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1. Abstract interpretation
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Abstract Interpretation §1

Abstract Interpretation
=

analysis as a simplification of running a computer program.
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Examples §1

I During program execution we compute the values of
variables.
I And our location in the program.

I During abstract interpretation we might
I compute only the signs of integer variables,
I compute where closures are created, but not the closures

themselves,
I compute only the lengths of lists,
I compute only the types of variables.

I Typically, but not necessarily, we compute this for any
given location.

I The right simplification depends on the analysis we are
attempting.



[Faculty of Science
Information and Computing Sciences]

5

The benefits of good abstractions §1

I For certain “good” abstract interpretations, soundness of
the analysis follows “immediately” from the soundness of
the semantics of the language.

I The latter needs to be proved only once, but many
analyses may benefit.

I Semantics must be formally defined.
I E.g., operational semantics, i.e., specification of interpreter

I Since static analyses must be sound for all executions, we
need a collecting semantics for the language.

I Abstracting to a complete lattice with ACC gives
guarantee of termination.
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The State is everything §1

I An interpreter keeps track of the state of the program.
I Usually it contains:

I What program point are we at?
I For every variable, what value does it currently have?
I What does the stack look like?
I What is allocated on the heap?
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Examples §1

I For an imperative languages (While) without procedures
we track only the program point and the variables to value
mapping.

I To deal with procedures, also track the stack.
I The state is determined by the language constructs we

support.
I Adding new implies the need to keep track of the heap.

I For the moment, we assume

State = Lab× (Var→ Data)

where Data typically contains integers, reals and booleans.
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State too static §1

I In abstract interpretation we simplify the state.

I And operations on the state should behave consistently
with the abstraction.

I What if the state is already so information poor that the
information we want is not in the state to begin with?

I Our state
State = Lab× (Var→ Data)

has only momentaneous information:

I It does not record dynamic information for the program,
e.g., executions.
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The need for dynamic information §1

I Many program analyses concern dynamic properties.
I Examples:

I Record the minimum and maximum value an integer
identifier may take.

I In a dynamically typed language: compute all types a
variable may have.

I Record all the function abstractions an identifier might
evaluate to.

I Record the set of pairs (x, `) in case x may have gotten its
last value at program point `.

I We must first enrich the state to hold this information.
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Single execution versus all executions §1

I Static analysis results should hold for all runs.

I Code is only dead if all executions avoid it.

I An interpreter considers only a single execution at the time.

I Redefine semantics to specify all executions “in parallel”.

I This is called a collecting semantics.
I Static analysis is on a simplified version (abstraction) of

the collecting semantics.
I Because, usually, the collecting semantics is very infinite.



[Faculty of Science
Information and Computing Sciences]

11

Collecting semantics §1

I A collecting semantics for While might record sets of
execution histories:

State = P([(Lab,Maybe(Var,Data))])

I Example: if [x > 0]1 then [y := -3]2 else [skip]3

I {[(?, Just (x, 0)), (?, Just (y, 0)), (1,Nothing), (3,Nothing)],
[(?, Just (x, 2)), (?, Just (y, 0)), (1,Nothing), (2, Just (y,−3))]}
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A different collecting semantics §1

I Consider State = Lab→ P(Var→ Data).
I Sets of functions telling us what values variables can have

right before a given program point.

I We repeat: if [x > 0]1 then [y := -3]2 else [skip]3

I For the above program we have (given the initial values):
[1 7→ {[x 7→ 0, y 7→ 0], [x 7→ 2, y 7→ 0]},
2 7→ {[x 7→ 2, y 7→ 0]}, 3 7→ {[x 7→ 0, y 7→ 0]}]

I At the end of the program, we have
{[x 7→ 2, y 7→ −3], [x 7→ 0, y 7→ 0]}

I The semantics does not record that [x 7→ 2, y 7→ 0] leads
to [x 7→ 2, y 7→ −3].
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Variations §1

I Also track the heap and/or stack (if the language needs it).
I In an instrumented semantics information is stored that

does not influence the outcome of the execution.
I For example, timing information.

