

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

APA Abstract Interpretation

Ivo Gabe de Wolff Slides from Jurriaan Hage

June 14, 2022

1. [Abstract interpretation](#page-1-0)

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences] K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 → 9 Q @

2

Abstract Interpretation §1

Abstract Interpretation

= analysis as a simplification of running a computer program.

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences] **KOD 4 ADD 4 BD 4 BD BD 9 QQ A**

Examples §1

- \triangleright During program execution we compute the values of variables.
	- \blacktriangleright And our location in the program.
- \triangleright During abstract interpretation we might
	- \triangleright compute only the signs of integer variables,
	- \triangleright compute where closures are created, but not the closures themselves,
	- \triangleright compute only the lengths of lists,
	- \triangleright compute only the types of variables.
- \blacktriangleright Typically, but not necessarily, we compute this for any given location.
- \blacktriangleright The right simplification depends on the analysis we are attempting.

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

KO KA A B KA B K DA A B KA KA KA A

The benefits of good abstractions §1

- ▶ For certain "good" abstract interpretations, soundness of the analysis follows "immediately" from the soundness of the semantics of the language.
- \blacktriangleright The latter needs to be proved only once, but many analyses may benefit.
- \blacktriangleright Semantics must be formally defined.
	- \blacktriangleright E.g., operational semantics, i.e., specification of interpreter
- \triangleright Since static analyses must be sound for all executions, we need a collecting semantics for the language.
- \triangleright Abstracting to a complete lattice with ACC gives guarantee of termination.

Universiteit Utrecht

The State is everything
Similar state is everything

\blacktriangleright An interpreter keeps track of the state of the program.

- \blacktriangleright Usually it contains:
	- \blacktriangleright What program point are we at?
	- \blacktriangleright For every variable, what value does it currently have?
	- \triangleright What does the stack look like?
	- \triangleright What is allocated on the heap?

Universiteit Utrecht

Examples §1

- \triangleright For an imperative languages (While) without procedures we track only the program point and the variables to value mapping.
- \blacktriangleright To deal with procedures, also track the stack.
- \blacktriangleright The state is determined by the language constructs we support.
	- \blacktriangleright Adding new implies the need to keep track of the heap.
- \blacktriangleright For the moment, we assume

$$
State = Lab \times (Var \rightarrow Data)
$$

where **Data** typically contains integers, reals and booleans.

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

KO KA A B KA B K DA A B KA KA KA A

State too static §1

 \blacktriangleright In abstract interpretation we simplify the state.

- \triangleright And operations on the state should behave consistently with the abstraction.
- \triangleright What if the state is already so information poor that the information we want is not in the state to begin with?
- \triangleright Our state

State = Lab \times (Var \rightarrow Data)

has only momentaneous information:

It does not record dynamic information for the program, e.g., executions.

Universiteit Utrecht

The need for dynamic information **Fig.** 51

 \blacktriangleright Many program analyses concern dynamic properties.

- \blacktriangleright Examples:
	- \triangleright Record the minimum and maximum value an integer identifier may take.
	- \blacktriangleright In a dynamically typed language: compute all types a variable may have.
	- \triangleright Record all the function abstractions an identifier might evaluate to.
	- Record the set of pairs (x, ℓ) in case x may have gotten its last value at program point ℓ .
- \triangleright We must first enrich the state to hold this information.

Universiteit Utrecht

Single execution versus all executions \S_1

- \triangleright Static analysis results should hold for all runs.
- \triangleright Code is only dead if all executions avoid it.
- \triangleright An interpreter considers only a single execution at the time.
- \blacktriangleright Redefine semantics to specify all executions "in parallel".
- \blacktriangleright This is called a collecting semantics.
- \triangleright Static analysis is on a simplified version (abstraction) of the collecting semantics.
	- \triangleright Because, usually, the collecting semantics is very infinite.

Universiteit Utrecht

 \triangleright A collecting semantics for While might record sets of execution histories:

State = $\mathcal{P}([(\mathsf{Lab},\mathsf{Maybe}(\mathsf{Var},\mathsf{Data}))])$

Example: if $[x > 0]^1$ then $[y := -3]^2$ else $[skip]^3$

 \blacktriangleright {[(?, Just $(x, 0)$), (?, Just $(y, 0)$), (1, Nothing), (3, Nothing)], $[(?, Just (x, 2)), (?, Just (y, 0)), (1, Nothing), (2, Just (y, -3))]$

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

KO KA A B KA B K DA A B KA KA KA A

A different collecting semantics \S ¹

 \triangleright Consider State = Lab \rightarrow P(Var \rightarrow Data).

 \triangleright Sets of functions telling us what values variables can have right before a given program point.

Ne repeat: if $[x > 0]^1$ then $[y := -3]^2$ else $[skip]^3$

- \triangleright For the above program we have (given the initial values): $[1 \mapsto \{ [x \mapsto 0, y \mapsto 0], [x \mapsto 2, y \mapsto 0] \},\$ $2 \mapsto \{ [x \mapsto 2, y \mapsto 0] \}, 3 \mapsto \{ [x \mapsto 0, y \mapsto 0] \}$
- \blacktriangleright At the end of the program, we have $\{[x \mapsto 2, y \mapsto -3], [x \mapsto 0, y \mapsto 0]\}$

▶ The semantics does not record that $[x \mapsto 2, y \mapsto 0]$ leads to $[x \mapsto 2, y \mapsto -3]$.

