitX ! (XLit ξ) Integer
| VarX ! (XVar ξ) Var
| AbsX ! (XAbs ξ) Var (ExpX ξ) -- Abstraction/Lambda
| AppX ! (XApp ξ) (ExpX ξ) (ExpX ξ)
| ExpX ! (XExp ξ)

type ExpSA = ExpX SA
data SA
type instance XLit SA = ()
type instance XVar SA = ()
type instance XAbs SA = ()
type instance XApp SA = Void
type instance XExp SA = (ExpSA, [ExpSA])

[Faculty of Science
Information and Computing Sciences]

34

Conclusion §1

I A generic data type with one type argument ξ.

I Type family per constructor for annotations.

I Type family to add an additional constructor.

I We then use () for annotation-less constructors, and Void
for inaccessible constructors.

[Faculty of Science
Information and Computing Sciences]

35

More §1

Read the paper, if you want to know more about: (not part of
the exam)

I Pattern synonyms.

I GADTs for typed expressions.

I Generic functions.

I Use of module systems.

[Faculty of Science
Information and Computing Sciences]

36

Remaining lectures §1

I Guest lecture Marco Vassena: type systems for constant
time cryptography

I Abstract interpretation

I Fusion for high-level GPGPU programming (Accelerate)

I ?

Guest lectures will be on the exam.

	Trees that grow