I Choose one which is general enough to accommodate all
your analyses.
I You cannot analyze computation times if there is no

information about it in your collecting semantics
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The need to abstract §1

I We cannot compute all the states for an arbitrary program:
it might take an infinite amount of time and space.

I We now must simplify the semantics.
I How far?

I Trade-off between resources and amount of detail.

I The least one can demand is that analysis time is finite.
I In some cases, we have to give up more detail than we can

allow.
I Therefore: widening



[Faculty of Science
Information and Computing Sciences]

15

Example abstractions §1

I We take P(Var→ Data) as a starting point.

I Example: S = {[x 7→ 2, y 7→ 1], [x 7→ −2, y 7→ 0]}
I Abstract to Var→ P(Data) (relational to independent):

I S now becomes [x 7→ {−2, 2}, y 7→ {0, 1}].
I Abstract further to intervals [x, y] for x ≤ y:

I S now becomes represented by [x 7→ [−2, 2], y 7→ [0, 1]]

I Abstract further to Var→ P({0,−,+}):
I S now becomes [x 7→ {−, 0,+}, y 7→ {0,+}].

I Mappings are generally not injective:
{[x 7→ 2, y 7→ 1], [x 7→ −2, y 7→ 0], [x 7→ 0, y 7→ 0]} also
maps to [x 7→ {−, 0,+}, y 7→ {0,+}].
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Computing with abstract values §1

I Consider: you have an interpreter for your language.

I It knows how to add integers, but not how to add signs.

I Would be great if the operators followed immediately from
the abstraction.

I This is the case, but the method is not constructive:
I How to (effectively) compute {−}+S {−} in terms of +

for integers?

I It does give a correctness criterion for the abstracted
operators: the result of {−}+S {−} must include −.
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Non-determinism §1

I Consider abstraction from

Lab→ P(Var→ Z)
to

Lab→ Var→ P({0,−,+}) .
I When we add integers, the result is deterministic: two

integers go in, one comes out.

I If we add signs + and −, then we must get {+, 0,−}.
I The abstract add is non-deterministic.
I Another reason for working with sets of abstractions of

integers.
I We already needed those to deal with sets of executions.



[Faculty of Science
Information and Computing Sciences]

18

Connecting back to dataflow analysis §1

I Practically, Abstract Interpretation concerns itself with the
“right” choice of lattice, and how to compute safely with
its elements.

I Assume semantics is L = Lab∗ → P(Var∗ → Z) where v
is elementwise ⊆.
I Forms a complete lattice, but does not satisfy ACC!

I For Constant Propagation, abstract L to

M = Lab∗ → (Var∗ → Z>)⊥ with Z> = Z ∪ {>} .

I M does have ACC. (I.e., paths in the lattice are finite)
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The abstraction function §1

I Recall:
L = Lab∗ → P(Var∗ → Z)
M = Lab∗ → (Var∗ → Z>)⊥ with Z> = Z ∪ {>}

I For each label, α : L→M maps ∅ to ⊥, collects all values
for a given variable together in a set and then maps {i} to
i and others to >.

I Example:

α(f) = [1 7→ [x 7→ >, y 7→ 0], 2 7→ [x 7→ 8, y 7→ 1]]

where f = [1 7→ {[x 7→ −8, y 7→ 0], [x 7→ 8, y 7→ 0]},
2 7→ {[x 7→ 8, y 7→ 1]}]
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The concretization function §1

I Afterwards, if necessary, transform the solution back to one
for L.

I Transformation by concretization function γ from M to L.

I Let m = [1 7→ [x 7→ >, y 7→ 0], 2 7→ [x 7→ 8, y 7→ 1]].