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

K ロ K + @ K K 를 K K 를 K - 를 - ⊙ Q (V

Variations §1

\blacktriangleright Also track the heap and/or stack (if the language needs it).

- \blacktriangleright In an instrumented semantics information is stored that does not influence the outcome of the execution.
	- \blacktriangleright For example, timing information.
- \triangleright Choose one which is general enough to accommodate all your analyses.
	- \triangleright You cannot analyze computation times if there is no information about it in your collecting semantics

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences] $\overline{4}$ ($\overline{4}$) $\overline{4}$) $\overline{4}$) $\overline{4}$) $\overline{4}$) $\overline{4}$ PQQ

The need to abstract §1

- \triangleright We cannot compute all the states for an arbitrary program: it might take an infinite amount of time and space.
- \triangleright We now must simplify the semantics.
- \blacktriangleright How far?
	- \blacktriangleright Trade-off between resources and amount of detail.
- \blacktriangleright The least one can demand is that analysis time is finite.
- In some cases, we have to give up more detail than we can allow.
	- \blacktriangleright Therefore: widening

Universiteit Utrecht

Example abstractions Example abstractions

- ▶ We take P (Var \rightarrow Data) as a starting point.
- ► Example: $S = \{ [x \mapsto 2, y \mapsto 1], [x \mapsto -2, y \mapsto 0] \}$
- Abstract to $Var \rightarrow \mathcal{P}(Data)$ (relational to independent):
	- \triangleright S now becomes $[x \mapsto \{-2, 2\}, y \mapsto \{0, 1\}].$
- Abstract further to intervals $[x, y]$ for $x \leq y$:

 \triangleright S now becomes represented by $[x \mapsto [-2, 2], y \mapsto [0, 1]]$

- Abstract further to $\text{Var} \rightarrow \mathcal{P}(\{0, -, +\})$:
	- \triangleright *S* now becomes $[x \mapsto \{-, 0, +\}, y \mapsto \{0, +\}].$
- \blacktriangleright Mappings are generally not injective: $\{[x \mapsto 2, y \mapsto 1], [x \mapsto -2, y \mapsto 0], [x \mapsto 0, y \mapsto 0]\}$ also maps to $[x \mapsto \{-, 0, +\}, y \mapsto \{0, +\}].$

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

Computing with abstract values §1

- \triangleright Consider: you have an interpreter for your language.
- It knows how to add integers, but not how to add signs.
- \triangleright Would be great if the operators followed immediately from the abstraction.
- \blacktriangleright This is the case, but the method is not constructive:
	- ► How to (effectively) compute $\{-\} + S$ $\{-\}$ in terms of $+$ for integers?
- \blacktriangleright It does give a correctness criterion for the abstracted operators: the result of $\{-\} + S$ {−} must include −.

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences] **KOD KARD KED KED E MAG**

Non-determinism §1

 \blacktriangleright Consider abstraction from

$$
\begin{array}{c}\n\textbf{Lab} \to \mathcal{P}(\textbf{Var} \to \textbf{Z}) \\
\text{to} \\
\textbf{Lab} \to \textbf{Var} \to \mathcal{P}(\{0, -, +\})\n\end{array}
$$

- \triangleright When we add integers, the result is deterministic: two integers go in, one comes out.
- If we add signs + and $-$, then we must get $\{+,0,-\}.$
- \blacktriangleright The abstract add is non-deterministic.
- \blacktriangleright Another reason for working with sets of abstractions of integers.
	- \triangleright We already needed those to deal with sets of executions.

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

KO KA A B KA B K DA A B KA KA KA A

Connecting back to dataflow analysis **EXECUTE:** S1

- \blacktriangleright Practically, Abstract Interpretation concerns itself with the "right" choice of lattice, and how to compute safely with its elements.
- **►** Assume semantics is $L = \text{Lab}_* \rightarrow \mathcal{P}(\text{Var}_* \rightarrow \text{Z})$ where \Box is elementwise ⊆.
	- \blacktriangleright Forms a complete lattice, but does not satisfy ACC!
- \blacktriangleright For Constant Propagation, abstract L to

 $M = \textsf{Lab}_* \to (\textsf{Var}_* \to \textsf{Z}^\top)_\bot$ with $\textsf{Z}^\top = \textsf{Z} \cup \{\top\}$.

 \blacktriangleright *M* does have ACC. (I.e., paths in the lattice are finite)

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

イロメイタメイミメイミメーミ めんぴ

The abstraction function
 S1

\blacktriangleright Recall:

$$
\begin{array}{l} L=\mathsf{Lab}_* \rightarrow \mathcal{P}(\mathsf{Var}_* \rightarrow \mathbf{Z}) \\ M=\mathsf{Lab}_* \rightarrow (\mathsf{Var}_* \rightarrow \mathbf{Z}^\top)_\bot \text{ with } \mathbf{Z}^\top = \mathbf{Z} \cup \{\top\} \end{array}
$$

 \triangleright For each label, $\alpha: L \to M$ maps \emptyset to \bot , collects all values for a given variable together in a set and then maps $\{i\}$ to i and others to \top .