I Then γ(m) = [1 7→ {[x 7→ a, y 7→ 0] | a ∈ Z},
2 7→ {[x 7→ 8, y 7→ 1]}]

I Note: γ(m) is infinite!
I But the original concrete value was not.

I If α and γ have certain properties then abstraction may
lose precision, but not correctness.
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2. Galois Connections and Galois Insertions
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“Good” abstractions §2

I Not every combination of abstraction and concretization
function is “good”.

I When we abstract, we prefer the soundness of the concrete
lattice to be inherited by the abstract one.
I In particular, the soundness of an analysis derives from the

soundness of the collecting operational semantics.
I NB: executing the collecting operational semantics is also a

sort of analysis.

I The Cousots defined when this is the case.
I These abstractions are termed Galois Insertions

I Slightly more general, Galois Connections aka adjoints.

I Abstraction can be a stepwise process.

I In the end everything relates back to the soundness of the
collecting semantics.
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Abstraction and concretization §2

I Let L = (P(Z),⊆) and M = (P({0,+,−}),⊆).

I Let α : L→M be the abstraction function defined as

α(S) = {sign(z) | z ∈ S} where

sign(x) = 0 if x = 0, + if x > 0 and − if x < 0.

I For example: α({0, 2, 20, 204}) = {0,+} and
α(O) = {−,+} where O is the set of odd numbers.

I Obviously, α is monotone: if x ⊆ y then α(x) ⊆ α(y).
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Abstraction and concretization §2

I Let L = (P(Z),⊆) and M = (P({0,+,−}),⊆).

I The concretization function γ is defined by:
γ(T ) = {1, 2, . . . | + ∈ T}

∪ {. . . ,−2,−1 | − ∈ T}
∪ {0 | 0 ∈ T}

I Again, obviously, γ monotone.

I Monotonicity of α and γ and two extra demands make
(L,α, γ,M) into a Galois Connection.
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Demand number 1 §2

γ

v

γ(α(c))

αc

L M

α(c)

I α removes detail, so when going back to L we expect to
lose information.
I Gaining information would be non-monotone.

I Demand 1: for all c ∈ L, c vL γ(α(c))

I For the set O of odd numbers,
O ⊆ γ(α(O)) = γ({+,−}) = {. . . ,−2,−1, 1, 2, . . .}

I What about α(γ(α(c)))? It equals α(c).
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Demand number 2 §2

γγ(a)

L M

v

a

α
α(γ(a))

I Demand 2: for all a ∈M , α(γ(a)) vM a

I Dual version of demand 1.

I Abstracting the concrete value of an abstract values gives
a lower bound of the abstract value.

I For a = {+, 0} ∈M , α(γ(a)) = α({0, 1, 2, . . .}) = {0,+}
I What about γ(α(γ(a)))? It equals γ(a).
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Galois Insertions §2

I Sometimes Demand 2 becomes
Demand 2’: for all a ∈M , α(γ(a)) = a.

I It is then called a Galois Insertion.

I Often a Connection is an Insertion, but not always.
I A Connection can always be made into an Insertion

I Remove values from abstract domain that cannot be
reached.
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A Connection that is not an Insertion §2

I Consider the complete lattices L = (P(Z),⊆) and
M = P({0,+,−} × {odd, even}, . . .) and the obvious
abstraction α : L→M .

I Concretization: what is γ({(0, odd), (−, even)})?

I What happens to (0, odd)? We ignore it!

I Abstracting back:

α(γ({(0, odd), (−, even)})) gives {(−, even)}

and note that

{(−, even)} ⊂ {(0, odd), (−, even)}

I Why be satisfied before you have an Insertion?
I The Connection may be much easier to specify.
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Adjoints §2

M
α

γ

v v

a

α(c)c

γ(a)

L
I Now α and γ are total functions between L and M .

I Abstraction of less gives less: c v γ(a) implies α(c) v a.

I Concretization of more gives more: α(c) v a implies
c v γ(a).