\blacktriangleright Example:

$$
\alpha(f) = [1 \mapsto [x \mapsto \top, y \mapsto 0], 2 \mapsto [x \mapsto 8, y \mapsto 1]]
$$

where $f = [1 \mapsto \{[x \mapsto -8, y \mapsto 0], [x \mapsto 8, y \mapsto 0]\},$
 $2 \mapsto \{[x \mapsto 8, y \mapsto 1]\}]$

[Faculty of Science Information and Computing Sciences]

KOD KARD KED KED E MAG

Universiteit Utrecht

The concretization function EXECUTE: SI

- \blacktriangleright Afterwards, if necessary, transform the solution back to one for L.
- **I** Transformation by concretization function γ from M to L.
- In Let $m = [1 \mapsto [x \mapsto \top, y \mapsto 0], 2 \mapsto [x \mapsto 8, y \mapsto 1]].$
- In Then $\gamma(m) = [1 \mapsto \{ [x \mapsto a, y \mapsto 0] \mid a \in \mathbb{Z} \},\]$ $2 \mapsto \{[x \mapsto 8, y \mapsto 1]\}\$
- Note: $\gamma(m)$ is infinite!
	- \triangleright But the original concrete value was not.
- If α and γ have certain properties then abstraction may lose precision, but not correctness.

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences] KID KA DIKE KA E KURA TE KORO

2. [Galois Connections and Galois Insertions](#page-20-0)

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences] イロト (母) (ミ) (ミ) (ミ) (ミ) のQ (^

21

"Good" abstractions §2

- \triangleright Not every combination of abstraction and concretization function is "good".
- \triangleright When we abstract, we prefer the soundness of the concrete lattice to be inherited by the abstract one.
	- \blacktriangleright In particular, the soundness of an analysis derives from the soundness of the collecting operational semantics.
	- \triangleright NB: executing the collecting operational semantics is also a sort of analysis.
- \blacktriangleright The Cousots defined when this is the case.
- \triangleright These abstractions are termed Galois Insertions
	- \triangleright Slightly more general, Galois Connections aka adjoints.
- \triangleright Abstraction can be a stepwise process.
- \blacktriangleright In the end everything relates back to the soundness of the collecting semantics.

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

Abstraction and concretization **EXABLE** S2

 \blacktriangleright Let $L = (\mathcal{P}(\mathbf{Z}), \subseteq)$ and $M = (\mathcal{P}(\{0, +, -\}), \subseteq)$.

In Let $\alpha: L \to M$ be the abstraction function defined as

$$
\alpha(S) = \{\mathsf{sign}(z) \mid z \in S\} \text{ where }
$$

 $sign(x) = 0$ if $x = 0, +$ if $x > 0$ and $-$ if $x < 0$.

- For example: $\alpha({0, 2, 20, 204}) = {0, +}$ and $\alpha(O) = \{-, +\}$ where O is the set of odd numbers.
- \triangleright Obviously, α is monotone: if $x \subseteq y$ then $\alpha(x) \subseteq \alpha(y)$.

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

KO KA A B KA B K DA A B KA KA KA KA G

Abstraction and concretization **EXECUTE:** Some set of the set of the

- In Let $L = (\mathcal{P}(\mathbf{Z}), \subseteq)$ and $M = (\mathcal{P}(\{0, +, -\}), \subseteq)$.
- The concretization function γ is defined by: $\gamma(T) = \{1, 2, \dots \mid + \in T\}$ $\cup \{ \ldots, -2, -1 \mid -\in T \}$ $\cup \{0 \mid 0 \in T\}$
- Again, obviously, γ monotone.
- Monotonicity of α and γ and two extra demands make (L, α, γ, M) into a Galois Connection.

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences] KID KA DIKE KA E KURA TE KORO

Demand number 1 \S

- \triangleright α removes detail, so when going back to L we expect to lose information.
	- \blacktriangleright Gaining information would be non-monotone.
- **Demand** 1: for all $c \in L$, $c \sqsubseteq_L \gamma(\alpha(c))$
- \blacktriangleright For the set O of odd numbers. $O \subseteq \gamma(\alpha(O)) = \gamma(\{+, -\}) = \{\ldots, -2, -1, 1, 2, \ldots\}$
- \blacktriangleright What about $\alpha(\gamma(\alpha(c)))$? It equals $\alpha(c)$.

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

イロト (母) (ミ) (ミ) (ミ) の Q Q

Demand number 2 \S

- Demand 2: for all $a \in M$, $\alpha(\gamma(a)) \sqsubseteq_M a$
- Dual version of demand 1.
- \triangleright Abstracting the concrete value of an abstract values gives a lower bound of the abstract value.
- \triangleright For $a = \{+, 0\} \in M$, $\alpha(\gamma(a)) = \alpha(\{0, 1, 2, \ldots\}) = \{0, +\}$
- \blacktriangleright What about $\gamma(\alpha(\gamma(a)))$? It equals $\gamma(a)$.

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

Galois Insertions **62**

▶ Sometimes Demand 2 becomes Demand 2': for all $a \in M$, $\alpha(\gamma(a)) = a$.

- \blacktriangleright It is then called a Galois Insertion.
- \triangleright Often a Connection is an Insertion, but not always.
- \triangleright A Connection can always be made into an Insertion
	- \blacktriangleright Remove values from abstract domain that cannot be reached.

Universiteit Utrecht

A Connection that is not an Insertion \S 2

- \triangleright Consider the complete lattices $L = (\mathcal{P}(\mathbf{Z}), \subseteq)$ and $M = \mathcal{P}(\{0, +, -\} \times \{\text{odd}, \text{even}\}, \ldots)$ and the obvious abstraction $\alpha : L \to M$.
- \triangleright Concretization: what is $\gamma(\{(0, \text{odd}), (-, \text{even})\})$?

Universiteit Utrecht

A Connection that is not an Insertion \S 2

 \triangleright Consider the complete lattices $L = (\mathcal{P}(\mathbf{Z}), \subseteq)$ and $M = \mathcal{P}(\{0, +, -\} \times \{\text{odd}, \text{even}\}, \dots)$ and the obvious abstraction $\alpha : L \to M$.

 \triangleright Concretization: what is $\gamma(\{(0, \text{odd}), (-, \text{even})\})$?

- \blacktriangleright What happens to $(0, \text{odd})$? We ignore it!
- \blacktriangleright Abstracting back:

 $\alpha(\gamma(\{(0,odd),(-,even)\}))$ gives $\{(-,even)\}\$

and note that

$$
\{(-,\mathsf{even})\} \subset \{(0,\mathsf{odd}),(-,\mathsf{even})\}
$$

 \blacktriangleright Why be satisfied before you have an Insertion?

 \blacktriangleright The Connection may be much easier to specify.

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

Adjoints <u>§</u>2

- \blacktriangleright Now α and γ are total functions between L and M.
- Abstraction of less gives less: $c \sqsubseteq \gamma(a)$ implies $\alpha(c) \sqsubseteq a$.
- **In Concretization of more gives more:** $\alpha(c) \sqsubseteq a$ implies $c \sqsubseteq \gamma(a)$.
- \blacktriangleright Together: (L, α, γ, M) is an adjoint.
- \blacktriangleright Thm: adjoints are equivalent to Galois Connections.

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

 PQQ

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} + \mathbf{B} + \mathbf{A} + \math$

Some (related) example abstractions §2

 \blacktriangleright Reachability: $M = \textsf{Lab}_* \rightarrow \{\perp, \top\}$ where ⊥ describes "not reachable", \top describes "might be reachable". \blacktriangleright Undefined variable analysis: $M = \text{Var}_* \rightarrow \{\perp, \top\}$ where \top describes "might get a value", ⊥ describes "never gets a value".

 \blacktriangleright Undefined before use analysis: $M = \textsf{Lab}_* \rightarrow \textsf{Var}_* \rightarrow \{\perp,\top\}$

Universiteit Utrecht

30

Combinators for Galois Connections

- \blacktriangleright Building Galois Connections from smaller ones.
- \blacktriangleright Reuse to save on proofs and implementations.
- \blacktriangleright Quick look at:
	- \triangleright composition of Galois Connections,
	- \blacktriangleright total function space,
	- \blacktriangleright independent attribute combination,
	- \blacktriangleright direct product.

Universiteit Utrecht

The running example \S

 \triangleright Construct a Galois Connection from the collecting semantics

$$
L=\mathsf{Lab}_*\to \mathcal{P}(\mathsf{Var}_*\to\mathsf{Z})
$$

to

$$
M=\textsf{Lab}_*\to\textsf{Var}_*\to\textsf{Interval}
$$

- \blacktriangleright M can be used for Array Bound Analysis:
	- \triangleright Of interest are only the minimal and maximal values.
- First we abstract L to $T = \textsf{Lab}_* \to \textsf{Var}_* \to \mathcal{P}(\mathbf{Z})$, and then T to M .
- \blacktriangleright The abstraction α from L to M is the composition of these two.
- \blacktriangleright The intermediate Galois Connections are built using the total function space combinator.

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

イロト (母) (ミ) (ミ) (ミ) の Q Q

Galois Connection/Insertion composition **Sigmum** \S 2

 \blacktriangleright The general picture:

 \blacktriangleright The composition of the two can be taken directly from the picture:

 $(L, \alpha_2 \circ \alpha_1, \gamma_1 \circ \gamma_2, M)$.

 \blacktriangleright Thm: always a Connection (Insertion) if the two ingredients are Connections (Insertions)

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

 PQQ

 $\overline{4}$ ($\overline{4}$) $\overline{4}$) $\overline{4}$) $\overline{4}$) $\overline{4}$) $\overline{4}$

To get from L to $T \sim$

- \blacktriangleright $L = \mathsf{Lab}_* \rightarrow \mathcal{P}(\mathsf{Var}_* \rightarrow \mathsf{Z})$ is a relational lattice, $T = \text{Lab}_{*} \rightarrow \text{Var}_{*} \rightarrow \mathcal{P}(\textbf{Z})$ is only suited for independent attribute analysis.
- \blacktriangleright This kind of step occurs quite often: define separately for reuse.
- \blacktriangleright Example:

$$
[1 \mapsto \{[x \mapsto 2, y \mapsto -3], [x \mapsto 0, y \mapsto 0]\}]
$$

should abstract to

$$
[1\mapsto [x\mapsto \{0,2\},y\mapsto \{-3,0\}]]\ .
$$

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

イロト (母) (ミ) (ミ) (ミ) の Q Q

Abstraction §2

 \triangleright We first try to get from $L' = \mathcal{P}(\mathsf{Var}_* \to \mathsf{Z})$ to $T' = \textsf{Var}_* \rightarrow \mathcal{P}(\textsf{Z}).$

- "Add" back the Lab_{*} by invoking the total function space combinator.
- Start by finding a Galois Connection (α_1', γ_1') from $L' = \mathcal{P}(\textsf{Var}_* \to \textsf{Z})$ to $T' = \textsf{Var}_* \to \mathcal{P}(\textsf{Z})$.
- \blacktriangleright $\{[x \mapsto 2, y \mapsto -3], [x \mapsto 0, y \mapsto 0]\}$ should abstract to $[x \mapsto \{0, 2\}, y \mapsto \{-3, 0\}].$
- $\triangleright \alpha'_1(S) = \lambda v \cdot \{z \mid \exists f \in S \cdot z = f(v)\}\$
	- \blacktriangleright Collect for each variable v all the values it maps to.