I Together: (L,α, γ,M) is an adjoint.

I Thm: adjoints are equivalent to Galois Connections.
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Some (related) example abstractions §2

I Reachability:
M = Lab∗ → {⊥,>} where
⊥ describes “not reachable”,
> describes “might be reachable”.

I Undefined variable analysis:
M = Var∗ → {⊥,>} where
> describes “might get a value”,
⊥ describes “never gets a value”.

I Undefined before use analysis:
M = Lab∗ → Var∗ → {⊥,>}
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Combinators for Galois Connections §2

I Building Galois Connections from smaller ones.

I Reuse to save on proofs and implementations.
I Quick look at:

I composition of Galois Connections,
I total function space,
I independent attribute combination,
I direct product.
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The running example §2

I Construct a Galois Connection from the collecting
semantics

L = Lab∗ → P(Var∗ → Z)

to
M = Lab∗ → Var∗ → Interval

I M can be used for Array Bound Analysis:
I Of interest are only the minimal and maximal values.

I First we abstract L to T = Lab∗ → Var∗ → P(Z), and
then T to M .

I The abstraction α from L to M is the composition of
these two.

I The intermediate Galois Connections are built using the
total function space combinator.
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Galois Connection/Insertion composition §2

I The general picture:

γ2

L T M

γ1

α2α1

I The composition of the two can be taken directly from the
picture:

(L,α2 ◦ α1, γ1 ◦ γ2,M) .

I Thm: always a Connection (Insertion) if the two
ingredients are Connections (Insertions)
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To get from L to T §2

I L = Lab∗ → P(Var∗ → Z) is a relational lattice,
T = Lab∗ → Var∗ → P(Z) is only suited for independent
attribute analysis.

I This kind of step occurs quite often: define separately for
reuse.

I Example:

[1 7→ {[x 7→ 2, y 7→ −3], [x 7→ 0, y 7→ 0]}]

should abstract to

[1 7→ [x 7→ {0, 2}, y 7→ {−3, 0}]] .
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Abstraction §2

I We first try to get from
L′ = P(Var∗ → Z) to
T ′ = Var∗ → P(Z).
I “Add” back the Lab∗ by invoking the total function space

combinator.

I Start by finding a Galois Connection (α′1, γ
′
1) from

L′ = P(Var∗ → Z) to T ′ = Var∗ → P(Z).

I {[x 7→ 2, y 7→ −3], [x 7→ 0, y 7→ 0]} should abstract to
[x 7→ {0, 2}, y 7→ {−3, 0}].

I α′1(S) = λv . {z | ∃f ∈ S . z = f(v)}
I Collect for each variable v all the values it maps to.
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Concretization §2

I L′ = P(Var∗ → Z)
T ′ = Var∗ → P(Z).

I γ′1 unfolds sets of values to sets of functions,
I simply by taking all combinations.

I From [x 7→ {0, 2}, y 7→ {−3, 0}] we obtain
{[x 7→ 2, y 7→ −3], [x 7→ 0, y 7→ 0],
[x 7→ 2, y 7→ 0], [x 7→ 0, y 7→ −3]}
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The total function space combinator §2

I Let (L′, α′1, γ
′
1, T

′) be the Galois Connection just
constructed.

I How can we obtain a Galois Connection (L,α1, γ1, T )?
I Use the total function space combinator.

I For a fixed set, say S = Lab∗, (L′, α′1, γ
′
1, T

′) is
transformed into a Galois Connection between L = S → L′

and T = S → T ′.

I L and T are complete lattices if L′ and T ′ are (App. A).

I The construction builds α1 and γ1 out of α′1 and γ′1.
I Apply primed versions pointwise:

I For each φ ∈ L: α1(φ) = α′1 ◦ φ (see also p. 96)
I Similarly, for each ψ ∈ T : γ1(ψ) = γ′1 ◦ ψ.
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From T to M (quickly) §2

I What remains is getting from
T = Lab∗ → Var∗ → P(Z) to
M = Lab∗ → Var∗ → Interval.