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

KO KA A B KA B K DA A B KA KA KA KA G

Concretization §2

$$
L' = \mathcal{P}(\text{Var}_{*} \to \textbf{Z})
$$

$$
T' = \text{Var}_{*} \to \mathcal{P}(\textbf{Z}).
$$

 \blacktriangleright γ'_1 unfolds sets of values to sets of functions,

 \blacktriangleright simply by taking all combinations.

$$
\blacktriangleright \text{ From } [x \mapsto \{0, 2\}, y \mapsto \{-3, 0\}] \text{ we obtain}
$$

\n
$$
\{[x \mapsto 2, y \mapsto -3], [x \mapsto 0, y \mapsto 0],
$$

\n
$$
[x \mapsto 2, y \mapsto 0], [x \mapsto 0, y \mapsto -3]\}
$$

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

K ロ K (日) K 경 K (동 K (동 K) 중 (9) Q Q

The total function space combinator **Fig. 32** sets and the sets of sets and sets a set of sets and sets a set of sets a set

- \blacktriangleright Let $(L', \alpha'_1, \gamma'_1, T')$ be the Galois Connection just constructed.
- \blacktriangleright How can we obtain a Galois Connection $(L, \alpha_1, \gamma_1, T)$?
	- \blacktriangleright Use the total function space combinator.
- For a fixed set, say $S = \text{Lab}_*, (L', \alpha_1', \gamma_1', T')$ is transformed into a Galois Connection between $L = S \to L'$ and $T = S \rightarrow T'$.
- If L and T are complete lattices if L' and T' are (App. A).
- The construction builds α_1 and γ_1 out of α'_1 and γ'_1 .
- \blacktriangleright Apply primed versions pointwise:
	- **For each** $\phi \in L$: $\alpha_1(\phi) = \alpha_1'$ $($ see also p. 96)
	- Similarly, for each $\psi \in T: \ \gamma_1(\psi) = \gamma_1' \circ \psi$.

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

From T to M (quickly) \S 2

 \blacktriangleright What remains is getting from $T = \textsf{Lab}_* \to \textsf{Var}_* \to \mathcal{P}(\textsf{Z})$ to $M =$ Lab_∗ \rightarrow Var_∗ \rightarrow Interval.

- **►** Intervals: $\bot = [\infty, -\infty]$, $[0, 0]$, $[-\infty, 2]$, $\top = [-\infty, \infty]$.
- Abstraction from $P(Z)$ to **Interval**:
	- If set empty take \perp ,
	- \blacktriangleright find minimum and maximum.
	- \triangleright if minimum undefined: take $-\infty$,
	- If maximum undefined: take ∞ .
- \blacktriangleright Invoke total function space combinator twice to "add" Lab_∗ and Var_∗ on both sides.

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

KO KA A B KA B K DA A B KA KA KA KA G

Direct product \S

- Starting from the lattice $P(Z)$ we can abstract to $M_1 = \mathcal{P}({\{\text{odd}, \text{even}\}})$ and $M_2 = \mathcal{P}(\{-, 0, +\}).$
- \triangleright Combine the two into one Galois Connection between $L = \mathcal{P}(\mathbf{Z})$ and $M = \mathcal{P}(\{\text{odd}, \text{even}\}) \times \mathcal{P}(\{-, 0, +\}).$
- Given that we have $(L, \alpha_1, \gamma_1, M_1)$ and $(L, \alpha_2, \gamma_2, M_2)$ we obtain $(L, \alpha, \gamma, M_1 \times M_2)$ where
	- $\bullet \ \alpha(c) = (\alpha_1(c), \alpha_2(c))$ and
	- $\blacktriangleright \gamma(a_1, a_2) = \gamma_1(a_1) \sqcap \gamma_2(a_2)$
- \triangleright Why take the meet (greatest lower bound)?

Universiteit Utrecht

KO KA A B KA B K DA A B KA KA KA KA G

Direct product \S

- Starting from the lattice $P(Z)$ we can abstract to $M_1 = \mathcal{P}({\{\text{odd}, \text{even}\}})$ and $M_2 = \mathcal{P}(\{-, 0, +\}).$
- \blacktriangleright Combine the two into one Galois Connection between $L = \mathcal{P}(\mathbf{Z})$ and $M = \mathcal{P}(\{\text{odd}, \text{even}\}) \times \mathcal{P}(\{-, 0, +\}).$
- Given that we have $(L, \alpha_1, \gamma_1, M_1)$ and $(L, \alpha_2, \gamma_2, M_2)$ we obtain $(L, \alpha, \gamma, M_1 \times M_2)$ where
	- \bullet $\alpha(c) = (\alpha_1(c), \alpha_2(c))$ and
	- $\blacktriangleright \gamma(a_1, a_2) = \gamma_1(a_1) \sqcap \gamma_2(a_2)$
- \triangleright Why take the meet (greatest lower bound)?
	- It enables us to ignore combinations (a_1, a_2) that cannot occur.