I Intervals: ⊥ = [∞,−∞], [0, 0], [−∞, 2], > = [−∞,∞].
I Abstraction from P(Z) to Interval:

I if set empty take ⊥,
I find minimum and maximum,
I if minimum undefined: take −∞,
I if maximum undefined: take ∞.

I Invoke total function space combinator twice to “add”
Lab∗ and Var∗ on both sides.
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Direct product §2

I Starting from the lattice P(Z) we can abstract to
M1 = P({odd, even}) and
M2 = P({−, 0,+}).

I Combine the two into one Galois Connection between
L = P(Z) and M = P({odd, even})× P({−, 0,+}).

I Given that we have (L,α1, γ1,M1) and (L,α2, γ2,M2) we
obtain (L,α, γ,M1 ×M2) where
I α(c) = (α1(c), α2(c)) and
I γ(a1, a2) = γ1(a1) u γ2(a2)

I Why take the meet (greatest lower bound)?

I It enables us to ignore combinations (a1, a2) that cannot
occur.

I γ(({odd}, {0})) = γ1({odd}) ∩ γ2({0})
= {. . . ,−1, 1, . . .} ∩ {0} = ∅.
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The independent attribute method (tupling) §2

γ1

γ2

L2 M2

L1 × L2=⇒ M1 ×M2

(γ1, γ2)

(α1, α2)
α2

α1

M1L1

I Example: L1 = L and M1 = M , and M2 is some
abstraction of L2 which describes the state of the heap at
different program points.

I Define α and γ between L1×L2 and M1×M2 as follows:
I α(c1, c2) = (α1(c1), α2(c2))
I γ(a1, a2) = (γ1(a1), γ2(a2)).

I Abstractions are done independently.
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3. Approximation of fixed points
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Array Bound Analysis §3

I We abstracted from L = Lab∗ → P(Var∗ → Z) to
M = Lab∗ → Var∗ → Interval.

I M is a prime candidate for Array Bound Analysis:
At every program point, determine the minimum and
maximum value for every variable.
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M has its problems §3

I Consider the program
[x := 0]1

while [x >= 0]2 do

[x := x + 1]3;

I The intervals for x in Analysis◦(2) turn out to be

[0, 0] v [0, 1] v [0, 2] v [0, 3] v . . .

I Not having ACC prevents termination.

I When the loop is bounded (e.g., [x < 10000]2)
convergence to [0, 10001] takes a long time.
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Consider the options §3

I Two ways out:
I abstract M further to a lattice that does have ACC, or
I ensure all infinite chains in M are traversed in finite time.

I In this case, there does not seem to be any further
abstraction possible.

I So let’s consider the second: widening.
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Widening §3

I Widening ≈ a non-uniform coarsening of the lattice.
I We promise not to visit some parts of the lattice.

I Which parts typically depends on the program.

I Essentially making larger skips along ascending chains than
necessary.

I This buys us termination.
I But we pay a price: no guarantee of a least fixed point.

I By choosing a clever widening we can hope it won’t be too
bad.
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Array Bound Analysis §3

I Consider the following program:
int i, c, n,

int A[20], C[], B[];

C = new int[9];

input n; B = new int[n];

if (A[i] < B[i]) then

C[i/2] = B[i];

I Which bound checks are certain to succeed?
I Arrays A and C have static sizes, which can be determined

’easily’ (resizing is prohibited).
I Therefore: find the possible values of i.
I If always i ∈ [0, 17], then omit checks for A and C.
I If always i ∈ [0, 19], then omit checks for A.
I Nothing to be gained for B: it is dynamic.
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The key realization §3

I For the arrays A and C, the fact i ∈ [−20, 300] is (almost)
as bad as [−∞,∞].

I Why then put such large intervals in the lattice?

I Widening allows us to tune (per program) what intervals
are of interest.
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What intervals are interesting? §3

I Consider, for simplicity, the set of all constants C in a
program P .
I Includes those that are used to define the sizes of arrays.

I What if, when we join two intervals, we consider as result
only intervals, the boundaries of which consist of values
taken from C ∪ {−∞,∞}?

I To keep it safe, every value over sup(C) must be mapped
to ∞, and below inf(C) to −∞.

I A program has only a finite number of constants: number
of possible intervals for every program point is now finite.
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Variations §3

I Which constants work well depends on how the arrays are
addressed: A[2*i + j] = B[3*i] - C[i]

I Variations can be made: take all constants plus or minus
one, etc. etc.

I In a language like Java and C all arrays are zero-indexed
I Consider only positive constants (A[-i]?).

I What works well can only be empirically established.



[Faculty of Science
Information and Computing Sciences]

50

Back to the lattice §3

⊥

Ext(f)

Fix(f)

Red(f)

>

fn(>)
unfn(>)
gfp(f)

lfp(f)

fn(⊥)
tnfn(⊥)

I Red(f) = {x | f(x) v x}
I Ext(f) = {x | x v f(x)} and

I Fix(f) = Red(f) ∩ Ext(f).
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Back to the lattice §3

⊥

Ext(f)

Fix(f)

Red(f)

>

fn(>)
unfn(>)
gfp(f)

lfp(f)

fn(⊥)
tnfn(⊥)

I Start from ⊥ so that we obtain the least fixed point.
I Another possibility is to start in > and move down.

Whenever we stop, we are safe.
I But....no guarantee that we reach lfp
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Pictorial view of widening §3

lfp(f)

Red(f)

f 1
∇

f 0
∇ = ⊥

f 2
∇

fm∇ = fm+1
∇

fm−1
∇

fm−2
∇...
...

I Widening: replace t with a widening operator ∇ (nabla).

I ∇ is an upper bound operator, but not least:
for all l1, l2 ∈ L : l1 t l2 v l1∇l2.

I The point: take larger steps in the lattice than is necessary.

I Not precise, but definitely sound.
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How widening affects sequences §3

I Consider a sequence

l0, l1, l2, . . .

I Note: any sequence will do.

I Under conditions, it becomes an ascending chain

l0 v l0∇l1 v (l0∇l1)∇l2 v . . .

I that is guaranteed to stabilize.
I Stabilization point is known to be a reductive point,

I I.e. a sound solution to the constraints

I but is not always a fixed point. Bummer.
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What it takes to be ∇ §3

l1 l2

l1 t l2

l1∇l2

I Let a lattice L be given and ∇ a widening operator, i.e.,
I for all l1, l2 ∈ L: l1 v l1∇l2 w l2, and
I for all ascending chains (li), the ascending chain

l0, l0∇l1, (l0∇l1)∇l2, ... eventually stabilizes.

I The latter seems a rather selffulfilling property.
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Iterating with ∇ §3

I How can we use ∇ to find a reductive point of a function?

I fn∇ =


⊥ if n = 0

fn−1
∇ if n > 0 ∧ f(fn−1

∇ ) v fn−1
∇

fn−1
∇ ∇ f(fn−1

∇ ) otherwise

I First argument represents all previous iterations, second
represents result of new iteration.
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An example §3

I Define ∇C to be the following upper bound operator:
[i1, j1] ∇C [i2, j2] = [LBC(i1, i2),UBC(j1, j2)] where
I LBC(i1, i2) = i1 if i1 ≤ i2, otherwise
I LBC(i1, i2) = k where k = max{x | x ∈ C, x ≤ i2} if

i2 < i1

I And similar for UBC .
I Exception: ⊥ ∇C I = I = I ∇C ⊥.

I Essentially, only the boundaries of the first argument
interval, values from C, and −∞ and ∞ are allowed as
boundaries of the result.