 $\blacktriangleright \gamma((\{\text{odd}\}, \{0\})) = \gamma_1(\{\text{odd}\}) \cap \gamma_2(\{0\})$ $= \{ \ldots, -1, 1, \ldots \} \cap \{0\} = \emptyset.$

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

The independent attribute method (tupling) \S

- Example: $L_1 = L$ and $M_1 = M$, and M_2 is some abstraction of L_2 which describes the state of the heap at different program points.
- \blacktriangleright Define α and γ between $L_1 \times L_2$ and $M_1 \times M_2$ as follows:

$$
\blacktriangleright \alpha(c_1, c_2) = (\alpha_1(c_1), \alpha_2(c_2))
$$

- $\blacktriangleright \gamma(a_1, a_2) = (\gamma_1(a_1), \gamma_2(a_2)).$
- \blacktriangleright Abstractions are done independently.

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

 PQQ

KID KARA KE KA FINI E

3. [Approximation of fixed points](#page-42-0)

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences] イロト (母) (ミ) (ミ) (ミ) (ミ) のQ (^

41

Array Bound Analysis Example 2018 63

\triangleright We abstracted from $L = \mathsf{Lab}_* \to \mathcal{P}(\mathsf{Var}_* \to \mathsf{Z})$ to $M =$ Lab_∗ \rightarrow Var_∗ \rightarrow Interval.

 \blacktriangleright *M* is a prime candidate for Array Bound Analysis: At every program point, determine the minimum and maximum value for every variable.

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

 PQQ

 $\overline{4}$ ($\overline{4}$) $\overline{4}$) $\overline{4}$) $\overline{4}$) $\overline{4}$) $\overline{4}$

M has its problems $§$ 3

 \blacktriangleright Consider the program $[x := 0]^1$ while $[x > = 0]^2$ do $[x := x + 1]^3;$

▶ The intervals for $\mathbf x$ in Analysis_○ (2) turn out to be

 $[0, 0] \sqsubset [0, 1] \sqsubset [0, 2] \sqsubset [0, 3] \sqsubset \dots$

 \triangleright Not having ACC prevents termination.

 \blacktriangleright When the loop is bounded (e.g., $[x < 10000]^2$) convergence to [0, 10001] takes a long time.

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

K ロ > K @ ▶ K 할 > K 할 > 1 할 | K) Q Q

Consider the options in the set of the set of

\blacktriangleright Two ways out:

- \blacktriangleright abstract M further to a lattice that does have ACC, or
- **Example 3** ensure all infinite chains in M are traversed in finite time.
- In this case, there does not seem to be any further abstraction possible.
- \triangleright So let's consider the second: widening.

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

 PQQ

 $\overline{4}$ ($\overline{4}$) $\overline{4}$) $\overline{4}$) $\overline{4}$) $\overline{4}$) $\overline{4}$

Widening §3

- \triangleright Widening \approx a non-uniform coarsening of the lattice.
- \triangleright We promise not to visit some parts of the lattice.
	- \blacktriangleright Which parts typically depends on the program.
- \triangleright Essentially making larger skips along ascending chains than necessary.
- \blacktriangleright This buys us termination.
- \triangleright But we pay a price: no guarantee of a least fixed point.
	- \triangleright By choosing a clever widening we can hope it won't be too bad.

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences] $\overline{4}$ ($\overline{4}$) $\overline{4}$) $\overline{4}$) $\overline{4}$) $\overline{4}$) $\overline{4}$ Ω

Array Bound Analysis Example 2018 63

 \triangleright Consider the following program: int i, c, n, int A[20], C[], B[]; $C = new int[9]:$ input n ; $B = new int[n]$; if $(A[i] < B[i])$ then $C[i/2] = B[i]$:

 \triangleright Which bound checks are certain to succeed?

- Arrays A and C have static sizes, which can be determined 'easily' (resizing is prohibited).
- \blacktriangleright Therefore: find the possible values of i.
- If always $i \in [0, 17]$, then omit checks for A and C.
- If always $i \in [0, 19]$, then omit checks for A.
- \blacktriangleright Nothing to be gained for B : it is dynamic.

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

イロメイタメイミメイミメーミ めんぴ

The key realization **Fig. 3**3

- \triangleright For the arrays A and C, the fact $i \in [-20, 300]$ is (almost) as bad as $[-\infty, \infty]$.
- \triangleright Why then put such large intervals in the lattice?
- \triangleright Widening allows us to tune (per program) what intervals are of interest.

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

 PQQ

 $\mathbf{1} \quad \mathbf{1} \quad \mathbf{$

What intervals are interesting? $\frac{1}{3}$

- \blacktriangleright Consider, for simplicity, the set of all constants C in a program P .
	- Includes those that are used to define the sizes of arrays.
- \triangleright What if, when we join two intervals, we consider as result only intervals, the boundaries of which consist of values taken from $C \cup \{-\infty, \infty\}$?
- \blacktriangleright To keep it safe, every value over $\sup(C)$ must be mapped to ∞ , and below inf(C) to $-\infty$.
- \triangleright A program has only a finite number of constants: number of possible intervals for every program point is now finite.

Universiteit Utrecht

Variations §3

- \triangleright Which constants work well depends on how the arrays are addressed: $A[2 * i + j] = B[3 * i] - C[i]$
- \triangleright Variations can be made: take all constants plus or minus one, etc. etc.
- \blacktriangleright In a language like Java and C all arrays are zero-indexed
	- Consider only positive constants $(A[-i])$?).
- \triangleright What works well can only be empirically established.

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences] **KOD KARD KED KED E MAG**

Back to the lattice §3

- Ext $(f) = \{x \mid x \sqsubseteq f(x)\}\)$ and
- \blacktriangleright Fix(f) = Red(f) ∩ Ext(f).

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

イロト (母) (ミ) (ミ) (ミ) の Q Q

Back to the lattice Service Equation Service Service Service Service Service Service Service Service Service Se

▶ Start from \perp so that we obtain the least fixed point.

- Another possibility is to start in \top and move down. Whenever we stop, we are safe.
	- \blacktriangleright But....no guarantee that we reach lfp

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

 PQQ

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} + \mathbf{B} + \mathbf{A} + \math$

Pictorial view of widening in the same of series of series of series and series series of series series series

 \triangleright Widening: replace \sqcup with a widening operator ∇ (nabla).

- $\triangleright \triangleright \triangleright \triangleright$ is an upper bound operator, but not least: for all $l_1, l_2 \in L : l_1 \sqcup l_2 \sqsubset l_1 \nabla l_2$.
- \triangleright The point: take larger steps in the lattice than is necessary.
- \blacktriangleright Not precise, but definitely sound.

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

 PQQ

イロトイ押 トイヨトイヨト 一重

How widening affects sequences **EXECUTE:** S3

 \blacktriangleright Consider a sequence

$$
l_0,l_1,l_2,\ldots
$$

 \triangleright Note: any sequence will do.

 \triangleright Under conditions, it becomes an ascending chain

 $l_0 \sqsubset l_0 \nabla l_1 \sqsubset (l_0 \nabla l_1) \nabla l_2 \sqsubset \dots$

 \blacktriangleright that is guaranteed to stabilize.

- \triangleright Stabilization point is known to be a reductive point,
	- \blacktriangleright I.e. a sound solution to the constraints

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

KO KA A B KA B K DA A B KA KA KA KA G

How widening affects sequences **EXECUTE:** S3

 \blacktriangleright Consider a sequence

$$
l_0,l_1,l_2,\ldots
$$

 \triangleright Note: any sequence will do.

 \triangleright Under conditions, it becomes an ascending chain

 $l_0 \sqsubset l_0 \nabla l_1 \sqsubset (l_0 \nabla l_1) \nabla l_2 \sqsubset \dots$

 \blacktriangleright that is guaranteed to stabilize.

- \triangleright Stabilization point is known to be a reductive point,
	- \blacktriangleright I.e. a sound solution to the constraints
- \blacktriangleright but is not always a fixed point. Bummer.

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

KO KA A B KA B K DA A B KA KA KA KA G

What it takes to be ∇ §3

► Let a lattice L be given and ∇ a widening operator, i.e.,

- \triangleright for all $l_1, l_2 \in L$: $l_1 ⊏ l_1∇l_2 ⊐ l_2$, and
- \triangleright for all ascending chains (l_i) , the ascending chain $l_0, l_0 \nabla l_1, (l_0 \nabla l_1) \nabla l_2, \dots$ eventually stabilizes.
- \blacktriangleright The latter seems a rather selffulfilling property.

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

K ロ > K @ ▶ K 할 > K 할 > 1 할 | K) Q Q

Iterating with ∇ §3

 \blacktriangleright How can we use ∇ to find a reductive point of a function? \blacktriangleright $f_{\nabla}^n =$ $\sqrt{ }$ $\left\vert \right\vert$ \mathcal{L} \perp if $n = 0$ f_{∇}^{n-1} if $n > 0 \wedge f(f_{\nabla}^{n-1}) \sqsubseteq f_{\nabla}^{n-1}$ $f_\nabla^{n-1}\, \nabla\; f(f_\nabla^{n-1})\quad$ otherwise

 \blacktriangleright First argument represents all previous iterations, second represents result of new iteration.

Universiteit Utrecht

An example **An example S3**

 \blacktriangleright Define ∇_C to be the following upper bound operator: $[i_1, j_1]$ ∇_C $[i_2, j_2] = [LB_C(i_1, i_2), UB_C(j_1, j_2)]$ where

- \blacktriangleright LB_C $(i_1, i_2) = i_1$ if $i_1 \leq i_2$, otherwise
- ► LB_C $(i_1, i_2) = k$ where $k = \max\{x \mid x \in C, x \leq i_2\}$ if $i_2 < i_1$

Universiteit Utrecht

An example state of the state of \S 3

- \blacktriangleright Define ∇_C to be the following upper bound operator: $[i_1, i_1]$ ∇_C $[i_2, i_2] = [LB_C(i_1, i_2), UB_C(i_1, i_2)]$ where
	- \blacktriangleright LB_C(i_1, i_2) = i_1 if $i_1 \leq i_2$, otherwise
	- ► LB_C $(i_1, i_2) = k$ where $k = \max\{x \mid x \in C, x \le i_2\}$ if $i_2 < i_1$
	- And similar for UB_C .
	- ► Exception: $\perp \nabla_C I = I = I \nabla_C \perp$.
- \blacktriangleright Essentially, only the boundaries of the first argument interval, values from C, and $-\infty$ and ∞ are allowed as boundaries of the result.
- lacktriangleright Let $C = \{3, 5, 100\}$. Then
	- \blacktriangleright $[0, 2]$ ∇_C $[0, 1] = [0, 2]$
	- \triangleright [0, 2] $\nabla_C [-1, 2] = [-\infty, 2]$
	- \blacktriangleright [0, 2] ∇_C [1, 14] = [0, 100]

Universiteit Utrecht

KO KA A B KA B K DA A B KA KA KA KA G

Ascending chains will stabilize **Exercise Exercise Solution** S3

 \blacktriangleright Intuition by example.