I Let C = {3, 5, 100}. Then
I [0, 2] ∇C [0, 1] = [0, 2]
I [0, 2] ∇C [−1, 2] = [−∞, 2]
I [0, 2] ∇C [1, 14] = [0, 100]
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Ascending chains will stabilize §3

I Intuition by example.

I Consider the chain [0, 1] v [0, 2] v [0, 3] v [0, 4] . . . and
choose C = {3, 5}.

I From it we obtain the stabilizing chain:
[0, 1],

[0, 1] ∇C [0, 2] = [0, 3],
[0, 3] ∇C [0, 3] = [0, 3],
[0, 3] ∇C [0, 4] = [0, 5],
[0, 5] ∇C [0, 5] = [0, 5],
[0, 5] ∇C [0, 6] = [0,∞],
[0,∞] ∇C [0, 7] = [0,∞], . . .

I Essentially, we fold ∇C over the sequence.
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Analyzing the infinite loop §3

I Recall the program
[x := 0]1

while [x >= 0]2 do

[x := x + 1]3;

I Iterating with ∇C with C = {3, 5} gives

A◦(1) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
A•(1) ⊥ [0, 0] [0, 0] [0, 0] [0, 0] [0, 0]
A◦(2) ⊥ [0, 0] [0, 0]∇C [1, 1] = [0, 3] [0, 5] [0,∞] [0,∞]
A•(2) ⊥ [0, 0] [0, 3] [0, 5] [0,∞] [0,∞]
A◦(3) ⊥ [0, 0] [0, 3] [0, 5] [0,∞] [0,∞]
A•(3) ⊥ [1, 1] [1, 4] [1, 6] [1,∞] [1,∞]

I Note: not all interval boundaries are values from C
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Final remarks on widening §3

I Widening operator ∇ replaces join t:
I Bigger leaps in lattice guarantee stabilisation.
I guarantees reductive point, not necessarily a fixed point

I Widening operator: verify the two properties.

I Any complete lattice supports a range of widening
operators. Balance cost and coarseness.

I Widening operator often a-symmetric: the first operand is
treated more respectfully.

I Widening usually parameterized by information from the
program:
I C is the set of constants occuring in the program.

I We visit a finite, program dependent part of the lattice.
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Narrowing §3

I We found a reductive point fm∇ for some m.

I But it might not be a fixed point.

I We could improve the solution by performing more
iterations.

I (fn (fm∇ ))n
I Descending chain

I Does it stabilize?
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Narrowing operator §3

∆ : L× L→ L is a narrowing operator if:

I l2 v l1 implies l2 v (l1∆l2) v l1
I for all descending chains (ln)n, the sequence (l∆n )n

eventually stabilizes.

I ∆ descends with smaller steps,

I which prevents that we explore an infinite chain of
reductive points.

I ’Smaller’ usually means that we restrict how a solution can
change.
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Fixed point iteration §3

1. Ascend with widening (makes ’larger‘ steps than join)

2. Find a reductive point fm∇ = [f ]0∆
3. Descend with narrowing: ([f ]n∆)n (makes ’smaller‘ steps

than normal iteration)
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...

Red(f)

...

[f ]0∆ = fm∇

...

lfp(f)

[f ]1∆

[f ]m
′

∆

[f ]m
′−1

∆
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Iterating with narrowing §3

[f ]n∆ =

{
fm∇ if n = 0

[f ]n−1
∆ ∆ f([f ]n−1

∆ ) if n > 0
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Example: intervals §3

I [i1, j1] ∆ [i2, j2] = [ if i1 = −∞ then i2 else i1, if j1 =∞
then j2 else j1]

I ∆ is a narrowing operator which prefers finite over infinite.

I It only allows changing infinity to some finite value.

I For example [1, 100] v [−∞, 1000] and we have
[−∞, 1000] ∆ [1, 100] = [1, 1000].

I [−∞, 1000] was the value found so far, [1, 100] is the
newly found information
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