 \triangleright Consider the chain $[0, 1] \sqsubseteq [0, 2] \sqsubseteq [0, 3] \sqsubseteq [0, 4] \dots$ and choose $C = \{3, 5\}$.

 $[0, 1]$

 \blacktriangleright From it we obtain the stabilizing chain:

$$
[0,1] \nabla_C [0,2] = [0,3],\n[0,3] \nabla_C [0,3] = [0,3],\n[0,3] \nabla_C [0,4] = [0,5],\n[0,5] \nabla_C [0,5] = [0,5],\n[0,5] \nabla_C [0,6] = [0,\infty],\n[0,\infty] \nabla_C [0,7] = [0,\infty],\dots
$$

Essentially, we fold ∇_C over the sequence.

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

Analyzing the infinite loop **EXALL**§3

 \blacktriangleright Recall the program $[x := 0]^1$ while $[x > = 0]^2$ do $[x := x + 1]^3;$

Iterating with ∇_C with $C = \{3, 5\}$ gives

Note: not all interval boundaries are values from C

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

Final remarks on widening in the same of the set of s

- \triangleright Widening operator ∇ replaces join \sqcup :
	- \triangleright Bigger leaps in lattice guarantee stabilisation.
	- \blacktriangleright guarantees reductive point, not necessarily a fixed point
- \triangleright Widening operator: verify the two properties.
- \triangleright Any complete lattice supports a range of widening operators. Balance cost and coarseness.
- \triangleright Widening operator often a-symmetric: the first operand is treated more respectfully.
- \triangleright Widening usually parameterized by information from the program:
	- \triangleright C is the set of constants occuring in the program.
- \triangleright We visit a finite, program dependent part of the lattice.

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

Narrowing **Sales and Sales Contract Contra**

- \blacktriangleright We found a *reductive* point f_{∇}^m for some m .
- But it might not be a *fixed* point.
- \triangleright We could improve the solution by performing more iterations.

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences] **KOD KARD KED KED E MAG**

Narrowing §3

- \blacktriangleright We found a *reductive* point f_{∇}^m for some m .
- But it might not be a fixed point.
- \triangleright We could improve the solution by performing more iterations.
- \blacktriangleright $(f^n(f^m_\nabla))_n$
- \blacktriangleright Descending chain
- \blacktriangleright Does it stabilize?

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

Narrowing operator in the set of the set of set o

 $\Delta: L \times L \rightarrow L$ is a narrowing operator if:

- $I_2 \sqsubseteq l_1$ implies $l_2 \sqsubseteq (l_1\Delta l_2) \sqsubseteq l_1$
- ▶ for all descending chains $(l_n)_n$, the sequence $(l_n^{\Delta})_n$ eventually stabilizes.
- \triangleright Δ descends with smaller steps.
- \triangleright which prevents that we explore an infinite chain of reductive points.
- \triangleright 'Smaller' usually means that we restrict how a solution can change.

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences] KID KA DIKE KA E KURA TE KORO

Fixed point iteration in the set of the set of the set of set of

- 1. Ascend with widening (makes 'larger' steps than join)
- 2. Find a reductive point $f_{\nabla}^m = [f]_{\Delta}^0$
- 3. Descend with narrowing: $([f]_\Delta^n)_n$ (makes 'smaller' steps than normal iteration)

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

 PQQ

 $\overline{4}$ ($\overline{4}$) $\overline{4}$) $\overline{4}$) $\overline{4}$) $\overline{4}$) $\overline{4}$

[Faculty of Science Information and Computing Sciences]

Iterating with narrowing

S3

$$
[f]_{\Delta}^n = \begin{cases} f_{\nabla}^m & \text{if } n = 0\\ [f]_{\Delta}^{n-1} \; \Delta \; f([f]_{\Delta}^{n-1}) & \text{if } n > 0 \end{cases}
$$

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 → 9 Q @

Example: intervals Example: $\frac{1}{3}$

- \triangleright $[i_1, j_1]$ Δ $[i_2, j_2] = [$ if $i_1 = -\infty$ then i_2 else i_1 , if $j_1 = \infty$ then j_2 else j_1]
- \triangleright Δ is a narrowing operator which prefers finite over infinite.
- \blacktriangleright It only allows changing infinity to some finite value.
- \triangleright For example $[1, 100]$ \sqsubset $[-\infty, 1000]$ and we have $[-\infty, 1000]$ Δ $[1, 100] = [1, 1000]$.
- \blacktriangleright $[-\infty, 1000]$ was the value found so far, $[1, 100]$ is the newly found information

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences] **KOD KARD KED KED E MAG**